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1 Basics of 2d CFTs

References

• Well-known Di Francesco book

• Nice reading: Ginsparg https://arxiv.org/abs/hep-th/9108028

• Xi Yin 2017 TASI: 2d CFT from bootstrap philosophy

• Higher-dimensional CFT D. Simmons–Duffin 2016 TASI lecture notes;
Rychkov 2016 EPFL notes.

1.1 CFT introduction

What are they? They are quantum field theories with conformal symmetry.
That has a lot of consequences. For now we treat the general dimension case.

In d spacetime dimensions with Lorentz signature, the conformal group is
SO(d, 2) and contains the Poincaré group ISO(d−1, 1). In Euclidean signature
it would be SO(d+ 1, 1) containing ISO(d, 1).

The Poincaré generators Mµν and Pµ are completed by the dilation opera-
tor D and by special conformal transformations Kµ = I ◦ Pµ ◦ I where I is the
inversion transformation I : xµ 7→ xµ/|x|2. (Inversion is outside SO, because it
reflects orientation.)

In these lectures we will focus on QFTs that are local, unitary, and compact
in the sense that the theory on a compact spatial slice has a discrete energy
spectrum. We assume translation invariance, which means that there exists a
conserved stress tensor Tµν . We assume rotation invariance, which means Tµν
is symmetric. We assume conformal invariance, which means Tµµ = 0, so that
Jµϵ = Tµνϵν for any vector ϵ obeying the conformal Killing equation

∂µϵν + ∂νϵµ =
2

d
(∂ · ϵ)ηµν .

Among such vectors we have those that obey the Killing equation ∂µϵν+∂νϵµ =
0, which correspond to isometries of space, hence correspond to the Poincaré
group inside the conformal group.

Once you have a symmetry you should organize everything according to it.
Operators of the theory come into representations of the conformal group, called
conformal families. In each family there is a lowest-dimension operator O∆,J ,
where the dimension ∆ is the eigenvalue of the dilation operator D.

Correlators obey quite constraining conformal Ward identities.

Physical contexts where CFTs arise.

• Second-order phase transitions of various quantum models (lattice, con-
tinuous models), for instance boiling water.
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• Fixed-points of renormalization group flows.1

• Model for quantum gravity through the AdS/CFT correspondence.

Why? CFTs carry the hallmarks of universality. They are characterized by a
small set of physical data: critical exponents, OPE coefficients, etc. They give
a powerful non-perturbative approach to QFT (hence also to quantum gravity).
They are nevertheless much more interesting and generic than free theory (e.g.,
operator dimensions are generally not integers).

How? There is an operator algebra formulation allowing to describe the CFT
by a spectrum of dimensions and spins, plus operator product expansions based
on operator three-point functions. Then bootstrap axioms constrain that data.
There is then an axiomatic approach to solve or constrain the CFTs, either
analytically (in 2d) or numerically (in higher dimensions).

This is an ideal playground to investigate generalized symmetries (properties
and dynamical consequences).

Various questions and remarks. Question: the whole structure is com-
plicated. Answer: there is an infinite amount of data, and infinitely many
constraints. It is not known whether this can be reduced in some way to fi-
nite data. In practice CFTs are often isolated, so that specifying some of the
low-lying dimensions etc is often enough.

Question: can there be multiple operators with the same ∆ and J? Answer:
yes there can still be degeneracies, we are only writing ∆, J to keep notation
simple, but there

Question: why the compact condition? Answer: there are other theories
like Liouville CFT, but one ends up with complicated convergence questions.
Also, the CFTs coming out of lattice models are naturally compact.

Question: what about extended operators? Why aren’t we including the
higher-dimensional operators? In 2d the local operators are actually enough
to fix the line operators etc. It is related to how trivial TQFTs are in low
dimensions.

1.2 CFT in d = 2 (1+1d)

We now focus on 2d CFT. It is easier to make figures. But more importantly
2d CFTs have a very large symmetry algebra.

Complex coordinates. We introduce coordinates z = x1 + ix2 and z =
x1 − ix2 on Euclidean R2. The traceless condition sets Tzz = 0. Conservation
makes Tzz holomorphic and Tzz antiholomorphic, so instead of Tµν we can

1Generally (but there are counterexamples) the low-energy limit of the RG flow is scale-
invariant and this scale invariance generally enhances to full conformal invariance.
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work with T (z) = Tzz(z) and T (z) = Tzz(z). In addition, this operator has
∆ = J = 2.

