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1 Basic aspects of non-invertible symmetries

References:

• TASI lectures by Shu-Heng Shao from 2023.

• Seiberg, Shu-Heng Shao https://arxiv.org/abs/2307.02534

• Seiberg, Seifnashri https://arxiv.org/abs/2401.12281

• Seifnashri, Shu-Heng Shao https://arxiv.org/abs/2404.01369

Ordinary symmetries follow the paradigm of Wigner theory: symmetries
are generated by unitary or anti-unitary operators, which by definition have an
inverse. In recent years it has become increasingly clear that symmetries should
be generalized as soon as we go beyond quantum mechanics, going to quantum
field theory or lattice systems. Many symmetries are implemented by operators
which are conserved but do not necessarily have inverses.
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1.1 Examples

The 1 + 1 dimensional Ising CFT. (conformal field theory)1. Known for
decades. This is arguably the simplest conformal field theory of all: it is the
first minimal model, it has the smallest central charge c = 1/2 among all non-
trivial unitary conformal field theory. This theory has a Z2 symmetry, with a
symmetry operator η that obeys η2 = 1. In typical lattice realization, η flips
the spins from ↓ to ↑. At the CFT point, we have an extra operator D, which
obeys the algebra

Dη = ηD = D, D2 = 1 + η, D† = D. (1)

From the first equation we see immediately that D cannot have an inverse: oth-
erwise multiplying on the left by this inverse would tell us that η equals 1. We
will eventually rederive this result in these lectures. Nice example for bootstrap-
pers, or string theorists.

Non-invertible chiral symmetry. (Known since 2022.) Non-invertible chi-
ral symmetry in 3+1 dimensional QED with ABJ anomaly, to be precise a U(1)
gauge theory with charged chiral fermions. Classically the axial U(1) acts as
Ψ → eiαγ5/2Ψ with α ∈ [0, 2π). This was discussed in Clay Córdova’s lectures.
Nice example for particle physicists.

Quantum Ising lattice model. The simplest example, suitable for an ad-
vanced undergraduate, is the non-invertible symmetry in the quantum Ising
lattice model in 1+1 dimensions, to be precise space will be discrete while time
will be continuous. It is also called the transverse field Ising model.

The Rep(G) construction. For those who know what Rep(G), it is a very
nice construction in 2d. But its generalization to higher dimensions gives a
(d− 2)-form non-invertible symmetry, which is more tricky to understand than
non-invertible 0-form symmetries.

1.2 Ising lattice model

1.2.1 The model

This is a spin chain with sites labelled by j ∈ {1, . . . , L} (periodic). The Hilbert
space at each site is a qubit Hj = C2. The whole Hilbert space is

H =

L⊗
j=1

Hj , dimH = 2L.

We define operators Xj , Zj acting on Hj with

XjZj = −ZjXj , Z2
j = X2

j = 1.

1In these lectures, by CFT we really mean the continuum theory, not critical lattice real-
izations.
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There is a basis |0⟩, |1⟩ with Z|0⟩ = |0⟩ and Z|1⟩ = −|1⟩ and another basis with
X|±⟩ = ±|±⟩. Then we define the Hamiltonian (with coupling g)

H = −g
L∑

j=1

Xj − g−1
∑
j=1

ZjZj+1.

This is the leading-order Hamiltonian if we impost the following usual sym-
metries:

• the Z2 on-site symmetry η =
∏L

j=1Xj , with η
2 = 1;

• lattice translation T , which obeys TXjT
−1 = Xj+1 and TZjT

−1 = Zj+1.

g

0

1

|++ . . .+⟩ ground state
Z2 unbroken

Ising CFT

Z2 broken
|0 . . . 0⟩, |1 . . . 1⟩ ground states

1.2.2 What is an analogue of D?

Question: given what people know about the Ising CFT, does D exist at g = 1
(and finite L)? Conditions are

It acts within the Hilbert space H. In some related contexts this condition
is sometimes relaxed, which is why we are explicit about it here.

