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1 Lecture 1

Why study gapped phases? They exist (Quantum Hall Effect, topological insu-
lators, spin liquids). They are simpler than gapless states of matter. They are
windows to more general phases of matter.

References:

• A. Kapustin https://arxiv.org/abs/1403.1467

• A. Kapustin et al https://arxiv.org/abs/1406.7329

• E. Witten https://arxiv.org/abs/1508.04715

1.1 Phases of matter

Consider a system where the system’s Hilbert space is V =
⊗

i Vi with Vi finite-
dimensional Hilbert space of a local site. The Hamiltonian is also written as

H =
∑
i

Hi

where Hi is a Hamiltonian involving sites near i.
Consider a big periodic lattice with Ld sites. Its spectrum can look like

L→+∞−−−−−→

∆ ̸= 0 gap

degeneracy k

or

gapless phase
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with a gap between ground state and first excited level, or no gap. We will be
interested in the first case (gapped phase).

1.1.1 Equivalence relation

We say that H1 and H2 belong to the same gapped phase if there is a (con-
tinuous) family1 H(s), s ∈ [0, 1] with H(0) = H1, H(1) = H2 and the gap ∆
remains non-zero for all s.

1.1.2 Trivial phase

A trivial phase is one where the Hamiltonian can be brought to the free form

H0 = −
∑
i

|ϕ⟩i ⟨ϕ|i .

1.1.3 TQFT

Surprisingly a large set of gapped phases of lattice systems is described by a
TQFT (topological quantum field theory) instead of being trivial.

1.2 Adding symmetries

In condensed matter systems we have many symmetries (translation, discrete
rotation, glide, internal symmetries). Consider an internal unitary symmetry,
characterized by unitary operators U(g) with U(g)U(h) = U(gh). It is called
an on-site symmetry if it takes the form

U(g) =
∏
i

Ui(g)

where Ui(g)Ui(h) = Ui(gh) satisfies a usual group multiplication law.
A Hamiltonian H =

∑
iHi is symmetric under this symmetry provided

U(g)HiU(g)† = Hi.

1.3 Invertible phases

1.3.1 Stacking

Let us define stacking (in the sense of physically putting one on top of the other)
two phases of matter A and B to obtain a system A⊕B. Define

V = VA ⊗ VB , HA⊕B = HA ⊗ 1 + 1⊗HB .

We want to keep track of locality in the sense that we consider the i-th site of
A⊕B to come from the i-th site of A and that of B.2

1In fact, one must allow for stabilisation, namely adding a trivial part to the Hamiltonian
to make the Hilbert space dimensions match at least.

2To be precise we don’t really need the lattices to have exactly the same shape.
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1.3.2 Invertibility

A phase is invertible if exists a phase −A such that A ⊕ (−A) = 0 is the
trivial phase (continuously deformable to H0). Gapped phases with an inverse
are called “invertible gapped phases”. Invertible phases form an abelian group
under the stacking operation. All of these definition make sense with a particular
symmetry group.

1.3.3 Example of non-invertible phase

Suppose a phase A has (as a representative) a Hamiltonian with k-fold degen-
erate ground state, and likewise B has a m-fold degenerate ground state. Then
A ⊕ B has km ground state degeneracy. This can only be trivial if km = 1.
Thus, any phase with k > 1 ground state degeneracy on any manifold (e.g.,
torus) is non-invertible. Concrete examples are given by theories of anyons for
instance.

Contrapositively, invertible phases have a unique ground state on any spatial
manifold. 3

Question (converse): if a phase has a unique ground state on every manifold,
is it automatically invertible? (The consensus in the room seems to be yes
provided we talk only about invertible symmetries, and not SPT based on non-
invertible symmetries.)

Question: Why not track degeneracies of excited states too? Because even if
these degeneracies change, that does not lead to non-analyticity in the partition
functions on compact manifolds, and other similar observables. Thus, no phase
transition.

