1 Kramers-Wannier symmetry

1.1 Sequential quantum circuit

The non-invertible Kramers-Wannier operator takes the form

$$
\begin{equation*}
\mathrm{D}=\sqrt{2} e^{-\frac{2 \pi i L}{8}} U_{\mathrm{KW}} \frac{1+\prod_{j=1}^{L} X_{j}}{2} . \tag{1.1}
\end{equation*}
$$

Here

$$
\begin{equation*}
U_{\mathrm{KW}}=\left(\prod_{j=1}^{L-1} \frac{1+i X_{j}}{\sqrt{2}} \frac{1+i Z_{j} Z_{j+1}}{\sqrt{2}}\right) \frac{1+i X_{L}}{\sqrt{2}} \tag{1.2}
\end{equation*}
$$

is a unitary, sequential linear circuit. Prove that

$$
U_{\mathrm{KW}} X_{j} U_{\mathrm{KW}}^{-1}= \begin{cases}Z_{j} Z_{j+1}, & j \neq L \tag{1.3}\\ \left(\prod_{j=1}^{L} X_{j}\right) Z_{L} Z_{1}, & j=L\end{cases}
$$

Therefore, U_{KW} does not act locally on the \mathbb{Z}_{2}-even local operators. Furthermore, U_{KW} does not commute with the lattice translation. From this it is clear that the multiplication by the projection factor $\frac{1+\prod_{j=1}^{L} X_{j}}{2}$ removes this issue.

1.2 Self-dual deformation

Prove that the deformed Hamiltonian

$$
\begin{equation*}
H=-\sum_{j=1}^{L} X_{j}-\sum_{j=1}^{L} Z_{j} Z_{j+1}+\frac{\lambda}{2} \sum_{j=1}^{L}\left(X_{j-1} Z_{j} Z_{j+1}+Z_{j-1} Z_{j} X_{j+1}\right) \tag{1.4}
\end{equation*}
$$

at $\lambda=1$ has the following three product states

$$
\begin{equation*}
|++\ldots+\rangle,|00 \ldots 0\rangle,|11 \ldots 1\rangle \tag{1.5}
\end{equation*}
$$

as exactly degenerate ground states. (It is more challenging to prove that this Hamiltonian at $\lambda=1$ is gapped and has no other ground states.)

Next, in this three-dimensional ground space, find the simultaneous eigenbasis for η and D .

1.3 Matrix product operator

The Kramers-Wannier operator admits the following MPO presentation with bond dimension 2:

$$
\begin{align*}
& \mathrm{D}=\operatorname{Tr}\left(\mathbb{U}^{1} \mathbb{U}^{2} \cdots \mathbb{U}^{L}\right), \\
& \mathbb{U}^{j}=\binom{|0\rangle\left\langle+\left.\right|_{j} \mid 0\right\rangle\left\langle-\left.\right|_{j}\right.}{|1\rangle\left\langle-\left.\right|_{j} \mid 1\right\rangle\left\langle+\left.\right|_{j}\right.} \tag{1.6}
\end{align*}
$$

Prove that

$$
\begin{equation*}
\mathbb{U}^{j} X_{j}=\mathbb{Z} \mathbb{U}^{j} \mathbb{Z}, \quad Z_{j} \mathbb{U}^{j}=\mathbb{Z} \mathbb{U}^{j} \tag{1.7}
\end{equation*}
$$

where $\mathbb{Z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Using the above, show that $\mathrm{D} X_{j}=Z_{j} Z_{j+1} \mathrm{D}$. Similarly, compute $X_{j} \mathbb{U}^{j}$ and $\mathbb{U}^{j} Z_{j}$, and show that $\mathrm{D} Z_{j} Z_{j+1}=X_{j+1} \mathrm{D}$.