It must commute with the Hamiltonian H. Spacetime symmetries like
Lorentz boosts can fail to commute with the Hamiltonian, but here we are not
interested in such symmetries. Another situation is models where the Hamilto-
nian depends on time, in which case there may be subtleties.

It becomes D in the L→ +∞ limit. The Ising CFT, and the Ising lattice
model, are integrable, so there are actually infinitely many symmetries; we have
to be careful when identifying which symmetry we managed to find. We cannot
impose the algebra (1) because it will turn out to be deformed, as we will see.
One should take into account locality. For instance, the projector Π|E⟩ onto a
given energy eigenstate definitely commutes with the Hamiltonian, but it is not
a good symmetry because after rotating time and space (in Euclidean signature)
the corresponding “defect” does not give a Hilbert space of integer dimension.
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1.2.3 Kramers–Wannier transformation

At g = 1 there is a well-known transformation that does roughly

Xj 7→ ZjZj+1, ZjZj+1 7→ Xj+1. (2)

This looks very much like a symmetry! Wigner’s paradigm says there should
exist U such that UXjU

−1 = ZjZj+1. Now

UηU−1 = U

L∏
j=1

XjU
−1 =

L∏
j=1

ZjZj+1 = 1 if U existed

because each Zj appears exactly twice and Z2
j = 1 (and these operators com-

mute with one another). Then multiplying by U−1 and U on the left and right
would give η = 1. There are several ways to make this work.

• Make the Hilbert space smaller: impose a global constraint on the Hilber
space, namely reduce to states on which η = 1. Then the Hilbert space
no longer has the structure of a tensor product.

• Make the Hilbert space larger: see later?

• Allow D to project out some states.

Lesson: in physics we should not write arrows, because it can hide some
subtleties. We should try to write equalities. If the lecturer writes arrows later
in the lecture, we should stop him.

(Question from the audience: what if we work with an open chain instead
of a closed chain? It turns out that the Kramers–Wannier transformation does
not exist on an open chain because its square is a lattice translation, which does
not exist on a (finite) open chain.2)

1.2.4 Definition and properties of D

Definition of D We define (the normalization is important but complicated
to explain3)

D =
√
2e−2πiL/8UKW

1 + η

2
, UKW =

(L−1∏
j=1

1 + iXj√
2

1 + iZjZj+1√
2

)
1 + iXL√

2
.

Note that each of the fractions in UKW are unitary, for instance
1+iXj√

2
= eiπXj/4.

The operator UKW is a “sequential quantum circuit”, meaning roughly that the
number of factors is proportional to the number of sites, and the operators act

2What about an infinite open chain?
3E.g., the factor of 1/8 is related to the critical dimension of superstring theory. In light-

cone gauge there are 10 − 2 = 8 transverse directions. We will not need this connection in
these lectures.
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on nearby sites. The last factor, (1+η)/2, is a projector onto the η = 1 subspace.
The operator UKW is not translationally-invariant, see the exercises, but D is,
thanks to the projection. The projector has a kernel, so D is a non-invertible
matrix. Let us check whether it commutes with the Hamiltonian H.

Question: why the
√
2 normalization in D? Answer: to match the normal-

ization in the continuum, where there is a good notion of what is the correct
normalization and we wouldn’t like factors of 1/2 in the upcoming fusion rule
D2 = 1 + η.

Commutation with the Hamiltonian One can calculate

UKWXjU
−1
KW =

{
ZjZj+1, j ̸= L,

ηZLZ1, j = L

where we recall η =
∏L

j=1Xj . Thus, UKW clearly is not translationally-invariant.
But once we impose the projector, we get the rigorous version of the arrows
of (2): for all j,

DXj = ZjZj+1D, DZjZj+1 = Xj+1D.