1.3.4 Classification of invertible phases with no symmetry

Purely bosonic theories:

dimension group generator

1 + 1 – –
2 + 1 Z E8, c− = 8
3 + 1 – –

Theories with fermions as well (means we need to respect (−1)F fermion
number, but this requires having a spin structure — this notion is subtle on
general lattices):

dimension group generator

1 + 1 Z2 Kitaev wire
2 + 1 Z p+ ip superconductor, c− = 1/2
3 + 1 – –

3Here there is a subtlety in the vocabulary: are we talking about properties
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(Bruno vaguely remembers:) Stacking 16 copies of the “p+ ip superconductor”
Hamiltonian gives the generator corresponding to purely bosonic theories.

It is believed that the mathematical interpretation of these types of classifi-
cations are (spin) bordisms groups enriched by suitable symmetries.

1.3.5 Non-liquid phases

Technically here we cheated, we have classified topological quantum field theo-
ries. But some gapped phases are not described by a TQFT. Consider a infinite
stack4 of (2+1 dimensional) p+ ip superconductors to make a 3+1 dimensional
lattice, with a clear preferred direction. This has no TQFT description. Related
to fractons.

2 Lecture 2

2.1 Kitaev chain

2.1.1 Trivial spin chain

Consider a spin chain with a fermion (with a complex two-dimensional Hilbert

space Vi) at each site, with creation/annihilation operators with {ci, c†j} = δij .

Split each site into Majoranas, cj =
1
2 (γj + iγj), with

5

γ†j = γj , γ†j = γj ,

{γi, γj} = {γi, γj} = 2δij , {γi, γj} = 0.

Draw these as two sites in a picture:

c1,c
†
1•

c2,c
†
2•

c3,c
†
3•

c4,c
†
4•

• • • • • • • •
γ1 γ1 γ2 γ2 γ3 γ3 γ4 γ4

Then the trivial Hamiltonian can be written as

H0 =

N∑
i=1

iγiγi =

N∑
i=1

(2c†i ci − 1)

The unique ground state has c†i ci |g.s.⟩0 = 0; iγiγi |g.s.⟩0 = − |g.s.⟩0, gap ∆ = 2.

4Previously we only stacked a few systems so the dimension remained the same. Here we
can either think of it as keeping the same dimension of treating the stacking label as an extra
dimension.

5Concretely, one can take cj = · · · ⊗ 1 ⊗
(
0 1
0 0

)
⊗ 1 ⊗ · · · where the non-trivial matrix

acts on the Vj factor of the Hilbert space. In shortened notation, cj =

(
0 1
0 0

)
j

. Then

c†j =

(
0 0
1 0

)
j

, γj = (σ1)j =

(
0 1
1 0

)
j

, γj = (σ2)j =

(
0 −i
i 0

)
j

.
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2.1.2 The same trivial spin chain

On a closed chain with N complex fermions, the 2N Majoranas can be rela-
beled slightly to write an equivalent trivial Hamiltonian (with the understanding
γN+1 = γ1)

H1 =

N∑
j=1

iγjγj+1 =

N∑
j=1

[
−(c†jcj+1 + c†j+1cj) + c†j+1c

†
j + cjcj+1

]
We are really solving the same problem but pairing up the Majorana differently:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Again we get a unique ground state |g.s.⟩1 which obeys iγiγi+1 |g.s.⟩1 = − |g.s.⟩1,
gap ∆ = 2. This is what happens on a closed chain.

2.1.3 Kitaev Hamiltonian

On an open spin chain the second HamiltonianH1 does not have the j = N term.
The Majoranas γ1 and γN are unpaired. Then we get a two-fold degeneracy of
the ground state, labeled by the eigenvalue of iγ1γN which now commutes with
the Hamiltonian. Nota: acting with γ1 maps one ground state to the other;
same for γN but with sign differences.

