
Generalized Symmetries and Gauging in 2d CFTs
Exercise Sheet 1

Exercise 1: Cardy formula from modular invariance
The asymptotic (high energy) density of states in a 2d CFT is controlled by the Cardy formula.
We write the CFT partition on a rectangular torus τ = iβ

2π as,

Z(β) = ∫ d∆ρ(∆)e−β(∆−c/12) , (1)

where ρ(∆) is the density of states. In the following we derive the famous Cardy formula from
modular invariance, here for imaginary τ , given by

Z(β) = Z(4π
2

β
) . (2)

(a) Assuming a gap in the spectrum of ∆ above the vacuum given by ∆gap (i.e. ∆ ≥ ∆gap for any
non-identity operator), the RHS of (2) is dominated by the vacuum contribution in the high
temperature limit β → 0,

e
π2c
3β (1 +O(e−

4π2∆gap
β )) = ∫ d∆ρ(∆)e−β(∆−

c
12
) (3)

Clearly the exponential divergence on the LHS is to be produced from the tail of the integral
on the RHS at large ∆. The task here is to find the asymptotic density of states, which can be
obtained from the inverse Laplace transform of the LHS in (3),

lim
∆≫1

ρ(∆) = ρ0(∆) =
1

2πi
∫

i∞+ϵ

−i∞+ϵ
dβe

4π2c
12β eβ(∆−c/12). (4)

Show that

ρ0(∆) =
1

2
( c

3∆3
)

1
4

e2π
√

c∆
3 (1 +O(∆−1/2)) , (5)

up to exponentially suppresssed contributions.

(b) Let us define the accumulated density of states (which count the total number of states up to
weight ∆)

F (∆) = ∫
∆

0
d∆′ρ(∆′) . (6)

From the previous part, we have

F0(∆) ≡ lim
∆≫1

F (∆) = ∫
∆

0
d∆′ρ0(∆′) =

1

2π
( 3

c∆
)
1/4
(e2π

√
c
3
∆ +O(∆−1/2)) . (7)

Let us now compare this universal result with the operator spectrum in the Ising CFT. The
Ising torus partition function is given by

ZIsing
T 2 (τ, τ̄) =

1

2
∣θ2(τ)
η(τ)

∣ + 1

2
∣θ3(τ)
η(τ)

∣ + 1

2
∣θ4(τ)
η(τ)

∣ , (8)
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with q = e2πiτ . The Elliptic (Jacobi) theta functions θα(τ) and the Dedekind eta function η(τ)
are given by the following explicit formulae,

θ2(τ) = ∑
n∈Z

q(n−1/2)
2/2 = 2q1/8

∞
∏
m=1
(1 − qm)(1 + qm)2 ,

θ3(τ) = ∑
n∈Z

qn
2/2 =

∞
∏
m=1
(1 − qm)(1 + qm−1/2)2 ,

θ4(τ) = ∑
n∈Z
(−1)nqn

2/2 =
∞
∏
m=1
(1 − qm)(1 − qm−1/2)2 ,

η(τ) =q
1
24

∞
∏
i=1
(1 − qi) .

(9)

Use Mathematica to expand ZIsing
T 2 in q = q̄ and plot the corresponding accumulated density

F Ising(∆) as a function of ∆. Compare with F0(∆) in (7).

Remark: For further reading including a more rigorous derivation of the Cardy formula, see
hep-th:1904.06356, and generalizations hepth:1906.04184 and hepth:2212.04893.

Exercise 2: Self-duality in the Ising CFT
The Ising CFT has an interesting property that if we orbifold the CFT by its Z2 spin flip symmetry,
we obtain the same CFT. This is commonly referred to as the self-duality of the Ising under discrete
gauging.

Below we will show this explicitly at the level of the torus partition function. We start with the
vanilla Ising torus partition function,

ZIsing
T 2 (τ, τ̄) = ∣χ0(τ)∣2 + ∣χ 1

2
(τ)∣2 + ∣χ 1

16
(τ)∣2 . (10)

where

χ0(τ) =
√
θ3(τ) +

√
θ4(τ)

2
√
η(τ)

, χ 1
2
(τ) =

√
θ3(τ) +

√
θ4(τ)

2
√
η(τ)

, χ 1
16
(τ) =

√
θ2(τ)√
2η(τ)

. (11)

We would like to compute the torus partition function for the Z2 orbifold

ZIsing/Z2(τ, τ̄) = 1

2
∑

g1,g2∈Z2

ZIsing[g1, g2](τ, τ̄) , (12)

where ZIsing[g1, g2](τ, τ̄) is the torus partition function for the Ising CFT with twist g1 along the
space direction x1 and twist g2 along the time direction x2,

ZIsing[g1, g2](τ, τ̄) = trHg1
S1
(g2qL0− 1

48 qL̄0− 1
48 ) . (13)

Note that a temporal twist introduces a symmetry operator acting on the Hilbert space, whereas
a spatial twist modifies the Hilbert space (introducing the twisted sector).
(a) Perform q expansions of the Ising characters χ0, χ 1

2
, χ 1

16
in (11) and convince yourself that the

degeneracies match your expectations for unitary irreps of the c = 1
2 Virasoro algebra.