The fact that T and T are separately conserved leads to a large symmetry
algebra. There are many more conformal Killing vectors ϵµ = (ϵ(z), ϵ(z)) for
any pair of holomorphic functions. This gives currents jϵµ = (ϵT, ϵT ). Taking a
basis of monomials zm we get charges

Ln =

∮
dz

2πi
T (z)zn+1, Ln = −

∮
dz

2πi
T (z)zn+1.

The global conformal group SO(3, 1) ≃ PSL(2,C), or rather its Lie algebra,
gets enhanced to an infinite-dimensional algebra Virc×Virc. The algebra is
determined by the stress-tensor OPE, which is fixed by holomorphy and dimen-
sional analysis to be

T (z)T (w) =
c

2(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ regular.

The second and third terms are necessarily there in order to reproduce the cor-
rect global conformal algebra. The first term involves a dimensionless number,
called the central charge c, that depends on the theory. Then the charges Lm
obey the Virasoro algebra Virc with central charge c, namely

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0.

The global conformal algebra sl(2,C) is generated by {L0, L±1, L0, L±1}. In
particular L0 + L0 = ∆ and |L0 − L0| = J .

State-operator correspondence. There is a bijection between local opera-
tor O and states in the Hilbert space on a circle2 The key is radial quantization,
treating the radial direction as time. The corresponding Hamiltonian is L0+L0.
To go from an operator O to a state, insert it at the origin, and evolve with
that Hamiltonian until some (radial) “time slice”. Alternatively, conformally
map this to a cylinder.

S1

O(0)

(z, z)

radial quantization

H = L0 + L0

z=e−iw
←−−−−−→
w=σ+iτ σ

τ

|O⟩

2Some people in the audience are thinking about state-operator correspondence with non-
local operators, but in 2d we can stick with local operators for our purposes.

4



Hermitian structure. This is inherited from the Lorentzian cylinder (t =
−iτ)

OL(t, σ)† = OL(t, σ), OL(t, σ) = eiHt−ipσOL(0, 0)e−iHt+ipσ.

Now Wick-rotate (the subscript L stands for Lorentzian and E for Euclidean)

OE(τ, σ) := OL(−iτ, σ) =⇒ OE(τ, σ)†
H,P hermitian

= OE(−τ, σ).

Conclusion: Hermitian conjugation in Euclidean spacetime amounts to “time”
reflection (and complex conjugation if the operator is not real). Note that this
depends on what we use as Euclidean time.

On R2, hermitian conjugation amounts to BPZ conjugation: for a real scalar
operator,

O∆(z, z)
† = |z|−2∆O∆

(1
z
,
1

z

)
obtained using the relation between operators on the cylinder and on R2, namely
Ocylinder = eτ∆Oflat. Similarly for the spinning case, for instance

T (z)† =
1

z4
T
(
1/z
)

L†n = L−n, L
†
n = L−n.

Here, crucially, Hermitian conjugation has mapped T to itself at a different
point: on the right-hand side we do not have T , but really T . It depends
holomorphically on its argument, which happens to be the conjugate of 1/z.
Upon integrating, we get Virasoro modes of T , with no mixing between T and
T under the Hermitian conjugation.

You are free to work with a different Hermitian structure, but this would not
correspond to a Wick-rotated Lorentzian theory. So to extract physical results
you don’t have a choice.

Operator product expansion Insert a pair of operators near the origin,
consider the state that they produce upon the state-operator correspondence,
then use the state-operator correspondence backwards to write everything in
terms of operators at the origin:

|ψ⟩

Oi

Oj

(z, z)

−→

|ψ⟩

∑
Ok

(z, z)

HS1 ∋ |ψ⟩ = Oi(z1)Oj(z2)|0⟩ =
∑
k

Ckij(z1, z2)Ok(0)|0⟩,
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which is a convergent sum as a consequence of ⟨ψ|ψ⟩ = ⟨Oj(z2)†Oi(z1)†Oi(z1)Oj(z2)⟩ <
+∞.

Then in any correlator we can replace a pair of operators that are close
enough (that can be wrapped alone in a circle with no other insertion) by a sum
of single operators with suitable coefficients

|ψ⟩

O1

O2

O3 On

(z, z)

⟨O1(z1)O2(z2)O3 . . .On⟩ =
∑
k

Ck12⟨Ok(zk)O3 . . .On⟩.