This two-fold ground state degeneracy is delocalized in a sense: it is half
due to the left boundary and half to the right boundary, so in some sense each
boundary contributes a factor of

√
2 to the Hilbert space dimension. Of course

this simply reflects the fact that a single Majorana does not exist on its own.
This is the simplest example of anomaly, it is like a gravitational anomaly

(because there is no global symmetry involved) of the 1+ 1 dimensional theory.
Consider now fermion parity.

(−1)F = (−1)
∑N

j=1 c†jcj = (−iγ1γ1) . . . (−iγNγN ) = (−iγ1γN )

N−1∏
j=1

(−iγjγj+1)

the N − 1 last factors act trivially on the ground state, so fermion parity acts
as (−iγ1γN ) on the ground states.

2.2 Stacking Kitaev chains

Let us explain that Kitaev + Kitaev = 0. Stack two copies of the Kitaev chain
on top of each other. Instead of having a Majorana mode at each end, we now
have two Majorana modes, and we will trivialize the Hamiltonian by deforming
it.

Here Bruno is a bit confused. The open Kitaev chain has two vacua, so
stacking with itself gives 2× 2 vacua. To deform to the trivial Hamiltonian, we
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must allow to lift these ground states somehow, or to work enriched by (−1)F

or similar, but Max Metlitski did not mention this. Alternatively work on the
closed chain.

The starting point is

• • • • • • • •

• • • • • • • •

For every two pairs of Majoranas on top of each other (so four Majoranas) we
deform the Hamiltonian using the basic building block

• •

• •
−→

• •

• •

This is apparently easy because it is a finite-dimensional Hamiltonian and the
number of ground states with each charge under the symmetries (only (−1)F )
are the same in both systems.

• • • • • • • •

• • • • • • • •

−→
• • • • • • • •

• • • • • • • •

−→
• • • • • • • •

• • • • • • • •

Consider the stacking of 2 Kitaev chains and look to the boundary. We can
gap out the boundary modes by adding:

∆H = iγ1η1 + iγnηn (1)

This is a diagnostic that the stacking of 2 Kitaev chains is equivalent to the
trivial phase. This can be shown explicitly as well and one concludes that
1 + 1 = 0.

2.3 Bulk signature of Kitaev chain

2.3.1 Towards twist defects

If you are given a Hamiltonian, and a partition of the sites into a regions R1

and R2, then you can write the Hamiltonian as

H = H1 +H2 +H12, H12 =
∑
α

O
(α)
1 O

(α)
2 ,

where the last term H12 is the interaction between the two parts of the system.
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If you have an on-site symmetry U(g), then you can study its restriction to
one part, UR2(g) =

∏
i∈R2

Ui(g), and how it acts on the Hamiltonian:

UR2
(g)HUR2

(g)−1 = H1 +H2 +
∑
α

O
(α)
1 U(g)O

(α)
2 U(g)−1.

This is of course equivalent to the Hamiltonian we started from. But we changed
the interactions locally at the boundaries between R1 and R2.

In one space dimension, on a circle (say) the boundary is a pair of points.
Now we can do something more subtle: we can perform this change in the
interactions but only at one particular point, not both boundaries of R2. Pick a
place in your chain, split the Hamiltonian into terms that are only on one side
and that concern interactions between the two sides (this only makes sense in a
local Hamiltonian):

H = Hsides +Hinteraction, Hinteraction =
∑
α

O
(α)
L O

(α)
R ,

where OL, OR are operators acting just on one side of the place you picked.
Then twisting gives

H = Hsides +
∑
α

O
(α)
L UO

(α)
R U−1.

This does not quite break translation symmetry: a combination of translation
and acting with the on-site symmetry will remain.

2.3.2 Twist defect in the Kitaev chain

Let us insert a twist defect in the closed Kitaev chain, twisting by fermion parity.
The original Hamiltonian is

H =

N∑
j=1

iγjγj+1.

The interaction is iγNγ1, and the rule is that we conjugate one side by (−1)F ,
so it becomes iγN (−1)F γ1(−1)F = −iγNγ1.

Previously the ground state |g.s.⟩ obeyed

iγNγ1 |g.s.⟩ = − |g.s.⟩ .

