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1 Lecture 1

1.1 Non-relativistic QFTs
In these lectures d denotes the number of spatial dimensions. Morally, speed of
light is infinite, so the light-cone is everything with t > 0.

1.2 A useful model
Free theory. Consider

S =

∫
dtddx

(
iψ†∂tψ − |∇ψ|2

2m

)
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The equation of motion is the Schroedinger equation (not for the wavefunction,
but for the field ψ).

i∂tψ = −∇2ψ

2m
.

This shows up usually when discussing second-quantization. When quantizing
the theory we impose commutation (or anti-commutation if we wanted to work
with fermions)

[ψx, ψ
†
y] = δ(x− y).

We can expand into plane waves:

ψ(x) =

∫
ddk

(2π)d
eikxak.

Contrarily to relativistic theory, ψ only contains annihilation operators, no cre-
ation operators, so ψ(x)|0⟩ = 0. Question: why? Answer: just see that this
verifies the commutation relation, and contrarily to the relativistic case we do
not need to ensure causality, so there is no need to add more stuff.

This is a realtively boring theory: the Hilbert space is the Fock space
a†k1 . . . a

†
kn
|0⟩, with energy E =

∑n
i=1 k

2
i /(2m). It is a superposition of plane

waves.

Turning on an interaction term. We want a non-relativistic version of the
ϕ4 theory:

S =

∫
dtddx

(
iψ†∂tψ − |∇ψ|2

2m
− c

2
ψ†ψ†ψψ

)
.

We want to do some power-counting. The mass m is just there to translate from
momentum to energy (just like the speed of light in relativistic theories). So we
set dimensions [m] = 0, and [∇i] = 1, so [∂t] = 2, so [dt] = −2, [ddx] = −d, and
overall we want [ψ] = d/2 to get a dimensionless action. Finally, [c] = 2−d. The
four-point interaction behaves differently in d < 2, d = 2 and d > 2 dimensions.

• If d < 2 the interaction term is relevant.

• If d = 2 the interaction term is marginal.

• If d > 2 the interaction term is irrelevant.

We will be mostly interested in the case d = 3, but for the moment let us
concentrate on the case d = 2 which looks more interesting at first.

Many questions. Question: why is m dimensionless? Answer: there is a
deeper reason which is that m is a parameter in the Galilean algebra so it
is not renormalized. Question: what if there are multiple species? Answer:
then a combination of the masses (times the number of each particles) is non-
renormalized.

Question: can such a theory be obtained as a non-relativistic limit of a
relativistic one? Answer: yes, take ϕ4 theory and focus on the kinematic sector
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of the theory where we are just above the threshold of creating n particles,
so that they all have very little energy. Question: but the relativistic kinetic
term has two time derivatives |∂tϕ|2; where did one time derivative disappear?
Answer: in the suitable limit we have ϕ = e−imtψ/

√
2m where ψ is smooth

while the prefactor is oscillatory. Then inserting in the usual ϕ4 Lagrangian,
and dropping the highly oscillating terms gives the non-relativistic Lagrangian.

Question: where did the dimension of time change in this process?

1.3 Beta function
Feynman rules. The Green function in non-relativistic theories is retarded:

G(t, x)

{
= 0 t < 0,

̸= 0, t > 0.

Indeed

⟨0|Tψ(t, x)ψ†(0, 0)|0⟩ = ⟨0|ψ†(0, 0)ψ(t, x)|0⟩ = 0 t < 0

since ψ|0⟩ = 0. After Fourier transform one finds a propagator with the following
iϵ prescription, and a four-point vertex:

G(ω, p) =
i

ω − p2

2m + iϵ
,

vertex = −2ic.

Non-renormalization of the mass. Then we can check that the mass is
not renormalized (at least at first order) by drawing the leading correction to

:

= (coef)
(
G(tx − ty, x− y)

)2
G(ty − tx, y − x)

there is always one of the propagators going in the wrong time direction.

Renormalization of the four-point vertex. Corrections to the four-point
vertex:

= 0, ̸= 0.

In d = 2 we eventually get the beta function

β(c) =
c2

2π
for d = 2.
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Then the flow can be integrated explicitly by solving

∂c(Λ)

∂ log Λ
= β(c), c(Λ0) = c0.