Thus,
DH = HD for g = 1,

and more generally DH = H|g→g−1D. (Audience question: what about DZj?
Answer, Zj is Z2-odd so DZj cannot be written as OD since it has to project
onto the η = −1 sector.)

How we evaded Wigner. Wigner’s theorem assumed that the operator pre-
serves the norm of the state, to preserve probabilities. Our operator does not
preserve the norm.

Question from Slava: is this operator useful for finite L? We will get to that,
see the section “what is it good for?”

1.3 The algebra of D

The algebra of D and its friends Roughly speaking, D is a 1/2 lattice
translation.

η2 = 1, TL = 1, ηT = Tη,

TD = DT, ηD = Dη = D, T−1D = DT−1 = D†, D2 = (1 + η)T.

Interestingly, D† is not D but it differs by a lattice translation. We also have
a translation in D2. We don’t quite get the continuuum algebra. But in the
continuum limit this translation does not matter.

Remark by Giulio: DD† = D†D = 1 + η is not deformed. But there is still
T in the D† = T−1D.
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Numerous remarks and questions. Remark by a student: if we take a
symmetry and multiply by some projector, or if we take the projector (1+ η)/2
itself, then that’s also some symmetries in the sense that it commutes with
the Hamiltonian. Answer: such cases would be fully constructed from unitary
symmetry operators, so it is not teaching us anything new. In contrast, the one
we have here really does not exist as an invertible symmetry.

Question: what is special about D and locality? Answer: in the continuum
D can be used to twist space and has to give a nice Hilbert space interpretation
to a torus partition function

D

= TrHD e
−iHt.

Follow-up question: this is not an interpretation about the operator acting on
the Hilbert space. Answer in the Hamiltonian lattice language: every symmetry
should give you two objects, an operator acting on the Hilbert space, and a
defect, see early in Max Metlitski’s lectures. Follow-up question: there is no
way to characterize such good operators by some locality property etc? Answer:
probably not because there are many local operators that are not mapped to
local operators.

Follow-up by someone else: even the continuum story is not so good because
it needs Lorentz invariance. Answer: good point.

Question by Yifan Wang: you said there are two pieces of information, and
the second tells you you know how to act on only part of the space, so it is a
kind of locality property.

1.3.1 Derivation of the algebra

A model of Majorana fermions Write each chiral fermion in terms of a pair
of Majoranas so that we end up with 2L Majorana fermions χl, l = 1, . . . , 2L,
with

{χl, χl′} = 2δl,l′ .

We take the Hamiltonian

H± = i

2L−1∑
l=1

χl+1χl ± iχ1χ2L.

This differs from the models Max Metlitski mentioned in his lectures: we have
terms for every pair of contiguous Majoranas, not every other one. Usual unitary
symmetries of the Hamiltonian:

• Fermion parity (−1)F = iLχ1χ2 . . . χ2L, which obeys (−1)F (−1)F = 1
adn (−1)Fχl(−1)F = −χl.

• Majorana translations T+ with T+χlT
−1
+ = χl+1 and T− with T−χlT

−1
− =

χl+1 for l ̸= 2L and T−χ2LT
−1
− = −χ1.

Here T± is a symmetry of H±, respectively.
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Commutation of translation and fermion parity. For H+ we compute

T+(−1)FT−1
+ = T+i

Lχ1χ2 . . . χ2LT
−1
+ = iLχ2χ3 . . . χ2Lχ1 = −(−1)F

since we need to move χ1 through an odd number of χj , j = 2, . . . , 2L. People
in the literature have interpreted this as an LSM-type anomaly. For H− we get
T−(−1)FT−1

− = (−1)F .

Continuum model. We consider L = iψL(∂t−∂x)ψL+ iψR(∂t+∂x)ψR. We
have two fermion parities (−1)FL and (−1)FR flipping ψL and ψR, respectively.
Then H+ corresponds to Ramond–Ramond boundary conditions, for which we
can show (−1)F (−1)FL = −(−1)FL(−1)F while H− corresponds to Neveu–
Schwarz–Neveu–Schwarz boundary conditions for which there is no such sign.