With the twist we get iγNγ1 |g̃.s.⟩ = |g̃.s.⟩ instead.
This process is equivalent to treading a flux Φ = π through the circle.

2.3.3 Thermal trace

Consider the system on a circle and study the partition function Z = Tr(e−βH),
where β = 1/temperature. This is equivalent to studying the system on a torus
with sides L and β.
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The zero-temperature limit β → +∞ behaves as e−βEg.s. , and we can nor-
malize the ground state energy to be zero, so Z = 1. With a twist, we still have
a single ground state, so ZΦ=π = 1. This is inserting (−1)F “vertically” in the
diagram

L

β

Now we can twist in the temporal direction instead of the space direction.
This amounts to inserting (−1)F in the trace, so Z̃ = Tr((−1)F e−βH). Get ±1
depending on whether we also twist in the spatial direction or not. Overall

anti-periodic periodic (in x)
anti-periodic 1 1
periodic (in τ) 1 −1

(2)

The −1 is a hallmark of the Kitaev chain instad of the trivial phase. There
is some ambiguity in matching the periodic/anti-periodic boundary conditions
with field theory; left as an exercise (in choosing conventions) to the reader.

2.4 Placing Kitaev on a manifold

D = 2, Euclidean.

2.4.1 Interpolation from trivial to Kitaev spin chains

We will need some field theory description for Kitaev. Consider the trivial
and Kitaev Hamiltonians H0 and H1 defined previously, and consider H(λ) =
(1− λ)H0 + λH1 for λ ∈ [0, 1]. Since the two end-points are in different phases
we know the gap has to close at some point. It turns out to be right in the
middle, at λ = 1/2. Pictorially,

(λ = 0) • • • • • • • •

(λ = 1/2) • • • • • • • •

(λ = 1) • • • • • • • •

The Hamiltonian Hλ=1/2 = 1
2

∑N
j=1(iγjγj + iγjγj+1) has a dispersion relation

k
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2.4.2 Continuum model

We start with

H =
1

2

∫ [
χR(−i∂x)χR + χL(i∂x)χL

]
,

where {χR(x), χR(y)} = δ(x − y) and likewise for χL. Turn on a mass term
δH = i

∫
dxχRχLm(x). Morally m is λ− 1/2. This gives

H =
1

2

∫
dx(χR(−i∂x)χR + χL(i∂x)χL) + i

∫
dxχRχLm(x).

For m > 0 we have the trivial phase. For m < 0 we have the Kitaev phase. So if
we consider a mass m(x) whose sign varies we will have transitions between the
two phases, and modes localized at the points where m = 0. See the exercises.

x
m < 0 m > 0 m < 0

2.4.3 Euclidean Lagrangian and curved space

LE =
1

2
χTC†(γµ∂µ +m)χ, (3)

where µ = 0, 1 and χ = (χL, χR) and (explicitly in terms of Pauli matrices)

C = σ2, γ0 = σ2, γ1 = σ1, (4)

which has {γµ, γν} = 2δµν and

C(γµ)∗C† = −γµ, (γµ)† = γµ. (5)

Placing it on a curved space is done by changing derivatives to covariant
ones and including a suitable volume form:

S =
1

2

∫
M

d2x
√
gχTC†( /D +m)χ, /D = eµaγ

a(∂µ + iωµ) (6)

with M an oriented 2-dimensional manifold with spin structure ω.

2.4.4 Partition function and Arf

The partition function is going to be the Pfaffian of the operator C†( /D +m):

Zm[M,ω] =

∫
Dχ e−S[χ] = Pf(C†( /D +m)), (7)
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because we are simply computing a fermionic Grassmann integral, through the
identity ∫

Dηe−ηTAη = Pf(A). (8)

The operator −i /D is Hermitian. Consider eigenfunctions ϕλ satisfying

−iDϕλ = λϕλ, (9)

and normalized with respect to the Hermitian inner product:∫
d2x

√
gϕ∗λϕλ′ = δλλ′ . (10)