1.3 Virasoro representations

Local operators, or equivalently states, fall into unitary representations of Virc×Virc
(we will assume that there is no gravitational anomaly, namely c = c). We con-
sider lowest-weight states |h, ℏ⟩ of each irreducible representation, where h, ℏ
are eigenvalues of L0, L0, namely

Ln|h, ℏ⟩ = Ln|h, ℏ⟩ = 0, for all n > 0.

Under the state-operator correspondence, they correspond to primary opera-
tors Oh,ℏ, which obey the following transformations under conformal transfor-
mation z → z′ and z → z′,

O′h,ℏ(z′, z′) =
(∂z′
∂z

)−h(∂z′
∂z

)−ℏ
Oh,ℏ(z, z).

Conformal invariance of correlators:

⟨O′1(z1, z1) . . .O′n(zn, zn)⟩ = ⟨O1(z1, z1) . . .On(zn, zn)⟩.

Consequences

• Two-point and three-point functions of primary operators are completely
fixed up to coefficients. Denoting zij = zi − zj ,

⟨O1O2⟩ =
δh1,h2

δℏ1,ℏ2

z2h1
12 z2ℏ1

12

⟨O1O2O3⟩ =
c123

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
31 zℏ1+ℏ2−ℏ3

12 zℏ2+ℏ3−ℏ1
23 zℏ3+ℏ1−ℏ2

31

.

• Correlators of descendants are fixed by those of the primaries.

• Correlators of more than three local operators are fixed by two- and three-
point functions.
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Unitarity constraints imply that states in HS1 should have positive-definite
norms. Easy exercise: show that c > 0 and that h, ℏ ≥ 0 (unitarity bound).

Systematic version: positivity properties of the Gram matrix of lowest-
weight states |h, ℏ⟩. We learn

• Determine the unitary irreps Mc,h of Virc.

• Unitary theories with c < 1 are minimal models, have c = 1 − 6
m(m+1)

with m = 3
Ising

, 4
tricritical

, 5, . . . and dimensions are (with a further two-fold

identification)

hr,s(m) =
((m+ 1)r −ms)2 − 1

4m(m+ 1)
, 1 ≤ r ≤ m− 1, 1 ≤ s ≤ r.

Once we understand the representation theory we are not done. Coming from
further constraints on CFT we will see that there are further constraints on h
versus ℏ.

Ising CFT. Minimal model withm = 3, central charge c = 1/2, three primary
operators, of dimensions h = 0, 1/16, 1/2. These are the critical exponents of
the Ising CFT. They can be measured, for instance in the transverse-field Ising
model.

1.4 Torus

One way to discuss the relation between h and ℏ is to study locality constraints
coming from placing the CFT on the torus.

Question: why do you say locality? What it means is that we are allowed to
place the theory on any (Euclidean) manifold, then select whatever spatial slice
I want, and the correlators will give the same result regardless of what direction
I choose as Euclidean time.

Consider a torus T 2 = C/2π(Z+ τZ) described as a quotient of the complex
plane by a lattice.

w
1

τ = τ1 + iτ2, τ2 > 0

Then
ZT 2(τ, τ) = TrHS1

(
e−2πτ2Hcyl+2πiτ1Pcyl

)
where Hcyl = L0 +L0 − c/24 and Pcyl = L0 −L0, where the c/24 comes from a
Schwartzian term, a non-trivial transformation of T under Weyl transformations
because T is not a Virasoro primary.

This trace can also be written as

ZT 2(τ, τ) = TrHS1

(
qL0−c/24qL0−c/24

)
, q = e2πiτ , q = e−2πiτ .
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Positivity and integrality in the torus partition function. The Hilbert
space on a circle decomposes into a direct sum of Virasoro representations, with
integer multiplicities nh,ℏ (finite because the theory is compact) so

ZT 2(τ, τ) =
∑
h,ℏ

nh,ℏχh(τ)χℏ(τ),

where χh(τ) = TrMc,h
qL0−c/24 is a trace over the irreducible representation of

Virc with lowest-weight state of dimension h.
For c > 1 and h > 0 we have

χh(τ) =
qn−

c−1
24

η(τ)
, η(τ) = q1/24

∏
n>0

(1− qn).

This has an expansion in positive powers of q, which counts descendants L−n1
L−n2

. . . L−nm
|h, ℏ⟩

of higher and higher dimensions. In special cases (for c ≤ 1) there are null states,
and the character changes (multiplicities decrease).