Ising versus Majorana People often say Ising
?
= Majorana. What it means

is that you can do a Jordan–Wigner transformation by pairing up the Majoranas,

χ2j−1 =

(j−1∏
k=1

σx
k

)
σy
j ,

χ2j =

(j−1∏
k=1

σx
k

)
σz
j ,

where σ are Pauli matrices. We will see shortly why we use a different notation
σx
k rather than Xk as before; there are some differences.
The important thing here is that a local operator is mapped to a non-local

operator in terms of Paulis. In fact it corresponds to a gauging, as we will see
next time. If you apply this transformation to H± you find

H± = −
L∑

j=1

σx
j −

L−1∑
j=1

σz
jσ

z
j+1 ± (−1)Fσz

Lσ
z
1 . (3)

Let us meditate on this Hamiltonian. This is almost the same as the critical
Ising model. But there is one “mistake” involving (−1)F , which is non-local in
terms of the Pauli matrices:

(−1)F =

L∏
j=1

σx
j .

The reason we want to use this map from Ising to Majorana is that it is supposed
to help identify the symmetry. We need to pin down this one problem in the
conversion from one model to the other.

One diagnostic of the problem is that T 2L
+ = 1 on the Majorana chain, which

is a Z2L symmetry. But the Ising model only has ZL symmetry, and translation
does not have a square root.

As it turns out, the Ising model will be a gauging of the Majorana model by
(−1)F .
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July 2. Some reminders from yesterday We have (−1)F = iLχ1 . . . χ2L.
It obeys (−1)Fχℓ(−1)F = −χℓ. We also have a Majorana translation T± with
T±χ2LT

−1
± = ±χ1 and all other T±χℓT

−1
± = χℓ+1.

Anomaly (Majorana fermions). We have

T+(−1)F = −(−1)FT+, T−(−1)F = (−1)FT−.

The minus sign for T+ prevents us from diagonalizing both operators at the
same time. It is a sort of anomaly.

Question: is T− non-anomalous? Answer: yes and no: we should think of
T± as one symmetry with different boundary conditions, in which case we say
that this translation symmetry T has an anomaly because it has one for some
choice of boundary condition.

1.3.2 Lattice bosonization

We consider two copies of H, denoted H±, with dimH± = 2L. We set H̃ =
H− ⊕H+, which has dimension 2L+1. (This is similar to how in string theory
we begin by putting together the NSNS and RR sectors before performing the
GSO projection; actually it is most similar to the type 0 case.) Then we take
the Hamiltonian to be

H̃ =

(
H− 0
0 H+

)
, H± =

2L−1∑
ℓ=1

iχℓ+1χℓ ± iχ1χ2L.

Then we perform the projection (−1)F = +1 in H− and (−1)F = −1 in H+.
This ensures that the last term in (3) has the same (minus) sign as all of its
friends, and is explicitly periodic. Then we consider

H = H̃|proj.

The notation is no coincidence: this matches the Ising model Hilbert space.
Then

Xj =

(
σx
j 0
0 σx

j

)
, Zj =

(
0 σz

j

σz
j 0

)
,

which explains the difference of notation.

The fate of Majorana translations. In the extended Hilbert space H̃ there
is a nice Majorana translation

T̃ =

(
T− 0
0 T+

)
.

In the next step of projecting the Hilbert space, we see that since T+ does

not commute with (−1)F , T̃ does not act within the projected Hilbert space

H = H̃|proj.
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The square T̃ 2 commutes with (−1)F hence it does act on the projected

Hilbert space. We can thus define T = T̃ 2|proj, which is a ZL translation as
expected.

We are being too cruel throwing away T−: after all there is nothing wrong
with it, it commutes with (−1)F . We shouldn’t punish it for the sin of its
brother. We consider

D =
√
2

(
T− 0
0 0

)∣∣∣∣∣
proj

on H.