Then ϕλ and Cϕ∗λ have the same eigenvalue so each eigenvalue appears twice.
We split as follows, where the prime denotes the fact that we sum over pairs of
repeated eigenvalues,

χ =
∑′

λ

(η
(1)
λ ϕλ(x) + η

(2)
λ Cϕ∗λ(x)). (11)

Then the action can be written quite simply as

S =
∑
λ

(
η
(1)
λ

η
(2)
λ

)T (
0 iλ+m

−(iλ+m) 0

)(
η
(1)
λ

η
(2)
λ

)
(12)

Therefore:

Zm(M) = ±
∏′

λ

(iλ+m) (13)

(again, prime indicates that eigenvalues come in pairs, so we count them once
in the above expressions).

How to determine the sign? To cancel it, we consider for some positive mass
M > 0, the ratio

Zm

Z|M |
=
∏′

λ

iλ+m

iλ+ |M |
. (14)

Why should the unknown sign be the same for Zm as for Z|M |? Because on a
compact spacetime manifold (finite system) we do not expect to have a singu-
larity at m = 0.

In addition, if we consider that M > 0 is the trivial phase, we should expect
that we can take Z|M | = 1 by tuning local counterterms, namely terms such as

S =

∫
d2x

√
gR log

Λ

|M |
+ . . . (15)
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Varying the massM itself (while keeping it positive) should also amount to such
local counterterms.

So effectively we can think of the ratio Zm/ZM as the partition function we
care about, and we can even tune to Zm/Z−m. We define the partition function
of the non-trivial Kitaev phase to be

ZKitaev(M,ω) =
Z−|m|

Z|m|
=
∏
λ

iλ− |m|
iλ+ |m|

(16)

Using the commutation with the chirality matrix γ3, one can show that the
eigenvalues actually comes in pairs of positive and negative pairs of values (e.g.,
1, 1,−1,−1). Therefore we can write:

ZKitaev(M,ω) =
∏′

λ>0

(iλ− |m|)(−iλ− |m|)
(iλ+ |m|)(−iλ+ |m|)

∏′

λ=0

(−1) = (−1)N0( /D)/2 (17)

where N0( /D) = dimker /D. Thus the partition function is a ±1 topological
invariant. It is exactly the Arf invariant of M with the spin structure ω, i.e.,
Arf(M,ω). This is the Arf CFT.

The torus case On the torus, eigenvalues are simply

λ = ±
√
k2x + k2y. (18)

the only zero modes are kx = ky = 0 which can only appear by having periodic
boundary conditions. We find again the values given in (2) for the four spin
structures on the torus, namely Z = +1 except for both-periodic boundary
conditions, for which Z = −1.

2.4.5 Continuum theory with boundary

Consider the theory on M with boundary ∂M. We expect a single Majorana
mode on the boundary, with boundary action

S =

∫
∂M

dτψ∂τψ.

Naively
Zboundary = Pf(d/dτ),

which again has a sign ambiguity. What we can write instead is

Zbulk+boundary = |Pf(d/dτ)|(−1)N0( /D,M)/2

where N0( /D,M) is calculated with non-local APS boundary condition [Witten,
Yonekura, 1909.08775].

Question by Slava Rychkov: why do you say different words about this
anomaly compared to Thomas Dumitrescu? Answer. In 4d free Maxwell is
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well-defined, and the problem only arrives when trying to couple the theory
to backgrounds for the symmetry. Here the Majorana on the boundary is not
really well-defined; it is a sort of global gravitational anomaly, an anomaly in
coupling with the spin connection.

3 Lecture 3

3.1 Bordisms and invertible TQFTs

Z[M,ω] = (−1)N0( /D)/2 bordism invariant (19)

(Atiya-P-Singer; Witten 1508.04715; Nakahara, Geometry Topology and Physics)
Closed d-manifolds, Xd and Yd are bordant if exists (d + 1)-manifold Md+1

such that ∂Md+1 = Xd ∪ Y d. We say that Z[X] is a bordism invariant if
Z[Xd] = Z[Yd] for X and Y bordant.

