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In this class we will sometimes use the word theorem, but not in a mathe-
matically rigorous way.

1 Higher-group symmetries

1.1 Symmetry breaking

When discussing phenomenology and applications to particle physics, you really
have to talk about symmetry breaking. Indeed, in particle physics, symmetries
are often an infrared accident. If we take quantum gravity into account, black
hole physics implies (how rigorously?) that symmetry is broken in the UV. So
we will certainly have to consider patterns of symmetry breaking.
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1.1.1 Breaking an ordinary symmetry

Breaking an ordinary symmetry is done by charged local operators. Basic exam-
ple: consider a scalar field Lagrangian L =

∫
ddx

(
∂µφ∂

µφ − V (φ)
)
with some

potential V (φ) = aφ4 − bφ2 that respects the Z2 symmetry φ → −φ. Then
we add a leading violating operator λφ3 with λ small, so that the symmetry
is only slightly broken.1 The gap between energies of the two local minima is
proportional to λ at small λ.

ϕ

V (ϕ)

1.1.2 Breaking one-form symmetries

Using local operators? The particularity of higher-form symmetries com-
pared to usual symmetries is that all local operators are neutral. The symme-
try cannot be violated by adding any local operator deformation to the action.
There is no most-relevant charged operator, the same method will not work.

For example in Maxwell theory we have U(1)
(1)
e ×U(1)

(1)
m one-form symme-

tries. Consider a deformed Lagrangian

L =
1

e2

∫
d4x

(
fµνf

µν +
1

Λ4
(fµνf

µν)2
)
.

Since fµν = 2∂[µaν] we still have the magnetic one-form symmetry since ∂µεµνρσf
ρσ =

0. The electric one-form symmetry gets deformed but there is still a conserved
current:

∂µ
(
fµν +

1

Λ4
f2fµν

)
= 0.

Using additional particles. In fact, symmetry breaking one-form symmetry
requires new charged particles.

• Dynamical electric charges lead to d ⋆ f ̸= 0, making U(1)
(1)
e broken.

• Dynamical magnetic charges lead to f ̸= da globally, making U(1)
(1)
m

broken.

What about the scale of breaking?

Claim 1. The statement “U(1)
(1)
e is broken by order 1 at ΛPl” is equivalent to

the weak gravity conjecture.

1Max Metlitski asks why not add λφ instead; Clay answers we can get rid of such a term
by shifting φ. Debates can be had about that.
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1.2 Higher-group theory and the emergence theorem

We consider the simplest scenario of higher-group. Consider a U(1)(1) one-form
symmetry and an zero-form symmetry G(0) that is a connected Lie group such
as SU(N). These can form a higher-group (called a 2-group even though the
top order of forms is just 1) with a structure constant κ ∈ Z.

More precisely κ lies in the group cohomology H3(G(0), U(1)) (same coho-
mology group as what characterizes Chern–Simons terms).

Many characterizations:

• Background fields. The one-form and zero-form symmetries have gauge
fields B(2) and A(1), respectively, and the gauge-transformation with gauge
parameters Λ(1) and λ(0) reads

B(2) → B(2) + dΛ(1) +
κ

4π
Tr(λ(0)dA(1)).

It is possible to show that this formula is only consistent if κ is quantized.

• Current algebras. The symmetries have currents Jµν and Ja
ν where a is

an index for (the adjoint representation of) G(0). Then we have a failure
of conservation at coincident points which reads

∂µJa
µ(x)J

b
ν(y) =

κδab

2π
∂λδ4(x− y)Jνλ(x) + . . .

where . . . are separated-point terms. Major difference compared to an
anomaly: the anomaly would just have the unit operator instead of Jνλ.

• Symmetry defects. We have codimension 1 symmetry operators forG(0),
and codimension 2 symmetry operators for U(1)(1).

g

h

k

a

Three codimension 1 symmetry operators labeled by g, h, k ∈ G(0) generi-
cally intersect along d−3 dimensions (here one dimensions). The triple in-
tersection is characterized by an element of the group cohomologyH3(G(0), U(1)(1)),
which is κ. Then such an intersection has a symmetry defect labeled
by a ∈ U(1)(1). how is a built from κ, g, h, k?

Example: for G(0) a simple Lie group such as SU(N), the parameter κ
lies in H3(G(0), U(1)) = Z.

Importantly, this κ is not a modification of the equal-time commutations of
the current algebra. In contrast, non-invertible symmetries discussed later are
very different even at equal times.
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Emergence theorem. One can see 2-groups G as higher analogues of group
extensions:

U(1)(1) → G → G(0).

Just like for group extensions, U(1)(1) is a subgroup and G(0) is a quotient; it
is not a subgroup (for κ ̸= 0).

E.g., the OPE tells us that for κ ̸= 0,

JνJµ ⊇ Jµν .

In other words, as soon as you have the zero-form symmetry the one-form sym-
metry comes for free. (Analogy: in SU(2) once you have the raising and lowering
generators j+ and j− then j3 = [j+, j−] comes for free.)

Scenario. Consider G (with simple Lie group G(0)) being emergent along an
RG flow. In the UV effective field theory, no symmetry G, namley some pieces
of G have to be broken. After the RG flow, we get an IR effective field theory,
and we assume that this IR theory does obey G with κ ̸= 0.