This precisely reproduces the non-invertible symmetryD (including the phase?).
It is then clear what D2 is: the Ising translation projected to one block, so
D2 = (1 + η)T as announced. It also makes DT = TD obvious using that T̃ is
block diagonal.

This is part of a typical setting where an invertible symmetry with an anomaly
can become a non-invertible symmetry.

Question: here we managed to “purify” a non-invertible symmetry into an
invertible symmetry on a larger Hilbert space; is this generalizable. Answer: not
completely generally, what is happening here is related to the fact that Kramers–
Wannier duality is a gauging operation. See recent paper by Tachikawa and
Okada.

1.3.3 Alternative expression for D

Claim: after a non-trivial calculation,

D = Tr2

[
U1U2 . . .UL

]
, Uj =

(
|0⟩j⟨+|j |0⟩j⟨−|j
|1⟩j⟨−|j |1⟩j⟨+|j

)
where Uj are operator-valued 2 × 2 matrices, we use the matrix product and
the trace of 2× 2 matrices. Schematic representation

U0

j = 0

U1

j = 1

UL

j = L

· · ·

From this point of view rescaling the Uj by some factor like 7 would rescale D
by 7L, so it is not natural to try and remove the

√
2 overall factor. Somehow

this MPO (matrix product operator) point of view knows about the preferred
normalization of D.

Question: is the bond dimension related to the quantum dimension? An-
swer: I don’t know because the quantum dimension is only defined in the con-
tinuum limit.

Question: is there a continuum interpretation of the horizontal legs in this
picture? Answer: maybe related to a gauge field, not clear.
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1.3.4 What is it good for?

Phase diagram of the Ising model.

g

Ising CFT 1

Z2 unbroken
disorder

Z2 broken
order

O(1) gap

E

|+...+⟩

E

O(1/L) gap

E

|1...1⟩
|0...0⟩

Self-dual deformation. There is a nice self-dual deformation of the self-dual
Ising model:

H = −g
L∑

j=1

Xj − g−1
L∑

j=1

ZjZj+1 +
λ

2

L∑
j=1

(
Xj−1ZjZj+1 + Zj−1ZjXj+1

)
.

This manifestly commutes with the Kramers–Wannier duality transformation.

Z2 : η D
g ✓ No
λ ✓ ✓

Phase diagram (found through general arguments and confirmed by DMRG)

g

Ising CFT gapped
λ

c = 7/10
tricritical
Ising CFT

three states
O(1) gap

E

We can actually prove the threefold multiplicity in the gapped phase at large λ.
For instance, there is no relevant operator in the Ising CFT that preserves

the non-invertible symmetry D, which explains why the Ising CFT continues
being the fixed point in a neighborhood of λ = 0.
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2 Non-invertible symmetry protected topologi-
cal (SPT) phases

Given a symmetry, can it be realized in a trivially gapped phase?

• Case 1: no. Suppose you manage to prove for a given system that the
answer is no. Then it puts constraints on the phase diagram. For instance
there can be anomalous invertible symmetries, or symmetries involving lat-
tice translations (like in the LSM theorem, or the non-invertible Kramers–
Wannier symmetry etc). For some community of people we would say that
this is an anomaly.

• Case 2: yes. This is much easier to show, just identify one example. Then
we can ask to classify SPTs. For instance it can be useful for on-site
invertible symmetries (as in Max’s lectures) or non-invertible SPTs.