On d-manifolds/(bordism equivalence) form an abelian group denoted by
Ωd:

• Addition is disjoint union: X ∪ Y .

• The zero is the empty set, 0 = ∅.

• The inverse is the orientation reversal: −X = X.

For invertible TQFT Z is a bordism invariant:

Z : Ωd → C. (20)

As a consequence:

Z(X) = Z∗(X), Z[X ∪ Y ] = Z[X]Z[Y ], (21)

1 = Z(pt) = Z(X ∪X) = Z(X)Z(X) = |Z(x)|2 (22)

and therefore:

Z : Ωd → U(1). (23)

Bosons, no-symmetry: ΩSO
d .

Fermions, no-symmetry: Ωspin
d .

Unitary symmetry G, ΩSO
d (BG).

Time reversal, bosons ZT
2 .

Fermions with time reversal: T 2 = (−1)F , T 2 = 1, Ω
Pin+

d and Ω
Pin−
d .

3.1.1 Fermions in 1+1d with no symmetry

Ωspin
d=2 = Z2 (24)

It is generated by T (P, P ) (torus with periodic boundary conditions). Now, we

can think about the cobordism classification. That is, maps from Ωspin
2 → C.

ZKitaev(T (P, P )) = −1. (25)
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3.1.2 Bosons in 1+1d no symmetry

ΩSO
d=2 = Z1 (26)

3.1.3 Bosons in 1+1d with ZT
2

ΩO
d=2 = Z2 (27)

It is generated by RP 2:

Z[RP 2] = −1 (28)

Haldane chain.

3.1.4 Fermions in 1+1d with T 2 = +1

Ω
Pin−
d=2 = Z8 (29)

generated by RP 2 (has 2 spin structures):

Zk(RP 2) = e±2πik/8 (30)

(plus or minus depending on the spin structure).

3.1.5 Fermions in 3+1d with T 2 = (−1)F

Non-interacting classification Z → Z16:

Ω
Pin+

d=4 = Z16 (31)

generated by RP 4

Zk=1[RP 4] = e±2πi/16. (32)

3.2 More generally

Ωd = Zn1 ⊗ Zn2 · · · ⊗ Znk
⊗ Zn (33)

Then:

• Zn → U(1), 1 7→ e
2πi
n k, k = 0, 1, . . . , n− 1

• Z → U(1), 1 → eiθ, θ ∈ [0, 2π).
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Invertible TQFTs in d-dimensions, Tor(Ωd).
Fermions in 2+1d, invertible phases Z: p+ ip sc (2+1d).

LE =
1

2
χTC†(γµ∂µ +m)χ (34)

boundary

L =
1

2
χR(∂τ − i∂x)χR, c =

1

2
. (35)

We have

Z−|m|

Z|m|
=

Pf(C† /D − |m|)
Pf(C† /D + |m|)

=
∏
λ

iλ− |m|
iλ+ |m|

(36)

The computation is easier when m→ ∞:

lim
m→∞

Z−|m|

Z|m|
= e

iπ
2 η(−i /D) = Zp+ip (37)

It turns out that this is not strictly a topological invariant.
η depends on the metric gµν . It says that

η(−i /D) =
1

4

−1

24π2

∫
M4

tr(R ∧R), mod 4 (38)

if one is not careful, one would write:∫
X3

(ω ∧ dω +
2

3
ω3) (39)

which is not correct because ω is not globally defined:

Zp+ip = eCSg[X3,σ], CSg =
2π

16

−1

24π2

∫
M4

tr(R ∧R) (40)

This theory, Zp+ip gives an invertible phase of fermions in 2+1d but with
phase depending on the metric. The signature σ of Y4 is an invariant of 4-
dimensional manifolds, and it is also a bordsim invariant.

ΩSpin
d=4 = Z (41)

The general belief is that all invertible phases in d-dimensions:

Tor(Ωd)⊕ Free(Ωd+1) (42)

the second part is Chern-Simons terms in d.
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3.3 Why bordsms should classify invertible phases?