Modularity of the torus partition function. We only explain the case of
a bosonic CFT. Question: what does bosonic/fermionic CFT mean? Answer:
Bosonic means the CFT is completely defined by only specifying the metric
of the manifold. Fermionic means that we need the additional data of a spin
structure.

The torus T 2 = C/2π(Z + τZ) is the same as that with τ → τ + 1, and
the same as the one with τ → −1/τ (modulo a conformal transformation).
Together these transformations generate the group PSL(2,Z) mapping τ to
(aτ + b)/(cτ + d) with ad− bc = 1.

More generally, the partition function on a higher-genus Riemann surface is
invariant under the mapping class group. As it turns out, they are redundant:
the constraints of the torus one-point functions, and sphere four-point functions
are enough (work by Moore and Seiberg).

1.5 Consequences of modular invariance

The invariance under τ → τ + 1 leads to a e2πi(h−ℏ) factor in front of each
character. Invariance requires the spin h−ℏ to be an integer: we get quantization
of spins (for bosonic CFTs).

The invariance under τ → −1/τ leads to an identity

χh(−1/τ) =
∫
h′
Shh′χh′(τ)

of characters where the integral may have a discrete
∑

part in the rational case.
The kernel Shh′ is known, everything converges nicely. Then the invariance of
the partition function requires the multiplicities to obey

S · n · ST = n.
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1.5.1 Example of the Ising CFT.

Representation theory tells you h, ℏ = 0, 1/16, 12. Spin quantization h− ℏ ∈ Z
forces h = ℏ.

Uniqueness of the conformal vacuum |0, 0⟩, namely n0,0 = 1 means we only
need to fix n1/2,1/2 and n1/16,1/16. In the exercises we see that restricted to the
representations of interest we have

S =
1

2

 1 1
√
2

1 1 −
√
2√

2 −
√
2 0

 .

Then we find n1/2,1/2 = 1 and n1/16,1/16 = 1. Altogether, we have three confor-
mal primaries,

HS1 = {1, ϵ1/2,1/2, σ1/16,1/16}.

1.5.2 A second application: the c = 1 CFT

See Ginsparg’s review. For c = 1, representation theory allows for infinitely
many possible values of h for the Mc,h unitary representations.

R√
2 2

√
2

R′

A4
S4

A5

The line labeled by R is the compact boson of radius R, with Lagrangian
R2

4π

∫
∂ϕ∂ϕd2z where ϕ is 2π-periodic. VaryingR amounts to an exactly marginal

deformation by the operator ∂ϕ∂ϕ of dimensions (h, ℏ) = (1, 1). It is invariant
under T-duality R→ 2/R. Then R =

√
2 is the self-dual point.

At R = 2
√
2 there is the BKT point with additional symmetries and an

additional exactly marginal deformation leading to the orbifold branch (orbifold
under ϕ→ −ϕ).

There are also three discrete points obtained by orbifolding the self-dual
boson by subgroups of SO(3). To be precise, orbifolding by an A-type subgroup
of SO(3) gives points on the compact-boson branch, orbifolding by a D-type
subgroup gives points on the orbifold branch, and finally we have E6, E7, E8

subgroups.

1.5.3 Cardy formula

The Cardy formula is a statement about universality of heavy states. The
central charge c is supposed to count degrees of freedom.
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One can take τ = iβ/(2π) purely imaginary, and interpret β as the inverse
temperature. Then, denoting ∆ = h+ℏ, we have the large-β and small-β limits

Z(β) =

∫
d∆ ρ(∆)e−β(∆−c/12)

β→+∞−−−−−→ e(c/12)β

β→0−−−→
∫
d∆ ρ(∆) formally.

Then the S transformation τ → −1/τ relates these two limits as Z(β) =
Z(4π2/β). By playing around with these formulas and with inverse Laplace
transform, we find that the large ∆ density of states is

ρ(∆)
∆≫c∼ ρ0(∆) =

e2π
√
c∆/3

∆3/4

(
1 +O(∆−1/2)

)
+ exponentially suppressed.

The first term (with all power-law corrections in ∆) has a closed form in terms
of a Bessel function. This is very schematic but there are rigorous versions from
the Tauberian theorems.

1.5.4 Application 4

Discover features of familiar symmetries and new generalized symmetries.

1.6 General axiomatic constraints

Let us study constraints coming from locality. No matter how we build our
Riemann surface out of Hilbert spaces on circles, we will always get the same
answer for CFT observables. It all boils down to consistency of cutting and
gluing CFT observables on Riemann surfaces.