This gives
c(Λ) =

c0

1 + c0
2π log Λ0

Λ

If the coupling constant starts positive, c0 > 0, then in the IR, c→ 0, but at
finite ΛLandau = Λ0e

2π/c0 we get a Landau pole. Starting instead from c0 < 0
we get an IR divergence

Λ

c

ΛLandau

Λ

c
Λe−2π/|c0|

Question: isn’t c < 0 sick because the potential is unbounded? Answer: no
vacuum instability because in this theory the number of particles is fixed.

Two-particles potential. The two-particles potential can be computed by
Feynman diagrams of the form

because the particle number N =
∫
dxψ†ψ is conserved by the evolution. The

Hilbert space splits into a direct sum H = H0 ⊕H1 ⊕H2 ⊕ . . . where Hn has
n particles.

For some critical value of c0 one finds a confining potential, leading to a
bound state.

1.4 Non-relativistic conformal theories
1.4.1 Epsilon expansion

We consider d = 2 + ϵ dimensions. The beta function is

β(c) = ϵc+
c2

2π
.

β(c)

c∗ = −2πϵ

For positive c, or small enough negative c the RG flow make c→ 0. For negative
enough c there is a particular value of c0 that gives a fixed point.
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1.4.2 Schrödinger (non-relativistic conformal) symmetry

What are the invariances of the Schrödinger equation i∂ψ/∂t = −∇2ψ/(2m)?

• Spatial translations ψ(t, x) → ψ′(t, x) = ψ(t, x+ a), also spatial rotation,
reflection.

• Phase rotation ψ = eiαψ.

• Galilean boost1 Ki defined by viKi : ψ → ψ′ = eim v·x−imv2t/2ψ(t, x− vt)
for a vector v. The phase factor cancels the effect of how time derivative
now acts on the (boosted) spatial coordinate.

• Dilatation ψ → ψ′ = 1
λd/2ψ(λ

2t, λx).

• Proper conformal transformation2

C : ψ → ψ′(t, x) =
1

(1 + αt)d/2
e

i
2

mαx2

1+αt ψ
( t

1 + αt
,

x

1 + αt

)
.

1.4.3 Non-relativistic theory from light-cone restriction of a rela-
tivistic CFT

In principle, it would be good to directly take a non-relativistic limit of a rela-
tivistic theory. But this is tricky to do generally because the relativistic theory
wants to generate particles whereas we would want a limit with constant particle
number.

Consider a (d + 1) + 1 dimensional Minkowski space. The Klein–Gordon
equation reads (with i = 1, . . . , d)(

−∂2t + ∂i∂i +
∂2

∂y2

)
ϕ = 0.

Switch to light-cone coordinates x± = (t± y)/
√
2. Then the equation becomes

(−2∂+∂− + ∂i∂i)ϕ = 0.

Then require the field to take the form ϕ = eimx
−
ϕ(x+, xi) then the equation

becomes (
−2im

∂

∂x+
+ ∂i∂i

)
ϕ(x+, xi) = 0,

which is the Schrödinger equation. The Schrödinger algebra should arise by
taking a similar operation on the (d + 1) + 1 dimensional conformal algebra
so(d+2, 2): select generators that commute with one light-cone momentum P+

(this forms a Lie algebra, which incidentally includes P+ itself). Conversion
from the relativistic conformal symmetry to the non-relativistic (here M is the
total mass, N is the particle number)

1The precise expression needs to be checked.
2It looks like a special conformal transformation, a combination of inversion, translation,

inversion.
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relativistic Schrödinger

P+ M = mN
P− H
D +M+− D
M i+ Ki

K+/2 C

1.4.4 A few facts

In the Schrödinger algebra,

• N is central, namely [N, anything] = 0;

• [Ki, Pj ] = iδijM where M is the total mass M = mN ;

• [D,Pi] = iPi, [D,Ki] = −iKi, [D,H] = 2iH, [D,C] = −2iC scaling
dimensions, consistent with the earlier naive dimension assignment;

• [C,H] = iD so C,D,H form a SO(2, 1) algebra.

Question: can a theory be invariant under Pi,Ki, H,D (and M), but not C?
Answer: ?

Introduce some operators. From ψ(x) and ψ†(x) we build

n(x) = ψ†
xψx

j(x) =
−i
2
ψ†↔∇ψ.

Then
[n(x), n(y)] = 0, [n(x), ji(y)] = −in(y)∇iδ(x− y),

[ji(x), jj(y)] = −i(jj(x)∂i + ji(y)∂j)δ(x− y).

These are related to diffeomorphism invariance. (Bruno is lost.) But these are
just operators, they typically don’t commute with the Hamiltonian since we are
doing quantum mechanics.