Since κ is quantized it cannot run. Thus, at least one of G(0) and U(1)(1)

must emerge along the RG flow. Let us call E0 and E1 the energy scales of
emergence of these two symmetries. Note that if G(0) is present at some energy
scale, and κ ̸= 0, then U(1)(1) is present at that energy scale. Thus, we have a
universal inequality

E0 ≤ E1.

This is imprecise since E0, E1 are only approximately defined.

Claim 2 (Emergence theorem for 2-groups). There cannot be any family of RG
flows such that E0 ≫ E1 parametrically.

1.2.1 Long example

Consider U(1) gauge theory with N massless fermions χ±,a, a = 1, . . . , N .

U(1)g SU(N)L SU(N)R

χ+ +1 □ 1
χ− −1 1 □

There is also the axial symmetry to worry about, but that is a more advanced
topic.

There is a non-trivial triangle diagram

Jµν

U(1)g
SU(N)L

SU(N)L

=⇒ κL = +1, κR = −1.
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The electric one-form symmetry is broken by charged matter. The magnetic

one-form symmetry remains. The two-group involves U(1)
(1)
m and SU(N)L,R.

There are two two-groups, corresponding to the extensions2

U(1)(1) → GL → SU(N)L, U(1)(1) → GR → SU(N)R

Note that the diagonal SU(N)∆ ⊂ SU(N)L × SU(N)R has κ = κL + κR = 0.

Breaking the one-form symmetry. In principle we would like to add dy-
namical monopoles. But that is difficult. Let us embed the U(1) gauge group
inside a non-abelian UV gauge group.

Consider an SU(2) gauge theory with an adjoint scalar φ. Then use the Higgs
mechanism to give a non-trivial vev to φ, namely ⟨Tr(φ2)⟩ = v2 ̸= 0. This breaks
the gauge group to the U(1) Cartan (diagonal) subgroup of SU(2). At high-
energies there will be dynamical monopoles; alternatively one can understand
that the Bianchi identity ∂[µfρσ] = 0 of the U(1) Cartan is not satisfied at
high energies; instead at high energies we have an SU(2) version D[µFρσ] = 0
including the commutator term in the covariant derivative.

The breaking of symmetry happens at the Higgsing scale E1 = v.

General consequence. In any UV theory where the U(1) gauge group is part

of a non-abelian gauge group, the U(1)
(1)
m symmetry is broken at the Higgsing

scale, so both SU(N)L and SU(N)R are broken by that scale. However, the
diagonal SU(N)∆ need not be broken.

Illustration in SU(2) model. We must put together the χ into some rep-
resentation of SU(2). The simplest option is to have a doublet of SU(2).
What is the flavour symmetry? We can no longer rotate just χ+ or χ− sep-
arately. We must rotate both simultaneously. In other words the diagonal
SU(N)∆ ⊂ SU(N)L × SU(N)R is preserved in the UV, while SU(N)L and
SU(N)R must be emergent at some scale ≤ the Higgsing scale.

SU(2)g SU(N)∆

χ 2 □

1.2.2 Generalization to an approximate IR G(0)

Consider an IR theory where G(0) is explicitly broken by some coupling y ≪ 1.
Consider a family of RG flows

TUV(y)
RG−−−−−−→ TIR(y)

2Here Clay says you don’t have just one combined two-group U(1)(1) → G → SU(N)L ×
SU(N)R, but I don’t understand that. I guess it is less intuitive to have a non-simple
group G(0).
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such that U(1)(1) is broken in the UV, U(1)(1) is preserved in the IR for any y,
and G(0) is broken by terms proportional to y. In addition, we assume that
for y = 0 the whole 2-group G is restored in the IR, so the emergence theorem
holds.

Note that y ̸= 0 states come in two types:

• Massless particles in TIR(y), which contribute κ0 to the parameter κ.

• Massive particles with masses that become zero at y → 0, so their masses
behave as yαimi for some exponents αi > 0 (and mass scales mi). When
y → 0 these contribute

∑
i κi to the parameter κ.

For y = 0 we have two-group symmetry G with κ = κ0 +
∑

i κi.
Two cases:

• If κ ̸= 0 then the emergence theorem forbids G(0) from being present in
the UV.

• If κ = 0 then G(0) can be an exact symmetry in the UV at y = 0, weakly
broken by y. In a sense, this is a loophole in the emergence theorem, due
to the particles that become massless as y → 0.

Explain more.

Example Consider our previous example of U(1) gauge theory. Include in
the IR Lagrangian a term ymχ+aχ−a, which breaks SU(N)L,R symmetries to
the diagonal one, with the full symmetry being restored as y → 0.

This admits the same UV completion as before as an SU(2) gauge theory
with χ and with the SU(N)∆ symmetry in the UV. But this is boring.

Consider a more interesting completion with ρ and η a pair of doublets,

SU(2) SU(N)∆

ρa = (χ+a, ψ−a) 2 □
ηa = (ψ+a, χ−a) 2 □

In the UV, include a Yukawa term LUV ⊇ yφµνρaµη
a
ν where µ, ν ∈ 2 of SU(2)g.