Moore–Seiberg gave necessary and sufficient conditions for that:

1. Quantization of spin.

2. Sphere 4-point crossing

×O1 ×O2

×O3 ×O4

=
∑
i

c12ici34

1 2

i

3 4

=

×O1 ×O2

×O3 ×O4

=
∑
j

c13jcj24

1

3

j

2

4
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3. Modular covariance of the torus one-point function3 ⟨Oh,ℏ⟩τ , namely

⟨O⟩−1/τ = τhτℏ⟨O⟩τ .

where the factor is a Weyl factor coming from the w → w′/τ coordinate
change.

×Oh,ℏ

Question: if you write the modular invariance on arbitrary Riemann sur-
faces, is that enough to recover the sphere four-point function condition? An-
swer: that’s a very good question; in some sense the genus 2 Riemann surface
can be cut open into a four-point function.

Question: how trivial is the Moore–Seiberg result; is it deep? Answer: it
depends on your particular taste. It is just about cutting and gluing.

Question: are there cases where the sphere condition is satisfied but not
torus modular invariance. Answer: have to think.

1.7 Generalized global symmetries in d = 2 CFT

From our point of view, symmetries are the same as topological defect lines
(TDL). Because we work in Euclidean signature with unitary Lorentz-invariant
theories (actually CFT), so lines can be oriented in any direction.

By definition, topological defects obey

• Topological invariance

• Fusion with integer coefficients (see later for a reason based on locality)

Di Dj

=
∑
k Dk

The action on charged operators preserves h, ℏ since the operator commutes with
the stress-tensor. It can be depicted in radial quantization or on a cylinder,

O D = D · O
D

τ

|O⟩

3By translation invariance there is no dependence on where the operator is inserted on the
torus. By spin quantization there is no need to write τ → τ + 1 invariance. In fact, one can
show that only operators of even spins can have non-zero one-point functions.
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Quantum dimension of a defect. Because the operator does not change
the dimensions, and we have assumed we have a unique vacuum, the defect must
simply rescale the vacuum by some number ⟨D⟩ = ⟨0|D|0⟩ called the quantum
dimension,

D|0⟩ = ⟨D⟩|0⟩.

In a unitary theory, ⟨D⟩ ≥ 1. If ⟨D⟩ = 1 then D is invertible. If ⟨D⟩ > 1 then
D is not invertible.

1.7.1 Example: Ising CFT

What are the symmetries? In fact, symmetries are equivalent to Ward identi-
ties, so whenever you find Ward identities you should find the corresponding
symmetry.

There is the obvious η symmetry, acting as 1 → 1, σ → −σ, ϵ → ϵ. Shows
that ⟨σσσ⟩ = ⟨σϵϵ⟩ = 0 etc.

Surprisingly (at first) one has ⟨ϵ . . . ϵ⟩ = 0 whenever there is an odd number
of ϵ, so there should be some symmetry guaranteeing that. But it cannot be
just a Z2 charge of ϵ since ⟨σσϵ⟩ ̸= 0. It will be a non-invertible symmetry N
sending ϵ→ −ϵ⟨N⟩ and σ → 0 so as to allow ⟨σσϵ⟩ ≠ 0.

This leads us to go beyond groups and to discuss fusion categories.

2 Topological Defects and Fusion Category

References for today:

• https://arxiv.org/abs/1704.02330 Bhardwaj, Tachikawa,

• https://arxiv.org/abs/1802.04445 Chang, Lin, Shao, Wang, Yin.

The goal is to understand in what sense fusion categories are the natural object
that comes up when studying generalized symmetries in 2d, just like groups
arise when studying invertible symmetries.

2.1 Axiomatic approach to symmetries in 2d CFT

Here we focus on compact, unitary CFTs with a single ground state. With-
out symmetries the relevant axioms are Moore–Seiberg axioms (on fusion and
braiding and torus S-move). We now want to refine these axioms by decorating
them by topological defect lines.

We work in Euclidean signature. A given symmetry defect can be taken
as wrapping the S1 spatial direction, in which case it is simply a symmetry
operator on the Hilbert space, or can be placed in the time direction at a point
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in space,

σ

τ

|ϕ⟩ ∈ HD
S1

D
←−−→

ϕ(0)

D

(z, z)

The Hilbert space in the presence of a defect D is denoted as HDS1 and called the
D-twisted sector. Under the state-operator map it corresponds to an operator
in the D-twisted sector.