Then we can express many symmetry generators (but not the Hamiltonian
for instance) in terms of these currents as

N =

∫
dxn(x), Ki =

∫
dxxin(x), C =

∫
dxx2n(x),

P =

∫
dx j(x), D =

∫
dxx · j.

We have ∂tn + ∇ · j = 0, which lets us compute the time derivative of the
moments N , Ki and C. We have [H,Ki] ∼

∫
dxx∇j ∼ Pi. We can compute all

the commutators between these operators. The most non-trivial aspect is how
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H commutes with D. This is what distinguishes theories that are scale-invariant
from those who are not.

Claim: at the critical point (at the fixed point) the commutator of the
Hamiltonian and dilation is the one we expect (the scale-invariant one).

Claim: if the theory is constructed from ψ and ψ†, then scale-invariance
implies Schrödinger symmetry.

2 Lecture 2
First we will describe local operators in a quantum mechanics language. Then
we will study a concrete application of the formalism.

Each operator in the Schrödinger algebra has a certain dimension under D
namely [D,A] = i∆AA, with

A ∆A

Pj 1
K −1
H 2
C −2

[Pi,Kj ] ∼ iδijN,

[H,C] ∼ iD.

Consider now a local operator O(x) (with x = (t, x⃗) such as ψ(x). Then

[N,O(x)] = iNOO(x), [D,O(0)] = i∆OO(0)

where NO is the charge of the operator and ∆O the dimension.
For instance Nψ = −1, ∆ψ = 3/2 in the free theory.
Starting from an operator O with definite charge and dimension, [Pi,O] have

dimension ∆O + 1 while [H,O] has dimension ∆O + 2. Similarly [Ki,O] has
dimension ∆O − 1 and [C,O] has dimension ∆O − 2.

Primary operator. An operator is a primary operator if it commutes with
K and C, namely [Ki,O(0)] = [C,O(0)] = 0. Acting with Pj and H produces a
tower of descendants of the original primary operator, like in relativistic CFT.

Example: in the free theory,

[C,ψ(0)] =
[∫

dxx2ψ†(x)ψ(x), ψ(0)
]
∼ x2δ(x = 0)ψ = 0.

Comment: the interpretation of Pj and Kj as raising and lowering operators
is not clear if N acts trivially, because then they just commute.

Two-point functions of charged operators. Let us assume NO ̸= 0. Then
Schrödinger invariance implies the form

⟨O(t, x)O†(0, 0)⟩ = c

t∆O
exp

(
i
NOx

2

2t

)
.

In a reflection-positive theory the constant c has to be positive (e.g., take the
spatial position x = 0). For NO = 0 it is less clear.

7



Three-point functions. Three-point functions are only partially constrained.
For instance

⟨ψ(y)(ψ†ψ)(x)ψ†(0)⟩ ∼ f
( (y − x)2

ty − tx

)
where the dependence on this ratio cannot be fixed by Schrödinger invariance.
This means in particular that any theory with a non-trivial f cannot derive
from a light-cone reduction of a relativistic theory.

See [Golkar–Sơn 2014].

A modified Hamitonian. Define

Hosc = H + C.

In the free theory since C =
∫
dxx

2

2 ψ
†ψ we can think of this as adding a

harmonic trap keeping things close to x = 0.
In a general theory we cannot have a similar interpretation of C.
Consider a state O†(0)|0⟩ with all particles concentrated at the origin (which

is not a very physical state). Then act with e−H :

|ψO⟩ := e−HO†(0)|0⟩.

Then
Hosc|ψO⟩ = e−H(C − iD)O†(0)|0⟩ = ∆O|ψO⟩.

I don’t understand the last equality Thus the dimension ∆O of the operator is
the eigenvalue of the state under Hosc.

Non-QFT interpretation of local operators. All the examples we are
studying are really quantum mechanics with short-range interaction.

Let us consider a 3 + 1 dimensional system, treated as quantum mechanics
of a collection of spin-1/2 fermions. Then the wavefunction is

Ψ = Ψ(x1, . . . , xn, y1, ,̇ym)

where xi are coordinates of the spin up particles and yi of the spin down ones.
For n > 1 or m > 1 we would have to impose that Ψ would be antisymmetric

in the x variables, and antisymmetric in y. In particular Ψ would vanish as
xi − xj → 0 and likewise as yi − yj → 0. What about when xi − yj → 0? Focus
on the case n = m = 1 to avoid worrying about the statistics of the fermions,
and drop the i index.