2.1 Cluster model and Z2 × Z2 SPTs

Cluster model. We consider a periodic chain with an even number L ∈ 2Z
of qubits. Our first Hamiltonian has a product form Hprod = −

∑L
j=1Xj . It

has a single vacuum and an order-1 gap. Our second Hamiltonian is

Hcluster = −
L∑

j=1

Zj−1XjZj+1,

which is actually a sum of independent4 commuting Pauli operators. The spec-
trum is exactly the same as the one of Hprod. The ground state |cluster⟩ is a
bit more messy to write.

|cluster⟩ = V |++ . . .+⟩, V =

L∏
j=1

CZj,j+1,

where CZj1,j2 = 1
2 (1+Zj1 +Zj2 −Zj1Zj2) is invertible (it squares to 1). In fact

more generally
V HprodV

−1 = Hcluster.

If we did not care about symmetries, then the difference between Hprod and
Hcluster would be unimportant.

Symmetries. We have Ze
2 × Zo

2 symmetries (where e, o stand for even and
odd):

ηe =
∏

j even

Xj , ηo =
∏
j odd

Xj ,

which commute and square to the identity. They are obviously symmetries of
the product Hamiltonian. They are also symmetries of the cluster Hamiltonian

4Slava complained about this word missing.
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because that Hamiltonian only involves pairs of Z whose indices have the same
parity.

Claim 1. The ground states |++ . . .+⟩ and |cluster⟩ are distinct Ze
2×Zo

2 SPTs.
In continuum the difference of SPTs is captured by the invertible field theory
exp

[
iπ

∫
Ae ∪Ao

]
.

Comparing the two phases. The first way of detecting the difference be-
tween the two phases is the edge modes. Let us put them side by side on a
closed periodic chain. From j = 1 to j = L′ we use the cluster Hamiltonian and
from j = L′ + 1 to j = L we use the product Hamiltonian. We choose

Hinterface = −Z1X2Z3 − Z2X3Z4 − · · · − ZL′−2XL′−1ZL′ −XL′+1 − · · · −XL.

This preserves Ze
2 × Zo

2 symmetry. We assume L,L′ even. Later L a multiple
of 4.

We could have done a slightly different choice at the interface, like addingX ′
L

and X1, but the present choice ensures that all terms continue commuting. All
that we will say about the phases will not depend on details of the interface. We
could also change the relative factor between the two parts of the Hamiltonian.
For instance putting an infinite factor in front of −XL′+1 − · · · −XL would pin
down all the spins in that half of the spin chain, which would match the usual
approach of considering an open spin chain.

Let us solve this Hamiltonian. The Hamiltonian has L − 2 independent
commuting Pauli matrices, so there are 2L/2L−2 = 4 ground states. A ground
state |ψ⟩ obeys

Zj−1XjZj+1|ψ⟩ = |ψ⟩, j = 2, 3, . . . , L′ − 1,

Xj |ψ⟩ = |ψ⟩, j = L′ + 1, . . . , L.

We have

ηe|ψ⟩ = Z1

L′/2−1∏
j=1

(Z2j−1X2jZ2j+1)ZL′−1XL′XL′+2 . . . XL|ψ⟩ = Z1ZL′−1XL′ |ψ⟩.

We denote ηeL = Z1 and ηeR = ZL′−1XL′ . Likewise we have ηo|ψ⟩ = ηoLη
o
R with

ηoL = X1Z2 and ηoR = ZL′ . Then it turns out that we have

ηeLη
o
L = −ηoLηeL, ηeRη

o
R = −ηoRηeR.

Each of these algebras imply a two-fold degeneracy of the ground state. Together
this explains the fourfold degeneracy of the ground state.

Another point of view is the finite-depth local unitary circuit (FDLU).

Kennedy–Tasaki transformation. Another approach is the Kennedy–Tasaki
transformation, which gauges the Ze

2 ×Zo
2 symmetry, with a twist. In the high-

energy literature it is usually denoted as TST (composition of modular T and
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S transformations). The transformation maps (in a sense that we will have to
make precise)

Xj → X̂j , Zj−1Zj+1 → Ẑj−1X̂jẐj+1.

