
Answer sheet 1: Monday June 24, 2024.
(See chapter 2 of Zohar Komargodski’s notes https://indico.ictp.it/
event/7624/session/19/contribution/84/material/0/0.pdf)

Quantum field theories here are assumed local, invariant under translations
and rotations (but not necessarily reflections). They have a symmetric
conserved stress-energy tensor Tµν : the operator equations Tµν = Tνµ and
∂µTµν = 0 are valid at separated points in correlators. We assume there is
no local gravitational anomaly: the equations hold at coincident points
too. In contrast we allow anomalies in current conservation ⟨∂µjµ . . .⟩ =
(contact terms) namely ⟨pµjµ(p) . . .⟩ = (polynomial) in momentum space.

Exercise 1. The stress-tensor two-point function is characterized by its (center of
mass) momentum space expression ⟨Tµν(q)Tρσ(−q)⟩, which can only1 depend
on qµ and the metric δµν . (i) Using symmetry and conservation show that,
in n ≥ 2 spacetime dimensions, for a pair of scalar functions g, f ,

⟨Tµν(q)Tρσ(−q)⟩ = f(q2)(qµqν − q2δµν)(qρqσ − q2δρσ)

+ g(q2)
(
(qµqρ − q2δµρ)(qνqσ − q2δνσ)

)
|symmetrize(ρ,σ).

(ii) Check that in 2d the two tensor structures coincide, so
without loss of generality

wlog g(q2) = 0.
Answer Let’s do the two points in the opposite order, due to how easy/hard they are.

(ii) In 2d we have (qµqν − q2δµν) = −q̃µq̃ν where q̃µ = εµρq
ρ. Then the

tensor structures are both q̃µq̃ν q̃ρq̃σ.

(i) The tensor structures must be constructed from the momentum q,
metric δ and Levi–Civita tensor ε in a Lorentz-invariant way, meaning that
indices have to be properly contracted. Since εµ1...µnε

ν1...νn = n!δ
[ν1
µ1 · · · δνn]µn

(where brackets denote antisymmetrization), Levi–Civita tensors can all be
replaced by metrics except for zero or one.

Step 1. Let us begin with tensor structures that do not involve the
Levi–Civita tensor ε. This gives the possible tensors

qµqνqρqσ, δµνqρqσ, qµqνδρσ, q(µδν)(ρqσ), δµνδρσ, δµ(ρδσ)ν ,

where we have already imposed the µ ↔ ν and ρ ↔ σ symmetries. We seek
a linear combination of these six tensor structures that obeys conservation
even at coincident point, namely such that contracting with any of qµ, qν ,

1This is a slight lie: in 3d theories without reflection symmetry, one has an extra tensor
structure obtained by symmetrizing qλελµρ(qσqν−q2δσν) in µ ↔ ν and also in ρ ↔ σ, where
ε is the Levi–Civita tensor. It is correctly invariant under swapping (µ, ν, q) ↔ (ρ, σ,−q).
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qρ, qσ gives zero (rather than contact terms). Imposing conservation on the
µ index leads to three tensor structures:

(qµqν − q2δµν)qρqσ, (qµqν − q2δµν)δρσ,

qµδν(ρqσ) − q2δν(ρδσ)µ + qνδµ(ρqσ) − δµνqρqσ.

Then conservation on the ρ index gives two tensor structures

(qµqν − q2δµν)(qρqσ − q2δρσ),

qµδν(ρqσ) − q2δν(ρδσ)µ + qνδµ(ρqσ) − δµνqρqσ − qµqνδρσ + q2δµνδρσ

that are annihilated when contracting with qµ or qρ (and by symmetry qν

and qσ too). A simple linear combination gives the two tensor structures
in the exercise. The first matches directly. We can write the second tensor
structure of the exercise as

1

2
(qµqρ − q2δµρ)(qνqσ − q2δνσ) +

1

2
(qµqσ − q2δµσ)(qνqρ − q2δνρ)

= qµqρqνqσ − q2δµ(ρqσ)qν − q2δν(ρqσ)qµ + q4δµ(ρδσ)ν

= (qµqν − q2δµν)(qρqσ − q2δρσ)

− q2
(
−δµνqρqσ − δρσqµqν + q2δµνδρσ + δµ(ρqσ)qν + δν(ρqσ)qµ − q2δµ(ρδσ)ν

)
.

The parenthesized expression matches the second tensor structure we just
found. Incidentally, conservation turns out to be enough to ensure symmetry
under the isometry x → −x which maps q → −q and (µ, ν) ↔ (ρ, σ).