Usually in quantum mechanics we would assume that the function Ψ is
smooth as x → y but let us add a 1/|x − y| term to make the situation more
interesting. Namely let us require that

Ψ(x, y) =
C(x+y2 )

|x− y|
+ lower order terms
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where CC is a function of the center of mass. This is because we want the
Hamiltonian to include H = − 1

2

(
∇2
x+∇2

y

)
. Naively second derivatives of 1/|x−

y| can be of order 1/|x − y|3, but this specific differential operator acting on
1/|x − y| just gives a delta function, which can be ignored. We find that HΨ
does not have any 1/|x− y|3 term and is simply of the same form O(1/|x− y|)
as Ψ itself, so this is a good candidate wave-function.

To be precise, the class of wave-functions and Hamiltonians is

Ψ(x, y) =
C(x+y2 )

|x− y|
+ odd powers of |x− y|,

H = −1

2

(
∇2
x +∇2

y

)
+ higher partial waves

Basically instead of interactions we have put boundary conditions at x → y.
(This is a bit like anyons for which we impose a monodromy for x going
around y.) The boundary condition can be obtained as an effective descrip-
tion of how wave-functions behave for a system with a potential allowing for a
zero-energy bound state (particles interacting with resonant interactions). We
get a (non-relativistically) conformally-invariant theory.

Local operators. The one-point function of the fermion operator ψ is not
very interesting, it is just the wave function,

⟨0|ψ↑(x)|1-particle⟩ = Ψ1-particle(x).

Things start to be interesting when looking at two-point functions,

⟨0|ψ↑(x)ψ↓(y)|2-particle⟩ = Ψ2-particle(x, y).

How do we extract a local operator from that? We want to take y → x but the
wavefunction blows up (due to our boundary condition). Just rescale:

O2(x) := lim
y→x

|x−y|ψ↑(x)ψ↓(y), ⟨0|O2(x)|2-particle⟩ = lim
y→x

|x−y|Ψ2-particle(x, y),

so this particular matrix element of O2(x) is finite. In fact, all its matrix
elements between multi-particle states can be shown to be finite. We actually
have the OPE

ψ↑(t, x)ψ↓(t, 0) ∼
O2(t, 0)

|x|
+ regular.

If the times were t1, t2 then the function 1/|x| would be more complicated. The
dimension of the operator O2 are deduced from this OPE and from [ψ] = 3/2,
so

[O2] = 2.

So we have found the exact dimension of the charge-2 operator in this quantum
mechanics.
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Question: why did we need two species of fermions ψ↑ and ψ↓? Answer:
because with a single fermion the lowest charge 2 operator would be ψ∇ψ,
which is of quite high dimension.

One can check that

Ψ(x, y) =
e−(|x|2+|y|2)/2

|x− y|
obeys HΨ = 2Ψ.

(The higher excited states can be obtained by applying suitable combinations of
C,D,H, and take the form of the same Gaussian with Laguerre polynomials.)

Charge 3 operator. We seek the dimension of the charge 3 operator. For this
we need to find the wavefunction Ψ(x1, x2, y). Roughly-speaking the operator
will be

O3(x) = lim
R→0

R?ψ↑(x1)ψ↑(x2)ψ↓(y)

where xi = y+Rvi for some fixed v1, v2. Problem solved by Efimov in the 70’s.
Outline of his strategy:

−1

2

(
∇2
x1

+∇2
x2

+∇2
y

)
Ψ = δ(x1 − y)F (x1, x2)− δ(x2 − y)F (x2, x1)

due to the 1/|xi − y| blow-up. This can be solved as

Ψ = Ψ̃(x1, x2, y)−Ψ̃(x2, x1, y), Ψ̃(x1, x2, y) = S-wave wavefunction as x1 → y.

To find Ψ̃, Efimov used a suitable coordinate system described in terms of the
overall separation R2 = |x1 − x2|2 + |x1 − y|2 + |x2 − y|2, and rescaled variables
vi = (xi − y)/R expressed in suitable polar coordinates. Then the Hamiltonian
takes the form ∂2R + 5

R∂R + 1
R2∆5 where ∆5 is a Laplacian on a compact 5

manifold of these polar coordinates. Efimov found the spectrum. See details in
https://arxiv.org/abs/2309.15177. The lowest-dimension operator in the
ℓ = 0 sector has dimension ∆O3

≃ 4.666, but the lowest-dimension operator is
in the ℓ = 1 sector and has dimension ∆ ≃ 4.273. That fact can be anticipated
from free-field theory: the two ψ↑ fermions give spin 1 because of the Pauli
exclusion principle.