(b) We start with the partition function with only a twist in the time direction,

ZIsing[0,1](τ, τ̄) = ∣χ0(τ)∣2 + ∣χ 1
2
(τ)∣2 − ∣χ 1

16
(τ)∣2 . (14)
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which follows from the fact that both the identity 1 and the energy operator ϵ are even under
the Z2 spin flip symmetry and only the spin operator σ is Z2 odd.

Using modular transformation of the Ising characters, show that

ZIsing/Z2(τ, τ̄) = ZIsing(τ, τ̄) . (15)

(c) The modern interpretation of the Ising self-duality is that it originates from a generalized
symmetry in the Ising CFT beyond the familiar Z2 spin flip symmetry. Conversely, any CFT
with such a generalized symmetry is guaranteed to exhibit self-duality. Here we will uncover
this generalized symmetry by simple considerations at the level of the torus partition function.

As is the case for usual symmetries, a generalized symmetry is defined by how the topological
defect acts on local operators in the CFT. Let us call this topological defect D. Including a
temporal twist by D on the torus as in (14), we have

ZIsing
T 2 [0,D](τ, τ̄) ≡ trHS1 (DqL0− 1

48 qL̄0− 1
48 ) = d1∣χ0(τ)∣2 + dϵ∣χ 1

2
(τ)∣2 + dσ ∣χ 1

16
(τ)∣2 . (16)

where d1,ϵ,σ are numbers which capture the “charges” of the local operators under this putative
symmetry. In the special case where D is the generator for the spin flip Z2, we have d1 = dϵ =
−dσ = 1.
Now in general the numbers d1,ϵ,σ are constrained by the modular covariance of the torus
partition function,

ZIsing
T 2 [D,0](τ, τ̄) = ZIsing

T 2 [0,D](−1/τ,−1/τ̄) . (17)

and the LHS now involves a spatial twist by D. Consequently, ZIsing
T 2 [D,0] counts operators in

the twisted Hilbert space HD
S1 and must have the following decomposition,

ZIsing
T 2 [D,0](τ, τ̄) ≡ trHD

S1
(qL0− 1

48 qL̄0− 1
48 ) = ∑

i,j∈{0, 1
2
, 1
16
}
nijχi(τ)χj(τ̄) . (18)

with nij ∈ Z≥0.
Find the most general solution to d1,ϵ,σ subject to the above constraints.

Exercise 3: Orbifolds and anomalies
The compact boson at a generic radius R has the following global symmetry

G = (U(1)m ×U(1)w) ⋊ZC
2 , (19)

which consists of the momentum and winding U(1) symmetries together with a ZC
2 charge conju-

gation symmetry. The CFT torus partition function is given by

ZT 2(τ, τ̄) = 1

η(τ)η(τ̄) ∑p,w∈Z
q

1
2
( p
R
+wR

2
)2 q̄

1
2
( p
R
−wR

2
)2 , (20)

which receives contributions from Virasoro primaries including the momentum-winding operators

Vp,w =∶ ei(
p
R
+wR

2
)XLei(

p
R
−wR

2
)XR ∶ , h = 1

2
( p
R
+ wR

2
)
2

, h̄ = 1

2
( p
R
− wR

2
)
2

(21)
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where their conformal weights (h, h̄) are given, and a tower of operators built from ∂X, ∂̄X and
their derivatives,

jn2 j̄m2 , n,m ∈ Z+ , h = n2 , h̄ =m2 . (22)

For example,

j1 = ∂X , j4 = j41 − 2j1∂2j1 +
3

2
(∂j1)2 . (23)

In this exercise, we study discrete gauging (orbifold) of the compact boson with respect to
certain discrete subgroups of G.
(a) Prove that (20) is invariant under modular S-transformation,

ZT 2(−1/τ,−1/τ̄) = ZT 2(τ, τ̄) . (24)

Hint: Use the Poisson resummation formulae for lattice sums.

(b) Proceed as in the Exercise 2 to compute the orbifold partition function of the compact boson at
radius R with respect to the Z2 subgroup of U(1)m generated by translationX →X+πR. Under
this Z2, the operators in (22) are invariant while the momentum-winding operators transform
as

Vp,w → (−1)pVp,w . (25)

Show that the answer agrees with the partition function of the compact boson at radius R/2.
(c) Consider a different Z2 subgroup of G coming from the diagonal subgroup of U(1)m × U(1)w.

Under this Z2, the operators in (22) are invariant while the momentum-winding operators
transform as

Vp,w → (−1)p+wVp,w . (26)

Compute the partition function with a Z2 twist in the temporal direction ZT 2[0,1](τ, τ̄), and
from modular S and T transformations of ZT 2[0,1](τ, τ̄), derive the twisted partition functions
with spatial twist ZT 2[1,0](τ, τ̄), and with simultaneous twists in the temporal and spatial
directions ZT 2[1,1](τ, τ̄). Is the answer you find for ZT 2[1,1](τ, τ̄) invariant under a modular
S-transformation? What does this impliy about this Z2 symmetry?
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