Then

Hprod = −
∑
j

Xj → Ĥprod = −
∑
j

X̂j Ẑ2 × Ẑ2 unbroken,

Hcluster = −
∑
j

Zj−1XjZj+1 → Ĥcluster = −
∑
j

Ẑj−1Ẑj+1 Ẑ2 × Ẑ2 broken.

This gauging operation gives an invertible field theory in the first case, and a
non-invertible one (four ground states) in the second. This is consistent with
the idea that the phases are only different when we track the symmetry, or when
we gauge it. The Z2 × Z2 before and after the Kennedy–Tasaki transformation
is different (the second is the quantum symmetry generated by Wilson lines of
the gauged Ze

2 × Zo
2).

2.2 Non-invertible symmetry of the cluster model

We introduce an operator D (different from the Ising one) acting as

DXj = Zj−1Zj+1D, DZj−1Zj+1 = XjD.

It can be constructed asD = T−1DeDo whereDe andDo are Kramers–Wannier
transformations on the even and odd sites, and T is the lattice translation by
one site. For instance, DeDo maps Xj to ZjZj+2 (for j even/odd this is done
by De or Do respectively), which is then “recentered” by the lattice translation.

We can find the algebra

Dηe = ηeD = ηoD = Dηo = D, D2 = (1 + ηe)(1 + ηo).

Contrarily to the Kramers–Wannier case where we had a lattice translation
in D2, this does not happen here.

As it turns out, the fusion category underlying this set of operators is
Rep(D8), whose objects are the five irreducible representations

1, ηe, ηo, ηeηo, D

of the dihedral group D8. The fusion rules are simply decompositions of tensor
products of representations into irreducible ones.5

5Caveat: from the presentation here, we could not determine whether the group is D8

or Q8, but one can compute the “F-symbols” on the lattice and distinguish these two cases.
Alternatively there is a construction of the theory by gauging a D8 group, so that the gauged
theory automatically has Rep(D8) symmetry.
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Action on the cluster state. We have a new symmetry D, which extends
the Ze

2 × Zo
2 symmetry to Rep(D8). We can compute

D|cluster⟩ = 2|cluster⟩, ηe|cluster⟩ = ηo|cluster⟩ = |cluster⟩.

This means that |cluster⟩ is invariant under Rep(D8) hence is a Rep(D8)-SPT
state. Said in a different way, Hcluster is a trivially-gapped Rep(D8)-SPT phase.

Naive question: is it a trivial Rep(D8)-SPT state? The notion of triviality
is meaningless. Correct question: are there other Rep(D8)-SPT states?

Very important note: we cannot consider an open chain, because the open
boundary conditions would break D. This can also be seen by noting that the
product Hamiltonian Hprod is not invariant under D so it does not make sense
to study Rep(D8) for this Hamiltonian, or to put it on half of a closed chain
like we did before.

In mathematics, it is known that there are 3 distinct Rep(D8)-SPT states.

On stacking SPT. For a group G, consider two G-SPT states |ψi⟩, i = 1, 2
and consider |ψ1⟩ ⊗ |ψ2⟩. It has a G × G symmetry coming from G acting on
each factor separately. Under the diagonal subgroup G ⊂ G×G we get a new
G-SPT. Thus there is an addition structure among SPT. Not quite a group, it
is a torsor over a group, specifically a torsor over H2(G,U(1)).

For non-invertible symmetry there is no analogue of stacking, because there
is no analogue of diagonal subgroup. Concretely for Rep(D8), if you try to map
D 7→ (D⊗D) in Rep(D8)×Rep(D8) then it doesn’t work because (D⊗D)2 =
(1+ ηe)(1 + ηo)⊗ (1 + ηe)(1 + ηo) has many more terms than 1⊗ 1+ ηe ⊗ ηe +
ηo ⊗ ηo + ηeηo ⊗ ηeηo. Thus, there is really no group structure.