For y → 0 we have symmetry enhancement back to SU(N)L × SU(N)R since
only the Yukawa breaks that symmetry to the diagonal subgroup.

Consider Higgsing to φ → Λ

(
0 1
1 0

)
breaking SU(2)g → U(1)g. Then the

UV Lagrangian term becomes

yΛ(χ+aχ−a) + yΛ(ψ+aψ−a).

What happens as y → 0? We have enhaved flavour symmetry SU(N)L ×
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SU(N)R

U(1)g SU(N)L SU(N)R

χ+ +1 □
χ− −1 □
ψ+ +1 □
ψ− −1 □

So overall both UV and IR have enhanced symmetry at y = 0. This is achieved
by having these new matter fields ψ± whose mass is suppressed by y. They
change κ0 ̸= 0 to a total κ = 0.

1.3 Higher flavour symmetry in the Standard Model

Discrete quotients of gauge groups. Note that SU(N) and SU(N)/ZN

gauge theories (without matter) have the same spectrum of gauge bosons for
instance. Their one-form symmetries are:

SU(N) SU(N)/ZN

electric Z(1)
N magnetic Z(1)

N

charged Wilson lines charged ’t Hooft lines

Standard Model. The gauge group is SU(3)C×SU(2)L×U(1)/Γ for Γ being
trivial or Z2, Z3, Z6, because the Z6 ⊂ SU(3)C ×SU(2)L×U(1)Y acts trivially
on all known particles. One way to falsify such a quotient would be to find a
particle that is charged under it.

Sacrilegously (for a particle physicist), we will normalize hypercharges to
have minimum charge 1 rather than 1/6. Then the particle content and rep-
resentations of the different particles are as follows. Our convention is that all
fermions are left-handed and Weyl.

Qi ui di Li ei Ni H

SU(3)C 3 3 3
SU(2)L 2 2 2
U(1)Y +1 −4 +2 −3 +6 −3

U(1)B +1 −1 −1
U(1)L +1 −1 −1

where the first three groups are the gauge groups and the other two are flavour
symmetries. Here, Qi is the (left-handed) up/down quark (it splits into these
two only after electroweak symmetry breaking), ui and di are the right-handed
up and down quarks, Li the lepton, ei the right-handed lepton, and H the Higgs
scalar. For later we also include Ni the right-handed neutrino; we don’t know
if they exist in our universe.
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Classical 0-form symmetry. Matter comes in Ng = 3 generations, so with-
out Yukawa terms we should expect3 U(3)Q ×U(3)u ×U(3)d ×U(3)L ×U(3)e.
Yukawa couplings (which become mass terms when the Higgs gets a vev)

LYuk ⊃ Y u
ijH

∗Qiuj + Y d
ijHQidj + Y e

ijHLiej

breaks symmetry to U(1)L1
× U(1)L2

× U(1)L3
× U(1)B/Z3 where Li is the

action on each lepton separately, and B is the baryon number.

Magnetic 1-form symmetry U(1)y. From the hypercharge gauge group we
get a magnetic symmetry.

Approximate symmetries. The idea will be to keep track of

G(0) =
∏

o∈{Q,u,d,L,e}

SU(3)o

symmetry restoration as y → 0. We don’t track the U(1) factors of the big sym-
metry group because they suffer from ABJ anomalies and that will be discussed
later.

Compute the 2-group structure constants. For SU(3)Q,

U(1)Y

JQ

JQ

=⇒ κ = qY · 6 · c2(□) = 6.

Similar work for all the fermions gives

SU(3)2 flavour Q u d L e
κ with U(1)(1) +6 −12 +6 −6 +6

Each species flavour symmetry SU(3)o is in a non-trivial 2-group.

1.3.1 Emergence theorem and GUTs

The idea of GUT (grand unified theory) is to have a UV model that flows to the
standard model. On top of that, an important idea was to see U(1)Y as part
of a bigger non-abelian group that got Higgsed when flowing to the IR. This
means that U(1)(1) is broken in the GUT.

The emergence theorem (without adding matter suppressed by y) tells us
that every GUT necessarily breaks each SU(3)i independently. This is a con-
straint on how standard model fermions unify into multiplets.

Example. If the UV gauge group is G1 × · · · ×Gℓ and U(1)Y is contained in
it, and if each of Q, u etc embeds in separate representations ρ1, . . . , ρ5 etc then
each ρi would have separate SU(3) flavour symmetry. This would contradict
the emergence theorem.

3We are not tracking the U(1) acting on the neutrino.
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Conclusion. In a GUT, standard model fermions must combine into multi-
plets of the larger gauge group, in a way that makes the combination have total
κ = 0. What are these combinations? Remember that we are talking about
diagonal subgroups of the non-abelian groups SU(3), so there is no way to make
a combination with weights. For each subset of the five fermion fields, we check
the corresponding total κ. We get

Number of species acted on combination with κ = 0

1 None

2 {L,Q}, {L, d}, {L, e}
3 {u, d, e}, {u, e,Q}, {u, d,Q}
4 None

5 {Q, u, d, L, e}

Caveat: In the actual Standard Model, Yukawa couplings are not all small in
this way. Instead, we should focus on those that are indeed small.

