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1 Non-relativistic QFTs
In these lectures d denotes the number of spatial dimensions. Morally, speed of
light is infinite, so the light-cone is everything with t > 0.

1.1 A useful model
Free theory. Consider

S =

∫
dtddx

(
iψ†∂tψ − |∇ψ|2

2m

)
The equation of motion is the Schroedinger equation (not for the wavefunction,
but for the field ψ).

i∂tψ = −∇2ψ

2m
.
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This shows up usually when discussing second-quantization. When quantizing
the theory we impose commutation (or anti-commutation if we wanted to work
with fermions)

[ψx, ψ
†
y] = δ(x− y).

We can expand into plane waves:

ψ(x) =

∫
ddk

(2π)d
eikxak.

Contrarily to relativistic theory, ψ only contains annihilation operators, no cre-
ation operators, so ψ(x)|0⟩ = 0. Question: why? Answer: just see that this
verifies the commutation relation, and contrarily to the relativistic case we do
not need to ensure causality, so there is no need to add more stuff.

This is a realtively boring theory: the Hilbert space is the Fock space
a†k1

. . . a†kn
|0⟩, with energy E =

∑n
i=1 k

2
i /(2m). It is a superposition of plane

waves.

Turning on an interaction term. We want a non-relativistic version of the
ϕ4 theory:

S =

∫
dtddx

(
iψ†∂tψ − |∇ψ|2

2m
− c

2
ψ†ψ†ψψ

)
.

We want to do some power-counting. The mass m is just there to translate from
momentum to energy (just like the speed of light in relativistic theories). So we
set dimensions [m] = 0, and [∇i] = 1, so [∂t] = 2, so [dt] = −2, [ddx] = −d, and
overall we want [ψ] = d/2 to get a dimensionless action. Finally, [c] = 2−d. The
four-point interaction behaves differently in d < 2, d = 2 and d > 2 dimensions.

• If d < 2 the interaction term is relevant.

• If d = 2 the interaction term is marginal.

• If d > 2 the interaction term is irrelevant.

We will be mostly interested in the case d = 3, but for the moment let us
concentrate on the case d = 2 which looks more interesting at first.

Many questions. Question: why is m dimensionless? Answer: there is a
deeper reason which is that m is a parameter in the Galilean algebra so it
is not renormalized. Question: what if there are multiple species? Answer:
then a combination of the masses (times the number of each particles) is non-
renormalized.

Question: can such a theory be obtained as a non-relativistic limit of a
relativistic one? Answer: yes, take ϕ4 theory and focus on the kinematic sector
of the theory where we are just above the threshold of creating n particles,
so that they all have very little energy. Question: but the relativistic kinetic
term has two time derivatives |∂tϕ|2; where did one time derivative disappear?
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Answer: in the suitable limit we have ϕ = e−imtψ/
√
2m where ψ is smooth

while the prefactor is oscillatory. Then inserting in the usual ϕ4 Lagrangian,
and dropping the highly oscillating terms gives the non-relativistic Lagrangian.

Question: where did the dimension of time change in this process?

1.2 Beta function
Feynman rules. The Green function in non-relativistic theories is retarded:

G(t, x)

{
= 0 t < 0,

̸= 0, t > 0.

Indeed

⟨0|Tψ(t, x)ψ†(0, 0)|0⟩ = ⟨0|ψ†(0, 0)ψ(t, x)|0⟩ = 0 t < 0

since ψ|0⟩ = 0. After Fourier transform one finds a propagator with the following
iϵ prescription, and a four-point vertex:

G(ω, p) =
i

ω − p2

2m + iϵ
,

vertex = −2ic.

Non-renormalization of the mass. Then we can check that the mass is
not renormalized (at least at first order) by drawing the leading correction to

:

= (coef)
(
G(tx − ty, x− y)

)2
G(ty − tx, y − x)

there is always one of the propagators going in the wrong time direction.

Renormalization of the four-point vertex. Corrections to the four-point
vertex:

= 0, ̸= 0.

In d = 2 we eventually get the beta function

β(c) =
c2

2π
for d = 2.

Then the flow can be integrated explicitly by solving

∂c(Λ)

∂ log Λ
= β(c), c(Λ0) = c0.
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This gives
c(Λ) =

c0

1 + c0
2π log Λ0

Λ

If the coupling constant starts positive, c0 > 0, then in the IR, c→ 0, but at
finite ΛLandau = Λ0e

2π/c0 we get a Landau pole. Starting instead from c0 < 0
we get an IR divergence

Λ

c

ΛLandau

Λ

c
Λe−2π/|c0|

Question: isn’t c < 0 sick because the potential is unbounded? Answer: no
vacuum instability because in this theory the number of particles is fixed.

Two-particles potential. The two-particles potential can be computed by
Feynman diagrams of the form

because the particle number N =
∫
dxψ†ψ is conserved by the evolution. The

Hilbert space splits into a direct sum H = H0 ⊕H1 ⊕H2 ⊕ . . . where Hn has
n particles.