The three SPTs. We consider L = 0 mod 4. We denote the three SPTs
as |cluster⟩, |even⟩, |odd⟩. We have already seen the first. The |even⟩ state is
characterized by

Z2kX2k+1Z2k+2 = −1,

Y2k−1X2kY2k+1 = 1.

The |odd⟩ state is characterized by

Z2k−1X2kZ2k+1 = −1,

Y2kX2k+1Y2k+2 = 1.

It is a bit subtle to make a Hamiltonian with one of these as ground state and
that is Rep(D8)-invariant. Adding up the Z2k−1X2kZ2k+1 and −Y2kX2k+1Y2k+2

is not enough to preserve the symmetry.6

6Concretely, H =
∑

k Z2k−1X2kZ2k+1 −
∑

k Y2kX2k+1Y2k+2 +∑
k Z2k−1Z2kX2k+1Z2k+2Z2k+3.
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Putting phases side by side. We can prove that |cluster⟩, |even⟩, |odd⟩ are
the same Ze

2×Zo
2 SPT. For instance when placing |cluster⟩ and |odd⟩ side by side,

we find that ground states |ψ⟩ are invariant under ηe, and that ηo|ψ⟩ = ηoLη
o
R|ψ⟩

with local factors on the left and right boundaries.
The non-invertible symmetry distinguishes these phases. We have

D|ψ⟩ = (−1)(L−L′)/4
(
D

(1)
L D

(1)
R +D

(2)
L D

(2)
R

)
,

with the non-trivial algebra ηoLD
(I)
L = −D(I)

L ηoL and ηoRD
(I)
R = −D(I)

R ηoR. This
forces the ground state to be degenerate, meaning that there must be some
modes at the boundary between the two halves of the spin chain.

Interestingly the 0 + 1 dimensional quantum mechanics at each boundary
has a projective action of an invertible group Z2 × Z2, no longer anything non-
invertible. This need more explanations.

Kennedy–Tasaki transformation. We have Rep(D8)-SPTs. What hap-
pens under the Kennedy–Tasaki transformation? We know that we have η̂e, η̂o

from the Z2 × Z2 Wilson lines (dual symmetry from gauging). On top of that

we have a new operator V̂ :

η̂e =
∏

j even

X̂j

η̂o =
∏
j odd

X̂j

V̂ =
∏
j

ĈZj,j+1

It turns out that all three η̂e, η̂o, V̂ all commute, it is a (Z2)
3 symmetry. This

(invertible) symmetry has an anomaly classified by H3(Z2, U(1)), called “type
III anomaly” whose topological action is eiπ

∫
a∪b∪c where a, b, c are background

fields for these three symmetries.
We can see this in the other direction since gauging a discrete symmetry can

always be undone by gauging the corresponding quantum symmetry. So Hcluster

is obtained by gauging Ẑe
2 × Ẑo

2. This is a situation we have seen many times:
starting from a theory with a mixed anomaly (here (Z2)

3), gauging part of the
symmetry (here (Z2)

2) will give a non-invertible symmetry.

Symmetry breaking pattern. Consider all three Rep(D8)-SPT states |cluster⟩,
|even⟩, |odd⟩. After the Kennedy–Tasaki transformation, we know (from the

Z2 × Z2 discussion) that Ẑe
2 × Ẑo

2 is broken. This does not tell us which part of
the full (Z2)

3 is unbroken. There seems to be four options:

• ẐV
2 could be unbroken, this is achieved by (the Kennedy–Tasaki image of)

the cluster state;
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• the diagonal subgroup of Ẑo
2 × ẐV

2 could be unbroken, this is achieved by
(the Kennedy–Tasaki image of) the even state;

• the diagonal subgroup of Ẑe
2 × ẐV

2 could be unbroken, this is achieved by
(the Kennedy–Tasaki image of) the odd state;

• the diagonal subgroup of the whole (Z2)
3 could be unbroken, but actually

this generator (generator of the CZX symmetry) is subject to the Levin–
Gu anomaly, so it cannot be unbroken.
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