Familiar GUT: Georgi–Glashow. This model has SU(5) with 5+10 fermion.
Higgsing reduces SU(5) to SU(3) × SU(2). The representations split as 5 →
(3, 1) + (1, 2) and 5 → (3, 1) + (1, 2) = {L, d}, so the antisymmetric is

10 = Λ25 → Λ2
(
(3, 1) + (1, 2)

)
= (3, 1) + (3, 2) + (1, 1) = {u, e,Q}.

As expected, these two sets {L, d} and {u, e,Q} appear in our table.

Familiar GUT: SO(10). This model has SO(10) gauge group. The easiest
way to think about the Higgsing is to go from SO(10) to SU(5).

In general, when Higgsing SO(2N) to SU(N), the vector representation
splits as 2N → N + N . The Dirac spinor representation of SO(2N) is 2N

dimensional, it is a sum of two chiral spinor representations of SO(2N), which
are 2N−1 dimensional. They split as

2N = 1 +N + Λ2N + · · ·+N + 1

2N−1 = 1 + Λ2N + Λ4N + . . . (every other term)

For N = 5 we get
16 → 1 + 10 + 5,

which gives all species at once.

Pati–Salaam model. Gauge group GPS = SU(4)C×SU(2)L×SU(2)R where
the first is Higgsed to SU(3), the second is not, and the third factor is Higgsed to
the Cartan; the U(1)Y is a combination of Cartans. Then under this Higgsing,

(4, 2, 1) → (3, 2) + (1, 2) = {Q,L},
(4, 2, 1) → (3, 1) + (3, 1) + (1, 1) + (1, 1) = {u, d, e,N},
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which was also in our table (except for the N which is uncharged under U(1)Y
anyway).

What about {L, e} and {u, d,Q}? There seems to be no known GUT that
has this pattern of unification. It would be interesting because it would lead to
no proton decay at leading order because all the quarks lie in the same multiplet
of the GUT.

1.3.2 Exploiting the y ̸= 0 loophole

Trinification. The gauge group is Gtrin = SU(3)C × SU(3)L × SU(3)R. The
Higgsing to the Standard Model is subtle and responsible for the funny effects
below. Matter

ΨQ = (3, 3, 1) → {Q, d′}

ΨQ = (3, 1, 3) → {u, d, d′}
ΨL = (1, 3, 3) → {L, e,N}

where d′ ∈ (3, 1) and d
′
= (3, 1) are new fields. Why are people happy with this

unification even though there are extra vector-like (together they form a Dirac

spinor, so they don’t introduce additional anomalies) down quarks d′, d
′
on top

of the Standard Model matter content.
In the UV Lagrangian we have a term yΦΨQΨQ where Φ is the Higgs field.

This gives

yΛd′d
′
+ yH∗Qu+ yHQd

Crucially the same y that breaks flavour symmetries in the Standard Model

must appear in the mass, so the scale of new particles d′, d
′
is suppressed by y

compared to the Higgsing scale.

1.3.3 Models of axions

We have a periodic scalar a with a ∼ a + 2πf where f has mass dimension 1.
The action is S = 1

2

∫
da ∧ ⋆da. Currents:

• Jµ = ∂µa for a U(1)(0) shift symmetry,

• Jµνρ = εµνρλ∂
λa for a U(1)(2) symmetry.

Let us couple the axion to a U(1)g gauge field: the new action is

S =
1

2

∫
da ∧ ⋆da+ 1

2e2

∫
F ∧ ⋆F +

ik

8π2f

∫
aF ∧ F,

where e is the gauge coupling, f is the scale of periodicity of the axion, k is a
quantized coupling. Here, the last term is an irrelevant (dimension 5) operator,
suppressed by the mass scale f . Lots of things are known about possible UV
completions, for instance a could be the phase of some scalar field that acquires
a vev through Higgsing. See the exercise.
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Equations of motion are easily expressed in terms of the currents J (3) (for

the two-form symmetry of the axion), J
(2)
e , J

(2)
m (for the electric and magnetic

one-form symmetries of the gauge field we just added), and J (1) (shift symmetry
of the axion):

d⋆J (3) = 0, d⋆J (2)
m = 0, d⋆J (1) =

k

8π2
F ∧F, d⋆J (2)

e =
−k
4π2f

da∧F.

Crucially, the da ∧ F source term cannot be absorbed by shifting J
(2)
e by aF

because a is not globally well-defined.
This implies various symmetry breaking.

• The U(1)(0) shift symmetry is broken to Z(0)
k (shift the axion by 2πf/k)

• The U(1)
(1)
e electric one-form symmetry is broken to Z(1)

k ,

Higher-group. There is a higher-group here (for k > 1). It is a 3-group,
namely a combination of 0-form, 1-form, 2-form symmetry. Couple to back-

grounds: A(3) for U(1)(2), and (discrete) B(2) for Z(1)
k . The first is easy: contract

A(3) with ⋆da, which gives a term

S ⊃ i

2πf

∫
da ∧A(3).

How to couple the discrete background gauge field B(2)? We saw that with
Thomas Dumitrescu: replace F by F −B.