For some critical value of c0 one finds a confining potential, leading to a
bound state.

1.3 Non-relativistic conformal theories
1.3.1 Epsilon expansion

We consider d = 2 + ϵ dimensions. The beta function is

β(c) = ϵc+
c2

2π
.

β(c)

c∗ = −2πϵ

For positive c, or small enough negative c the RG flow make c→ 0. For negative
enough c there is a particular value of c0 that gives a fixed point.

1.3.2 Schrödinger (non-relativistic conformal) symmetry

What are the invariances of the Schrödinger equation i∂ψ/∂t = −∇2ψ/(2m)?

• Spatial translations ψ(t, x) → ψ′(t, x) = ψ(t, x+ a), also spatial rotation,
reflection.
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• Phase rotation ψ = eiαψ.

• Galilean boost1 Ki defined by viKi : ψ → ψ′ = eim v·x−imv2t/2ψ(t, x− vt)
for a vector v. The phase factor cancels the effect of how time derivative
now acts on the (boosted) spatial coordinate.

• Dilatation ψ → ψ′ = 1
λd/2ψ(λ

2t, λx).

• Proper conformal transformation2

C : ψ → ψ′(t, x) =
1

(1 + αt)d/2
e

i
2

mαx2

1+αt ψ
( t

1 + αt
,

x

1 + αt

)
.

1.3.3 Non-relativistic theory from light-cone restriction of a rela-
tivistic CFT

In principle, it would be good to directly take a non-relativistic limit of a rela-
tivistic theory. But this is tricky to do generally because the relativistic theory
wants to generate particles whereas we would want a limit with constant particle
number.

Consider a (d + 1) + 1 dimensional Minkowski space. The Klein–Gordon
equation reads (with i = 1, . . . , d)(

−∂2t + ∂i∂i +
∂2

∂y2

)
ϕ = 0.

Switch to light-cone coordinates x± = (t± y)/
√
2. Then the equation becomes

(−2∂+∂− + ∂i∂i)ϕ = 0.

Then require the field to take the form ϕ = eimx−
ϕ(x+, xi) then the equation

becomes (
−2im

∂

∂x+
+ ∂i∂i

)
ϕ(x+, xi) = 0,

which is the Schrödinger equation. The Schrödinger algebra should arise by
taking a similar operation on the (d + 1) + 1 dimensional conformal algebra
so(d+2, 2): select generators that commute with one light-cone momentum P+

(this forms a Lie algebra, which incidentally includes P+ itself). Conversion
from the relativistic conformal symmetry to the non-relativistic (here M is the
total mass, N is the particle number)

relativistic Schrödinger

P+ M = mN
P− H
D +M+− D
M i+ Ki

K+/2 C

1The precise expression needs to be checked.
2It looks like a special conformal transformation, a combination of inversion, translation,

inversion.
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1.3.4 A few facts

In the Schrödinger algebra,

• N is central, namely [N, anything] = 0;

• [Ki, Pj ] = iδijM where M is the total mass M = mN ;

• [D,Pi] = iPi, [D,Ki] = −iKi, [D,H] = 2iH, [D,C] = −2iC scaling
dimensions, consistent with the earlier naive dimension assignment;

• [C,H] = iD so C,D,H form a SO(2, 1) algebra.

Question: can a theory be invariant under Pi,Ki, H,D (and M), but not C?
Answer: ?

Introduce some operators. From ψ(x) and ψ†(x) we build

n(x) = ψ†
xψx

j(x) =
−i
2
ψ†↔∇ψ.

Then
[n(x), n(y)] = 0, [n(x), ji(y)] = −in(y)∇iδ(x− y),

[ji(x), jj(y)] = −i(jj(x)∂i + ji(y)∂j)δ(x− y).

These are related to diffeomorphism invariance. (Bruno is lost.) But these are
just operators, they typically don’t commute with the Hamiltonian since we are
doing quantum mechanics.

Then we can express many symmetry generators (but not the Hamiltonian
for instance) in terms of these currents as

N =

∫
dxn(x), Ki =

∫
dxxin(x), C =

∫
dxx2n(x),

P =

∫
dx j(x), D =

∫
dxx · j.

We have ∂tn + ∇ · j = 0, which lets us compute the time derivative of the
moments N , Ki and C. We have [H,Ki] ∼

∫
dxx∇j ∼ Pi. We can compute all

the commutators between these operators. The most non-trivial aspect is how
H commutes with D. This is what distinguishes theories that are scale-invariant
from those who are not.

Claim: at the critical point (at the fixed point) the commutator of the
Hamiltonian and dilation is the one we expect (the scale-invariant one).

Claim: if the theory is constructed from ψ and ψ†, then scale-invariance
implies Schrödinger symmetry.
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