Invertible unitary TQFTd with Z(sd) = 1, Z is a bordism invariant. Proved by
Moore-Freed, hep-th/0403135, Yonekura, 1803.10796.

The prove uses surgery. Take a manifold Xd and remove from it Sd ×Dd−p

and then glue back Dp+1×Sd−p−1. Crucially, ∂(Sp×Dd−p)∂(Dp+1×Sd−p−1) =
Sp × Sd−p−1.

Any bordism can be decomposed into a sequence of surgery operations. By
proving that it does not change by jumping, where one uses invertibility and
that Z(Sd) = 1.

4 Lecture 4

4.1 Invertible TQFT is a bordism invariant

Here we will prove that for an invertible TQFT with Z(Sd) = 1 Z is a bordism
invariant.

4.1.1 Bordism can be decomposed by a sequence of surgery

Lets prove that any bodism Yd can be decomposed by a sequence of surgery
operations.

We cut Yd = (Xdcut(S
p × Dp−p) ∪ Dp+1 × Sd−p−1 (they have the same

boundary). Suppose d = 2, and p = 0,
(two manifolds are bordant if and only if they can be connected by surgery.)
Consider f : Md+1 → [0, 1]. We have ∂µf(pi) = 0 with f(pi) ̸= f(pj) for

i ̸= j. The inverse f−1(s) is smooth except inear the critical points.
Focus on ∂µf(p) = 0 and f(p) = v. We compare f−1(v + ϵ) and f−1(v − ϵ):

f(x) = v −
n∑

i=1

x2i +

d+1∑
i=n+1

x2i (43)

f (−1)(v + ϵ) and f (−1)(v − ϵ) agrees except near ϵ = 0.

N = f−1cut{
d+1∑
i=1

x2i ≤ δ} (44)

the boundary is Sd = {x :
∑d+1

i=1 x
2
i = δ}. Sd = R+ ∪ R− and f(R+) ≥ v and

f(R−) ≤ v.

d+1∑
i=n+1

x2i −
n∑

i=1

x2i ≥ 0,

d+1∑
i=n+1

x2i +

n∑
i=1

x2i = δ (45)

therefore:
n∑

i=1

x2i =
δ

2
, Dn (46)
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We conclude that R+
∼= Dn × Sd−n and R− ∼= Sn−1 ×Dd−n+1.

Let X+ = N ∪R+ vs X− = N ∪R−

X+
∼= f−1(v + ϵ), X− ∼= f−1(v − ϵ) (47)

But X+
∼= (X−cut R−)∪R+. So we proved that a bordism can be constructed

by surgery.

4.1.2 Proof

Now lets prove the main result. Suppose Yd = (Xdcut S
p × Dd−p) ∪ Dp+1 ×

Sd−p−1. Claim Z(Yd) = Z(Xd). Indeed:

Z(Xd) = ⟨Sp ×Dd−p|Xd cut Sp ×Dd−p⟩ (48)

Z(Yd) = ⟨Dd+1 × Sd−p−1|Xd cut Sd ×Dd−p⟩ (49)

Now we use invertibility:

Z(Xd) =
⟨Sp ×Dd−p|Dp+1 × Sd−p−1⟩ ⟨Dp+1 × Sd−p−1|Xd cut Sp ×Dd−p⟩

⟨Dp+1 × Sd−p−1|Dp+1 × Sd−p−1⟩

=
Z(Sd)Z(Yd)

Z(Sp+1 × Sd−p−1)

= Z(Yd)

(50)

Where in the last line we used the lemma: if Z(Sd) = 1 then Z(Sp×Sd−p) = 1.
pf:

Z(Sd) = ⟨Dp × Sd−p|Sp−1 ×Dd−p⟩

=
√
Z(Sp × Sd−p)Z(Sp−1 × Sd−p+1

(51)

Then Z(Sp × Sd−p) = Z(Sp−1 × Sd−p+1)−1.
Claim: for odd d, Z(Sd) = 1.