The most interesting term aF∧F changes to a(F−B)∧(F−B). This implies
that the gauge-invariant field strength of A(3) is no longer dA(3) (variation with
respect to a), but actually

G(4) = dA(3) +
k

4π
B(2) ∧B(2).

The quadratic term signals the existence of a higher group:

U(1)(2) → G → Z(1)
k .

Emergence theorem. Consider an RG flow from UV without G to an IR
theory that has G symmetry. Denote by E2 and E1 the scales of emergence of
the 2-form and 1-form symmetries. We get E1 ≤ E2, where

• E1 is the scale of dynamical charged particles;

• E2 is the scale of dynamical axion strings.
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2 Non-invertible symmetries

2.1 ABJ anomaly

Our setting: 3 + 1 dimensional U(1) gauge theory with field strength f = dc
where c is the dynamical gauge field. We also have some matter (not specified
here) such that the theory classically has a U(1)chiral global 0-form symmetry
with current J . We also assume that the current is subject to an anomly:
J will not be conserved at a quantum level, due to the ABJ (Adler–Bell–Jackiw)
anomaly

d ⋆ J =
N

8π2
f ∧ f (1)

Many examples:

• Massless QED with chiral fermions χ±,a with gauge charge ±1 and
a = 1, . . . , N . The chiral symmetry with current J is the one that maps
χ+,a → eiθχ+,a and leaves χ−,a invariant4 The anomaly comes from the
flavour–gauge–gauge triangle5

• Axion electrodynamics a ∼ a+2πµ with action including S ⊃ iN
8π2µ

∫
af∧

f , with shift symmetry current J = da. This current has the same type
of anomaly.

• There are also non-abelian gauge theory examples, with discrete versions
of this story.

From now on, take N = 1 (smallest possible value for the anomaly); other-
wise various discrete group factors creep in.

2.2 Puzzle

Puzzle: does J obeying (1) a generate conserved charge?

• No? The current J is not conserved!

• Yes? See below.

This “yes” camp is led by ’t Hooft, who should be credited with this observation.
Despite the non-zero divergence let us consider nevertheless the integral Q(t) =∫
R3 d

3xJ0(x, t). Then

Q(t = +∞)−Q(t = −∞) =

∫
dt∂tQ =

∫
spacetime

d ⋆ J =
1

8π2

∫
spacetime

f ∧ f,

4Often one writes the chiral symmetry with an opposite action on χ−,a, but this might
lead perhaps (I think) to issues of factors of 2 in the quantization of some charges.

5Yesterday we had a flavour–flavour–gauge triangle instead, which has a very different
consequence.
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where f is a differential form, and the cohomology class of f/2π lies inH2(spacetime,Z),
meaning that the integral over any two-cycle is an integer.6 So on a topologi-
cally trivial spacetime, e.g., by regulating R4 as S4, the right-hand side vanishes.
Thus, chiral symmetry selection rules hold. Correlators of local operators on R4,
and standard S-matrix elements obey selection rules.

Somewhat surprisingly: selection rules can be violated

• on a rich enough spacetime like S2 × S2;

• in the presence of a ’t Hooft line, characterized by
∫
S2

f
2π = m ∈ Z mag-

netic charge.

In the second setting, line operator insertions are creating non-trivial topology
for us.

We need to develop a language to talk about symmetries that have such
different consequences in these different contexts. Key clue: f ∧ f is the square

of something. We have df = 0, so that f generates a U(1)
(1)
m magnetic one-form

symmetry. So the anomaly equation (1) is trying hard to be a current algebra.

2.3 Construction of non-invertible symmetry

Modern definition: a symmetry is a topological operator.
Goal: define a topological operator that implements chiral symmetry. With-

out anomaly it is easy:

Uα(M3) := exp(2πiα

∫
M3

⋆J).

This generates a finite chiral transformation with angle 2πα. It is defined on a
closed codimension 1 manifold M3. It is topological: if M3 is changed contin-
uously without crossing other operators, then the correlator is unmodified. On
the other hand, ifM3 is moved and crosses a local operator, it acts by symmetry
transformations:

O
M3

=

M3
e2πiαqOO

where qO is the charge of O under chiral symmetry. Most aspects of symmetry
can be studied in terms of such Uα(M3) without ever going back to an explicit
expression in terms of an integrated current. But today we have an anomaly:
the operator Uα(M3) on its own is not topological and we have to modify it
somehow, which requires looking at its expression more closely than usual.

With the anomaly. For J obeying (1), consider the naive “conserved cur-
rent”

⋆J − 1

8π2
c ∧ dc.

6Remember there are no instantons for U(1), just fluxes on two-manifolds.
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Can we make sense of

exp
(
2πiα

∫
M3

(
⋆J − 1

8π2
c ∧ dc

))
It is formally topological, but not gauge-invariant! The problem is the Chern–
Simons term c ∧ dc with continuous level α.

First option: take α ∈ Z to make the Chern–Simons term be well-defined.
But integer α is the trivial operation, so nothing can be said about it.

Novelty: α ∈ Q also makes sense! (It is not so novel for condensed
matter physicists.)

Rational level does not make sense as an invertible/classical term in the
action, but it makes sense as a response.