For four particles the Schrödinger equation cannot be solved exactly so peo-
ple can only do numerics, maybe bootstrap bounds could be interesting.

Question: intuition for why two-body operators have protected dimension?
Answer: actually the anomalous dimension is −1, but no clear answer about
what protects it.

For large n number of particles people can solve by using effective field theory
at finite density.

2.1 Application to nuclear physics
Let us discuss a case where we have an approximate non-relativistic conformal
field theory, in nuclear physics.
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Now ψ are neutrons, can have spin up or spin down. The interaction between
these neutrons are almost fine-tuned to fit this picture. The neutron-neutron
scattering length is equal to a = −19 fm. In nuclear physics the typical distance
where particles interact is roughly 1 fm (roughly speaking the inverse mass of
the pion). So −19 fm is very large. The minus sign means that neutron pairs
do not quite make a bound state.

A neutron can be thought of as describing a flow from a non-relativistic CFT
at high energies to a free theory at low energy, and studying it at an energy
scale E ∼ 1/(ma2) ∼ 0.1MeV (formula?). If we had a = ∞ we would sit at the
NRCFT point and a <∞ means we have a sort of relevant deformation thereof.

Triton (tritium nucleus). Among many nuclear reactions, one that was
studied experimentally was the following. Consider a pionic atom, meaning
instead of an electron you have a π−, rotating around a nucleus. Specifically
the nucleus we take is triton (the nucleus of tritium), consisting of a proton and
two neutrons:

nn
p

π−

This thing decays by a process that suddenly the pion is absorbed by the nu-
cleus and the whole thing becomes three neutrons that fly apart. The energy
produced by this reaction is approximately the mass of the pion; a bit less,
roughly 130MeV because some energy is spent to break apart the bound state.

In a small portion of the decays (suppressed by the electromagnetic α ∼
1/137) there is also a photon γ. Then γ carries away some of the energy. The
differential decay rate as a function of energy looks as follows,

E

dΓ/dEγ

E0 ∼ 130MeV

The end-point E0 is an energy for which the photon has taken away all of the
energy. Close to E0, the neutrons that remain share a small amount of energy
E0 − E (up to their center of mass motion). We can think of this process as
creating two objects:

• a photon, which moves away very early on and decouples from the rest of
the evolution;

• three neutrons, created by an operator O†
3.

Then NRCFT should be a good approximation for energies very close to E0,
with corrections coming from the fact that the original nucleus has finite size
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(so the three neutrons are not quite at the same point, contrarily to O†
3. We

can then relate the decay rate with an NRCFT observable:

dΓ

dEγ
= ℑ⟨O3O†

3⟩.

The operator that should dominate is the lowest-dimension operator, so ∆ ≃
4.273. Then we compute the Fourier transform etc and we predict that the
differential decay rate should behave as (E0 − Eγ)

∆−5/2 = (E0 − Eγ)
1.77

Experimental data is not precise enough to confirm this. But people had set
up some very elaborate nuclear physics models with 40 parameters to model the
various interactions, and they could fit parameters (using the whole curve and
other data sets). Using this model as the ground truth, one finds that indeed the
power law behaviour matches the NRCFT as Eγ → E0. But the approximation
is only valid for a small window of energies, E0 − Eγ < 2.5MeV or so.

Question: why is the validity so limited? Answer: nature is really described
by QCD. The flow from QCD down to the IR free theory (in this setup) runs
very close to the NRCFT, but only for some range of energies. Estimating this
energy range gives roughtly a 5MeV range of energy where the approximation
should be valid. Another source of error terms is the finite-size of the nucleus.
To settle this question one could do experiments on Helium-4, as that nucleus
is very tightly bound.

Question: what about deuterium? Answer: then the differential cross-
section is completely known and has an

√
E0 − E behaviour as E → E0. This

matches the expectation coming from the dimension of O2, but then the NRCFT
does not bring anything new.

12


	Lecture 1
	Non-relativistic QFTs
	A useful model
	Beta function
	Non-relativistic conformal theories
	Epsilon expansion
	Schrödinger (non-relativistic conformal) symmetry
	Non-relativistic theory from light-cone restriction of a relativistic CFT
	A few facts


	Lecture 2
	Application to nuclear physics