Faithfulness condition. We assume the faithfulness condition which states
that the only defect that acts trivially on all local operators is the identity
defect. Equivalently, defects D ̸= 1 cannot end topologically: otherwise you
could cut it open and see that it acts trivially:

O D = O D = ⟨D⟩O

Multi-defect Hilbert space.

|ϕ⟩ ∈ HD1,D2
S1

D1 D2
←−−→

ϕ(0)

D1

D2

(z, z)

The Virasoro action allows you to move the defects around. It introduces some
factors so strictly speaking the Hilbert space HD1,D2,...

S1 depends on the sepa-
rations and Hilbert spaces for different separations are easily isomorphic. The
Hilbert space is also invariant (up to an important isomorphism) under cyclic
permutations of the defect (to do things properly we need to include a marked
point etc).

Besides the Hilbert space HD1,D2,...
S1 we also define

HD1+D2

S1 = HD1

S1 ⊕HD2

S1 ,

corresponding to the insertion of a direct sum of defects at the same place. This
will be useful when discussing the fusion of defect.

Question: if you insert a non-topological defect do you break Virasoro?
Answer: you break Vir×Vir to the diagonal subalgebra.
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Topological junction. A topological junction is an operator of dimension
h = ℏ = 0 inside HD1...Dn

S1 . The space of such junctions is denoted VD1...Dn . An
element v ∈ VD1...Dn

is visualized on the plane as

D1

D2

D3

In the invertible case defects are labeled by group elements gi and dimVg1...gn
is 1 if g1g2 . . . gn = 1 and is otherwise zero.

Dual defect. The dual defect D may have DD different from 1. The dual
defect is simply defined as the orientation-reversed defect

D = D

A defect is simple if dimVDD = 1. As a consequence we can show that
D ̸= D1 +D2. Conversely when dimVDD ≥ 2 then we can always split D into
pieces.

Fusion. When fusing defects we get a new defect, which can be decomposed
into simple defects, so we can introduce notation in the case of simple defects:

DiDj =
∑
k

NijkDk.

One can check that Nijk = dimVDiDjDk
. This differs from the group-like mul-

tiplication law DgDg′ = Dgg′ for invertible symmetries. Special case

DiDi = 1 + . . .

Let us check that the leading term is 1.

Using the thermal partition function. ..... missing discussion of how the
thermal partition function allows one to show that the leading term in DiDi is
dimVDD .....

T 2

D D
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Likewise in an exercise we should prove Nijk = dimVDiDjDk
using the low-

temperature limit of the torus partition function with three defect insertions

T 2

Di Dj Dk

Topological junctions as morphisms. Topological junctions v ∈ VD1D2D3

are morphisms between D1D2 and D3.

F-symbols (associators). In a general junction vector space there is no pre-
ferred basis. A several bases of VD1D2D3D4

can be constructed from bases of
three-fold junctions:

D4

D1

D2

D3 v
=
∑
a v1

3

4

a
v2

12

=
∑
b v3

b

v4

3

4

12

We have a unitary change of basis (F 321
4 )ab mapping the basis of the form v1⊗v2

to that of the form v3 ⊗ v4.

Pentagon identity. The fusion coefficients F have to obey an equation of
the form FF =

∑
FFF , obtained by performing the following fusion steps:

15



This is an analogue of the cocycle condition for H3(G,U(1)) which classifies
anomalies for the group G. In a sense, F-symbols capture the anomalies.

Should we continue with six-fold junctions etc? MacLane coherence theorem:
the full set of consistency conditions is automatically satisfied once the pentagon
identity is obeyed.

2.2 Symmetry action in defect Hilbert space

How can a symmetry labeled by a defect D2 act on a twisted Hilbert space HD1

S1 ,
namely on the D1-twisted sector? We need a topological junction v between
the operators.

D2 v

|ϕ⟩ ∈ HD1
S1

D1
←−−→

D2

ϕ(0)

D1

This can be resolved into an intermediate defect Dk ∈ D1D2. There are nor-
mally multiple choices of this intermediate defect, hence VD1D2D1D2

is typically
of dimension larger than 1 (in contrast to invertible symmetries). This means
that there are multiple possible actions of D2 on HD1

S1 . This is called the Lasso

action. A generalization is that the action can change HD1

S1 to HD3

S1 as in the
second picture below. This generates the Tube algebra.