Discussion about Chern–Simons theory. Consider e.g. U(1) Chern–
Simons theory on M3 at level k, with dynamical gauge field b, and couple it
to a source c (which will later be identified to our aforementioned gauge field).
The partition function is

Zk[dc] =

∫
[Db] exp

(
ik

4π

∫
M3

b ∧ db+ i

2π

∫
M3

b ∧ dc
)

where c is background and b dynamical. This is a non-invertible TQFT (it has
many operators, many ground states on general manifolds).

If M3 = S3 without any operator insertion, then b, c are no longer connec-
tions, they are simply globally-defined one-form. We can simply evaluate the
path integral since it is a Gaussian integral: just solve the equation of motion,
b = −c/k. Plugging it gives7

Zk
S3 [dc] = exp

(
−i
4πk

∫
M3

c ∧ dc
)
,

which looks very much like an effective 1/k Chern–Simons term.
On a general manifold M3, we define “level 1/k” by this path integral

Zk
M3

[dc].
How unique is this definition? Could I take some other TQFT that coincides

with that TQFT on S3, and use that as my definition? Remarkably, any such
TQFT has the property that it decomposes into this one, tensored wiht a part
that does not couple to c at all.

Definition of composite topological operator. For any k ≥ 1 we define

D1/k(M3) := U1/k(M3)Z
k
M3

[dc] =

∫
[Db] exp

(
2πi

k

∫
M3

⋆J+
ik

4π

∫
M3

b∧db+ i

2π

∫
M3

b∧dc
)
.

7There is actually a prefactor (one-loop determinant), which can be partially eliminated
by local counterterms: there remains a meaningful overall constant (which is c-independent)
that we will come back to.
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This is easily generalized to rational α, but let us not discuss it explicitly.
Note that this technology was not necessary whenM3 = S3. This harks back

to the fact that we had good selection rules for correlators of local operators
on R4 or S4: indeed, for these cases it is enough to use symmetry operators
along various S3.

Comment: if the anomaly coefficient is N > 1 instead, there is a non-
anomalous ZN subgroup, but for other rationals in U(1) we need the same
construction of composite topological operators.

There are generalizations to gravity.
Three different possibilities for the divergence of a current (to be checked)

• d ⋆ J = F ′ ∧F ′′ where F ′ and F ′′ are background fields; then there is just
a ’t Hooft anomaly, with an obstruction to gauging.

• d ⋆J = F ∧F ′ where F is an operator and F ′ a background: then there is
a symmetry as long as F ′ is turned off, but it is a weird kind of symmetry,
leading to two-groups.

• d ⋆ J = F ∧ F where F is dynamical: this is today’s discussion, you need
to dress the symmetry operators and get non-invertible symmetries.

Alternative viewpoint on coupling with a TQFT. What is wrong with
U1/k? Place it along x = 0.

U1/k = exp

(
2πi

k

∫
x=0

⋆J

)
= exp

(
2πi

k

∫
x≥0

d ⋆ J

)
= exp

(
2πi

k

∫
x≥0

f ∧ f
8π2

)
.

This is an effective θ term on one side of the defect. The x < 0 and x > 0
theories are not the QFTs: θ+ = θ− + 2π/k. We compensate this by adding
here a TQFT on the interface, with two key properties:

• it must have Zk one-form symmetry (abelian anyons)

• it must have an anomaly of Z(1)
k : denoting by B(2) the two-form back-

ground field for this 1-form symmetry, the anomaly inflow must be (spin
of generator=1/(2k))

exp

(
2πi

k

∫
x≥0

B(2) ∧B(2)

2

)
Then we couple bulk and TQFT by B(2) = f/2π.

Student question: why do we need a TQFT rather than some other QFT?
Because otherwise we would not get a topological symmetry operator, we would
end up with a much more complicated theory on one side.
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Alternative construction via half-gauging. Consider gauging Z
(1)
k sub-

group of the magnetic U(1)(1). To do that, we need two new U(1) fields because
discrete gauging is not so easy. The fields are β(2) and γ(1) and we have a term

S ⊃ ik

2π

∫
dβ(2) ∧ γ(1),

Here γ(1) is a Lagrange multiplier. The equations of motion of γ(1) give dβ(2) =

0, and restricts holonomy of β(2) to Z(1)
k instead of general U(1)(1).

We modify the bulk action by adding the two new dynamical fields β(2), γ(1)

Sbulk +
i

2π

∫
β(2) ∧ f +

ik

2π

∫
β(2) ∧ dγ(1) + ik

4π

∫
β(2) ∧ β(2)

where the first term says β(2) is sourcing the magnetic one-form symmetry, the
second is there to make β(2) discrete, and the last is a discrete torsion term
(SPT phase). Integrate out γ, β, namely solve the equations of motion. This
gives β(2) = −f/k. We get

Sbulk −
2πi

k

∫
f ∧ f
8π2

,

so this Z(1)
k gauging sent θ → θ− 2π/k. Then use an anomalous chiral rotation

to undo the shift in θ angle.
Surprising conclusion: the theory T with ABJ anomaly is invariant under

gauging Z(1)
k with appropriate SPT. It is a self-duality of the theory under this

finite gauging.
In general, if a theory T is invariant under discrete gauging, then it admits

a duality defect (or maybe it should be called Dirichlet defect). The idea is
that you gauge the symmetry on one side of a wall. In general this defines an

interface between theory T and the gauged theory T/Z(1)
k . But if that latter

theory is the same as T then we have a topological defect in theory T . Explicit
action in our case (with defect at x = 0),

S = Sbulk+
i

2π

∫
x≥0

(
β∧f+kβ∧dγ+κ

2
β∧β

)
+

(
2πi

k

∫
x=0

⋆J+
2πi

k

∫
x≥0

f ∧ f
8π2

)
.