1.4 Non-invertible reflection

Define

$$
\begin{align*}
& \mathbb{U}^{j^{\prime}}=\mathbb{H} \mathbb{U}^{j} \mathbb{H}=\binom{|+\rangle\left\langle\left. 0\right|_{j} \mid-\right\rangle\left\langle\left. 1\right|_{j}\right.}{|-\rangle\left\langle\left. 0\right|_{j} \mid+\right\rangle\left\langle\left. 1\right|_{j}\right.}, \\
& \mathbb{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right) . \tag{1.8}
\end{align*}
$$

We see that $\mathbb{U}^{j^{\prime}}=\left(\mathbb{U}^{j}\right)^{\mathrm{T} \dagger}$, where the transpose is taken in the virtual/bond space and the dagger is taken in the physical space.

Define the reflection operator P so that it acts as $\mathrm{P} O_{j} \mathrm{P}^{-1}=O_{-j}$. Using the MPO presentation of D, show that

$$
\begin{equation*}
\mathrm{PDP}^{-1}=\mathrm{D}^{\dagger} \tag{1.9}
\end{equation*}
$$

Next, define a non-invertible reflection operator

$$
\begin{equation*}
\mathrm{D}^{\prime}=\mathrm{PD} \tag{1.10}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\left(\mathrm{D}^{\prime}\right)^{2}=1+\eta . \tag{1.11}
\end{equation*}
$$

Unlike D, the non-invertible reflection operator does not mix with lattice translations.

$2 \boldsymbol{\operatorname { R e p }}\left(\mathbf{D}_{8}\right)$

In this section we assume L to be even, and consider the non-invertible operator for the $\operatorname{Rep}\left(\mathrm{D}_{8}\right)$ fusion category:

$$
\begin{equation*}
\mathrm{D}=T^{-1} \mathrm{D}^{\mathrm{e}} \mathrm{D}^{\mathrm{o}} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{D}^{\mathrm{e}}=\sqrt{2} e^{-\frac{2 \pi i L}{16}} \frac{1+i X_{2}}{\sqrt{2}} \frac{1+i Z_{2} Z_{4}}{\sqrt{2}} \cdots \frac{1+i X_{L}}{\sqrt{2}} \frac{1+\eta^{\mathrm{e}}}{2} \tag{2.2}\\
& \mathrm{D}^{\mathrm{o}}=\sqrt{2} e^{-\frac{2 \pi i L}{16}} \frac{1+i X_{1}}{\sqrt{2}} \frac{1+i Z_{1} Z_{3}}{\sqrt{2}} \cdots \frac{1+i X_{L-1}}{\sqrt{2}} \frac{1+\eta^{\mathrm{o}}}{2}
\end{align*}
$$

are the KW operators on the even and the odd sites, respectively. (In this section D stands for the $\operatorname{Rep}\left(\mathrm{D}_{8}\right)$ operator rather than the KW operator.) Here

$$
\begin{equation*}
\eta^{\mathrm{e}}=\prod_{j: \text { :ven }} X_{j}, \quad \eta^{\mathrm{o}}=\prod_{j: \text { odd }} X_{j} \tag{2.3}
\end{equation*}
$$

generate a $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ symmetry and $T: j \rightarrow j+1$ is the lattice translation.

2.1 Fusion rule

Using the fusion rule for the KW operators, prove that

$$
\begin{equation*}
\mathrm{D} \eta^{\mathrm{e}}=\eta^{\mathrm{e}} \mathrm{D}=\mathrm{D} \eta^{\mathrm{o}}=\eta^{\mathrm{o}} \mathbf{D}=\mathrm{D}, \quad \mathbf{D}^{2}=\left(1+\eta^{\mathrm{e}}\right)\left(1+\eta^{\mathrm{o}}\right) \tag{2.4}
\end{equation*}
$$

Also show that $\mathrm{D}=\mathrm{D}^{\dagger}$.

2.2 Cluster state as a non-invertible SPT state

Using $Z_{j-1} X_{j} Z_{j+1} \mid$ cluster $\rangle=\mid$ cluster \rangle, prove that

$$
\begin{equation*}
\mathrm{D} \mid \text { cluster }\rangle=2 \mid \text { cluster }\rangle \tag{2.5}
\end{equation*}
$$