D1

D2

Dk

D1

ϕ(0)

D3

D2

Dk

D1

ϕ(0)

2.3 Definition of symmetry-enriched CFT

A CFT enriched by a collection of topological defect lines {Di} is given by

• Data: HDi...Dj

S1 and three-point functions of operators attached to defects,

v
Dk

ϕk

Di

ϕi

Dj

ϕj

This includes the usual HS1 and three point functions.

16



• Bootstrap conditions (locality). Sphere four-point crossing in the
presence of topological defects,

a
=
∑
b

b Fab

Modular covariance of the torus one-point function with defects.

2.4 Modular invariance of the symmetry enriched CFT

Recall that for a symmetry topological defect line D we can write

D

τ

HS1

←→ D

−1/τ

HD
S1

This leads to the following relation

TrHS1

(
D̂qL0−c/24qL0−c/24

)
= TrHD

S1

(
q̃L0−c/24q̃

L0−c/24
)

where q̃ = e2πi(−1/τ).

Ising model. See homework. The Hilbert space on the LHS here is a direct
sum of representations of Virasoro so

LHS = A1|χ0|2 +A1/2|χ1/2|2 +A1/16|χ1/16|2

RHS =
∑
i,j

nijχi(q̃)χj(q̃),

where the Ai are not yet quantized and the nij are non-negative integers. Using
the modular transformations of Virasoro characters we find

• (Ai) = (1, 1, 1) corresponds to the identity defect D = 1;

• (Ai) = (1, 1,−1) corresponds to the D = η defect;

• (Ai) = (
√
2,−
√
2, 0) corresponds to the D = N defect.

The fusion rule for N 2 can be found by squaring these eigenvalues Ai and
reexpressing them in the basis of other solutions (Ai). The same can be done
for all fusion rules and we find

N 2 = 1 + η, η2 = 1, Nη = ηN = N .

17



Ising F-symbols.

=
1√
2

(
+

)

=
1√
2

(
−

)

= −

Action on local operators. Then we will find

ϵ N = −
√
2ϵ, ϵ

N
η = 0,

σ N = 0, σ

N
η =

√
2µ ,

where
√
2 is the quantum dimension ⟨N⟩ =

√
2, and µ is a primary operator in

the twisted sector:

HηS1 =
{
ψ1/2,0, ψ̃0,1/2, µ1/16,1/16

}
.

Passing TDL through local operators.

ϵ

N

= −ϵ

N

σ

N

= µ

N

(Unrelated?) claim: the presence of N means that the CFT is self-dual
under the Z2 orbifold.

2.5 Dynamic consequences of non-invertible symmetry

Assume that you have a UV theory TUV with D symmetry and you deform it
by a (marginally relevant or) relevant operator Oh,ℏ with ℏ = h and ∆ ≤ 2 then
perform the RG flow to the IR theory TIR. Assume also that the operator O
commutes with the defect D (namely the deformation preserves the symmetry).

Claim 1 (Theorem). If ⟨D⟩ ̸∈ Z then TIR cannot be trivially gapped: we either
get a CFT or spontaneous symmetry breaking.

Proof. We have

D
= D

18



If the IR is trivially gapped then there is a unique ground state so the left-hand
side is ⟨0|D|0⟩ = ⟨D⟩. The right-hand side is a trace of 1 over the defect Hilbert
space, which has to be an integer. Contradiction. If there were multiple ground
states then D can act differently on different ground states and somehow this
resolves the problem.

Example 1. Tricritical Ising model c = 7/10. The symmetry is Ising ⊠ Fib
where the “Ising” symmetry is the usual {1, η,N} and the “Fib” symmetry is
generated by W with W 2 = 1 +W , of quantum dimension ⟨W ⟩ = (1 +

√
5)/2.

Deforming this CFT by ϵ′3/5,3/5, which commutes with N , gives an RG flow

whose low-energy limit is either gapless (necessarily Ising by c monotonicity) or
gapped with at least three vacua. Both cases arise depending on the sign of the
deformation, as can be shown using integrability.

Question: what operator tracks the RG flow arriving into the Ising model?
Answer: it is an irrelevant operator, which turns out to be the TT operator
constructed from the stress-tensor, which thus automatically commutes with all
of the symmetries, including N .