This is almost the same action as what we did before: instead of gauging every-
where (which we realized did nothing), we gauge only on one half-space, and on
top of that we add

2πi

k

∫
x=0

⋆J +
2πi

k

∫
x≥0

f ∧ f
8π2

,

which is trivial by (1).
Note that β, γ are dynamical fields defined only for x ≥ 0. At x = 0 we

choose Dirichlet boundary conditions β|x=0 = 0. This defect is topological
(check it thanks to dβ = 0).
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Claim 3. The edge modes of β, γ system realize U(1)k.

To see this, integrate out β. (We will not keep track of the coupling to f but
it is easy to do.) The equation of motion is dγ + β = 0. This ends up giving us

− ik

4π

∫
x≥0

dγ ∧ dγ =
ik

4π

∫
γ ∧ dγ

as announced in the claim. The coupling to f makes it so that we get a Z(1)
k

duality defect U1/k(M3)Z
k
M3

[f ] = D1/k(M3).

2.4 Defect fusion algebra

The price of the ABJ anomaly is that D1/k is non-invertible. Let us study the

fusion of D1/k and D†
1/k (obtained by reversing the orientation). The set-up is

T

D1/k

T/Z
(1)
k ≃ T

D†
1/k

T

This amounts to gauging Z
(1)
k on M3 × I with Dirichlet boundary conditions at

the ends of the interval.
Now, Z

(!)
k gauge equivalence classes are given by relative cohomology, relative

to the boundary because we are working with Dirichlet boundary conditions.
Thus,

β ∈ H2(M3 × I, ∂(M3 × I),Zk).

We apply Lefshetz duality (Poincaré duality for relative cohomology):

H2(M3 × I, ∂(M3 × I),Zk) ≃ H2(M3 × I,Zk)
homotopy

≃ H2(M3,Zk)

Thus, non-trivial β are characterized by a surface S ∈ H2(M3,Zk) where it has
holonomy.

If we use the equation of motion which relates β with f , we can look at a
Wilson surface of β, namely exp(−i

∮
S
β) = exp( 2πik

∮
S

f
2π ). These are nothing

but the Z(1)
k symmetry defects. The gauging amounts to a sum over Wilson

surfaces, namely a sum over symmetry defects.

We want to compute the partition function of the Z(1)
k gauge theory. It is

simply a sum over the possible β:

D1/k ×D†
1/k = #

∑
S∈H2(M3,Zk)

exp
( i
k

∮
S

f
)

where # is a numerical coefficient that is related to a standard normalization for

Z(1)
k gauge theory, coming from quotienting by gauge transformations (counted

by H1 below) but in a non-redundant way (counted by H0):

# =
|H0(M × I, ∂(M × I),Zk)|
|H1(M × I, ∂(M × I),Zk)|

=
1

k
.
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Interpretation of fusion. The right-hand side here can be understood as

condensation of Z(1)
k symmetry defects; we’ve only applied the gauging on the

given hypersurface, not the full theory. Local operators cannot be charged under
the Wilson surfaces, so only S = 0 is relevant and we get

D1/k ×D†
1/k = 1/k on local operators.

In some sense, this is a codimension 2 defect that tries very hard to be codi-
mension 1. It is a sort of mesh of the codimension 2 operators; it is “porous”.

Note that if D1/k had an inverse A then AD1/kD
†
1/kA

† would be the identity

defect. We will now prove that D1/kD
†
1/k has a bunch of zero eigenvalues, which

establishes that such an A does not exist.
Consider a state with a magnetic charge, e.g., on a spatial slice S2×S1. The

Hilbert spaces decomposes as a direct sum of spaces Hm where flux is m,

HS2×S1
=

⊕
m∈Z

Hm,

∫
S2

f

2±
= m.

On Hm:

D1/k ×D†
1/k

on Hm=
1

k

k−1∑
l=0

exp

(
2πiℓm

k

)
=

{
1 if k|m,
0 else.

Thus, we see that D1/k includes a sort of projection onto Hilbert space sectors
where the flux (on all surfaces, actually) is a multiple of k.

Question: what is a simple defect? When we think of operators acting on
a Hilbert space, we can always do arbitrary linear combinations. When we think
of them as defects, which we can insert them at a place in space and spread
out at all times, then it makes sense to talk about the Hilbert space with that
defect insertion. But then in that context we can only do sums of defects (with
non-negative integer coefficients), not arbitrary linear combinations. So there
is a notion of simple defect, which are those that cannot be written as sums of
other defects.