Z(S3) = ⟨D2 × S1|S1 ×D2⟩ =
√

⟨D2 × S1|D2 × S1⟩ ⟨S1 ×D2|S1 ×D2⟩
= Z(S1 × S2)

= 1

(52)

Z(S1 ×Md−1) = 0 or Md−1 = 1. For d even we can modify the theory:

Z(Xd) → λχ(Xd)Z(Xd) (53)

λ > 0 and χ(Xd) is the Euler character:

χ(Xd) =

∫
Xd

e(Ω) (54)
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e.g.

χ =
1

4π

∫
d2x

√
gR (55)

Now we can choose λ so that Z(Sd) = 1 (why is Z(Sp) > 0? Can be ob-
tained by gluing together two hemispheres, so it is equal to the inner prod-
uct ⟨Dp|Dp⟩. Could |Dp⟩ = 0? If so, everything would be zero, because
Z(Xd) = ⟨Dp|Xd cut Dp⟩. Violates invertibility, which implies that there is
a single ground state in every manifold).

4.2 Dijkgraaf-Witten theories

Start with invertible phase without symmetry, add a symmetry G. In particular,
starting with trivial invertible phase (no symmetry). One gets to symmetry
protected topological phase (SPT). There are protected edge states.

For dimension d ≤ 4 it is believed that it constructs all SPTs for bosons
with G-unitary. (reference: Dijkgraaf and Witten, Comm. Math. Phys. 129,
393 (1990); Chan, Ga, Lu, Wen, 1106.4772 (relation to lattice phases)).

Construct Z for Md: s[v0, . . . , vd] = ±1. In each edge one places g ∈ G:

Z =
1

|G|Nv

∑
{gv}

e−S[{gv}], e−S =
∏
∆d

ν(gv0 , gv2 , . . . , gvd)
s(∆) (56)

with ν ∈ Hd(G,U(1)).
Group cohomology: A homogeneous co-chain f ∈ C̃n(G,A):

f : Cn+1 → A (57)

satisfying f(gg0, gg1, . . . , ggn) = f(g0, g1, . . . , gn) for any g ∈ G. Now we define
d : C̃n → C̃n+1:

(df)(g0, g1, . . . , gn+1) =

n+1∏
i=0

f(g0, g1, . . . ĝi, . . . , gn+1)
(−1)i (58)

with ĝi excluded. Then H̃
n(G,A) = ker(dn)/im(dn−1).

Inhomogeneous cochains: w ∈ Cn(G,A).

w(g1, g2, . . . , gn) = f(1, g1, g1g2, . . . , g1g2, . . . gn). (59)

If Xd is closed, Z(Xd) = 1. Proof: ν(v0, v1, . . . , vd) = ν(gv0 , gv1 , . . . , gvd).
dν = 0 (simplicial cohomology sense).

1 =

∫
Xd∪ν∞

dν =

∫
Xd

ν. (60)

To diagnose the non-triviality we need to couple to background G-gauge
field. They live in the edges: with uij ∈ G obeying a flatness condition
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and local gauge transformations. To couple it we replace ν(g0, g1, . . . , gd) →
ω(g−1

0 u01g1, g
−1
1 u12g2, . . . , g

−1
d−1ud−1,dgd). IF you just consider ω(u01, u12, . . . , ud−1,d).

Can show that ∫
Xd

ω =

∫
Xd

ω′. (61)

Then

Z(Xd, u) =
1

|G|Nv

∑
{gv}

∫
Xd

ω =
∏

Λ∈Xd

ω(u01, u12, . . . , ud−1,d)
S(∆) (62)

For example: G = Z2:

ω(g1, g2, g3) = (−1)g1g2g3 , gi ∈ {0, 1}. (63)

Z[X3, a] = (−1)
∫
X3

a∪a∪a
(64)

for X3 = RP 3 we get Z(RP 3) = −1.
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