Example 2. The 1 + 1 dimensional SU(N) massless adjoint QCD also has a
huge amount of non-invertible symmetries. This leads to a gapped phase with
∼ 2N vacuum degeneracies. Heuristic explanation: the adjoint fermions are
described by the WZW model Spin(N2− 1)1; gauging SU(N) roughly amounts
to taking a coset, which suggests the TQFT Spin(N2−1)1/SU(N)N , which has
a ton of topological defects.

3 Topological Interfaces and Generalized Gaug-
ing

See Fuchs–Runkel–Schwaigert https://arxiv.org/abs/hep-th/0204148, . . . ,
Diatlyk–Luo–Weller–Wang https://arxiv.org/abs/2311.17044

3.1 Gauging procedure

Gauging a usual abelian group symmetry. To gauge a Z2 symmetry of
a theory T (which is like an orbifold in string theory), two steps:

• project to the Z2-even sector;

• include Z2-twisted sectors.

For instance, the torus partition function is a sum of four terms: the first two
terms are a trace in the usual Hilbert space but with a projection (1+η)/2 onto
the Z2-even sector; the second two are the projection but in the twisted sector.
All terms have to be there for modular invariance.

ZT/Z2
=

1

2

(
+

η
+ η +

)
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The last diagram is subtle and has to be resolved to be defined. We have no
topological junction for a group symmetry so there are two resolutions simply
related by a phase w (equal to ±1 in the Z2 case)

= w

If we pick one of these resolutions, then we have to worry about modular invari-
ance of Z. If w ̸= 1 we will find that the partition function is not S-invariant
regardless of what we do. There is an anomaly preventing you from gauging.

Example: the Ising model has w = +1 while SU(2)1 has w = −1 for the Z2

center symmetry.

Gauging topological defect lines. Pick a general topological defect line A.
(For instance, to reproduce the previous gauging we would take A = 1 + η, or
more generally for a group we would take the projector A =

∑
g∈G g.) Then the

sum of partition functions we had before is reproduced by inserting a complete
network of A defects,

ZT/A =

A

A
=

A

A

m

m†

Data for generalized gauging: (A,m,m†, u, u†) with u, u† end-points of A
and m,m† three-fold junctions. To avoid gauge anomaly, data has to form a
symmetric special Frobenius algebra object. These latter data m,m† capture
“discrete torsion”, 1+1 dimensional SPT phases. (We also assume A is self-dual
but it is not clear how much work this assumption is making.)

Abstractly: gauging is decorating the observables in T with a network of
(A,m,m†) with a mesh that is fine enough.

3.2 Half-gauging and topological interfaces

Suppose you have a symmetry and a choice of (A,m,m†). Then by gauging
over a half-space you can make an interface between the theory T and T/A:

A

T T

= T

I

T/A

Gauging just in a small slab (such as a time interval) defines a topological
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line in T , and furthermore this turns out to be A itself. In other words IĪ = A.

T

I

T/A

I

T = T

A

T

Special case: if T ≃ T/A then the interface gives a topological defect line
in T , so that actually A factorizes as IĪ with I being a topological defect line
of T itself.

Example: in the tricritical Ising model the Fibonacci line W acts on ϕ (of
dimensions h = ℏ = 3/80) by multiplying it by (1 −

√
5)/2. The gaugeable

algebras are A = 1 + η and A = 1 +W . It turns out that gauging gives the
same theory, meaning that there are interfaces such that A is the square of these
interfaces. This is consistent with N = 1 + η and with W 2 = 1 +W .

Example: Rep(D8) symmetry has ν2 = 1 + η + η′ + ηη′ (see Shu–Heng
Shao’s lectures). There turns out to be 12 gaugeable algebras. In particular
consider the maximal gauging, gauging the whole category A = Amax = 1 +
η + η′ + ηη′ + 2ν. There are actually three possible choices of m,m† obeying
the conditions. They correspond to the three SPTs for Rep(D8) that we saw in
Shu–Heng Shao’s lectures, namely choices of discrete torsion.

Interestingly, Rep(D8) is the symmetry subcategory of the orbifold branch of
the c = 1 CFT. Gauging Torb(R) with (Amax)3 gives the compact scalar theory
Tcirc(R). Gauging Torb(R) with (Amax)1 or (Amax)2 gives the same orbifold
theory but with R → 4/R. In particular at R = 2 we have self-duality hence
extra symmetries. This is the point where the theory is two copies of the Ising
model, hence indeed has extra symmetry. See https://arxiv.org/abs/2310.
19897 and https://arxiv.org/abs/2311.16230.
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