Action on operators and selection rules Local operators are blind to the
TQFT U(1)k, and are only sensitive to U1/k, so

D1/k(O) = exp
(2πiqO

k

)
O.

This works for any k, leading to the full chiral symmetry selection rules as long
as topology is trivial. This is consistent with what we said at the beginning.

Next consider the ’t Hooft line M(ℓ) on the line ℓ, which imposes a flux
m =

∫
S2 f/(2π) around it. Recall the Witten effect, namely the effect of the

θ angle on electric/magnetic charge. Near a ’t Hooft line, with fmon denoting
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the standard monopole field strength, we split f = fmon + dcflu with dcflu being
a dynamical part. Then inside the action we have

S ⊃ iθ

8π2

∫
f ∧ f =

iθ

8π2

∫
(fmon + dcflu) ∧ (fmon + dcflu)

⊃ iθ

2π

(∫
S2

fmon

2π

)(∫
ℓ,r≥0

dcf

)
=
iθm

2π

∫
ℓ

cf .

The θ term induces an electric charge mθ/(2π).
Now, across D1/k the θ term jumps as θ → θ+2π/k, so the ’t Hooft loop M

gets an electric charge 1/k: schematically,

D1/k(M(ℓ)) =M(ℓ)W (ℓ)1/k,

where M denotes the minimal ’t Hooft line and the right-hand side is an im-
properly quantized dyon. What it means is that it is not a strict line:

heuristically W 1/k = exp

(
i

k

∮
ℓ

c

)
,

rigorously W 1/k = exp

(
i

k

∫
Σ

f

)
,

where ∂Σ = ℓ. It is an open surface operator, with a very mild dependence on
the surface: only a topological dependence on the surface (whereas the boundary
is not topological). Pictorially

M

D1/k

−→

D1/k

MW 1/k

This may seem strange at first, but it is in fact a general feature of non-invertible
symmetry: it can change the type of operator. Here it maps lines to open
topological surfaces.

Analogous to the order to disorder map of Kramers–Wannier duality.
Analogous to an improperly-quantized Diract string.
Analogous to a branch cut in a (locally) holomorphic function: the position

of the branch cut does not matter, but tracking where you are with respect to
these branch cuts matters, and how they connect, etc.

Note: you can combine the first day of these lectures to the second day to
get very intricate structures, with higher-groups and non-invertible symmetries
at the same time.
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2.5 Selection rules

Consider a correlator on S4 of some operator O and of the M ’t Hooft line.

S4

O

M =
√
k S4

O

M =
√
ke

2πiq
k S4

O

M

=
√
ke

2πiq
k S4

O

MW 1/k = e
2πiq

k S4

O

MW 1/k

This selection rule is a new result.

2.6 Non-invertible symmetry breaking

Let us think about symmetry breaking. We will use the fusion rule

D1/k ×D†
1/k =

1

k

∑
S

exp
( i
k

∮
S

f
)
.

Somehow we have a non-trivial algebra between the chiral symmetry and the
one-form symmetry.

As we did in an earlier lecture, we think of an RG flow from UV where D1/k

is broken to IR where D1/k emerges.

Novel breaking possibility: dynamical monopoles break U(1)
(1)
m . This implies

that D1/k has to break.
Let us estimate energy scales by coupling to monopole worldline. The

monopole mass goes roughly as Λ/g where Λ is the Higgsing scale (if we embed
the abelian theory inside a non-abelian one) and g the gauge coupling. The
other thing to know is the IR cutoff.

The infrared effective action is the U(1) gauge theory. What is the typical
size of corrections to this effective action. The first correction is due to a loop
of monopoles:8

M

∼ exp(−Sworldline) ∼ exp(−mδt) ∼ exp(−#/g2)

which means we should expect the loop of monopole gives a non-perturbative
violation of D1/k.

8Subtlety: for this loop to be an operator rather than a number you need some more work,
taking into account fermion zero modes etc.
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Pedestrian viewpoint The monopole can arise in a non-abelian gauge the-
ory. In the IR we have d⋆J = 1

8π2 f∧f . In the UV it can be d⋆J = 1
8π2 Tr(f∧f).

In that non-abelian theory the chiral symmetry is violated directly by instan-
tons on S4. The monopole effect mentioned above is the right size to be an
instanton effect.

Example with exponentially small mass. In the UV SU(2) plus two doublets
χi, while φ is in the adjoint. There is no one-form symmetry. Then φ gets a
vev to Higgs SU(2) to U(1). In the IR we have χ±i with non-invertible chiral
symmetry.

The single-instanton background 1
8π2

∫
Tr(f ∧ f) = 1 supports one fermion

zero mode for each doublt. Thus, the instanton generates a multi-fermion op-
erator that saturates zero modes. The UV Lagrangian includes

LUV ⊃
∫
d4x exp

(
−8π2

g2

)
χ1χ2

LIR ⊃
∫
d4x exp

(
−8π2

g2

)(
χ+,1χ−,2 − χ−,1χ+,2

)
.

This is a technically natural, exponential small, chiral symmetry violation.
This is a good starting point for model-building and for phenomenology.

The exponential smallness of the symmetry violation is useful especially when
you want to explain some small numbers in nature.
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