Step 2. Regarding the footnote: what about using the Levi–Civita
tensor? Antisymmetry prevents us from contracting more than one index
of ε with q, and also prevents us from making the µ and ν indices of the
two-point function be indices of ε, and likewise for ρ and σ. So at most we
can use three of the indices. Such a term can only exist in n ≤ 3 dimensions.
Making sense of the cases n ≤ 1 is left as an exercise to the reader.

In n = 3 dimensions, we are quite constrained and must complete qλελµρ
by something with indices ν, σ. This gives tensor structures

qλελµρqνqσ, qλελµρδνσ,

and of course their images under µ ↔ ν and/or ρ ↔ σ. We then impose
symmetries and impose conservation, and get the expression in the footnote,
namely

qλελµρ(qνqσ−q2δνσ)+qλελµσ(qνqρ−q2δνρ)+qλελνρ(qµqσ−q2δµσ)+qλελνσ(qµqρ−q2δµρ).
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This expression is rotationally-invariant by construction, but not reflection-
invariant due to ε. Under (µ, ν, q) ↔ (ρ, σ,−q), the first and last terms get a
sign flip from qλ and another from ε; the second and third terms get the same
sign flips and get swapped, so the expression is consistent with the symmetry
exchanging the two stress-tensor operators.

In n = 2 dimensions, it is simplest to work in (anti)holomorphic coordi-
nates. By rotation invariance we have ⟨TzzTzz⟩ = b(q2)q4z . Exact conservation
qzTzz + qzTzz = 0 in correlators even at coincident point (no gravitational
anomaly) implies ⟨TzzTzz⟩ = −b(q2)q3zqz (modulo a delta function at q = 0
perhaps, but that would amount in position space to a non-decaying con-
tribution). Exact symmetry allows us to replace Tzz = Tzz, then exact
conservation qzTzz + qzTzz = 0 fixes the correlator ⟨TzzTzz⟩. Likewise we can
use conservation on the second factor. Overall we find

⟨Tµν(q)Tρσ(−q)⟩ = b(q2)q̃µq̃ν q̃ρq̃σ,

where q̃z = εzzδ
zzqz = qz and q̃z = εzzδ

zzqz = −qz. This is the unique tensor
structure that is listed in the exercise. No need to fully track the epsilon
tensors etc.

The approach with abstract indices like in higher dimensions is more
daunting. We either have εµρ times a two-index tensor, so εµρqνqσ or εµρδνσ,
or we have the contraction ελυq

υ =: q̃λ times a suitable tensor. This gives

εµρqνqσ, εµρδνσ, q̃µqνqρqσ, q̃µqνδρσ, q̃µqρδνσ,

qµqνqρq̃σ, δµνqρq̃σ, qµδνρq̃σ,

or rather, their symmetrization under µ ↔ ν and ρ ↔ σ.
Actually, this is a redundant set of tensor structures: one can check

qµq̃σ = q̃µqσ − q2εµσ component by component, which allows to recast the
sixth and last tensor structures in terms of the others (symmetrized in µ ↔ ν
and ρ ↔ σ).

It seems that imposing qµ conservation gives only two tensor structures,

q(νεµ)(ρqσ) + δµνq(ρq̃σ) − q̃(µδν)(ρqσ),

q̃(µqν)qρqσ − q2q̃(µδν)(ρqσ).

Then it seems that there is no linear combination that is killed by contraction
with qρ. Clearly this is more difficult than the (anti)holomorphic approach.

Exercise 2. Assume that the QFT is two-dimensional and scale-invariant.
(i) Show that f(q2) = c/q2 for some constant c. Check that ⟨Tµµ (q)Tρσ(−q)⟩

is polynomial in q hence Tµµ has a vanishing two-point function with Tρσ at
separated points.
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(ii) Couple the QFT to a frozen metric gµν = δµν+hµν close to Euclidean.
At first order this adds 1

2

∫
gµνT

µνd2x to the action. Deduce

⟨Tµµ (x)⟩g=δ+h ∼ c(∂ρ∂σ − δρσ□)hρσ +O(h2).

This is c times the linearized Ricci scalar R of g; higher-order corrections
in h come from higher-point functions of Tρσ. This is the famous 2d trace
anomaly ⟨Tµµ ⟩ = − c

24πR.
(iii) In a metric gµν = eφδµν , check that T ′

zz = Tzz + αc(−(∂φ)2 + 2∂2φ)
is holomorphic for some value of α: use the conservation equation ∇µTµν = 0
and R = −4e−φ∂z∂zφ.

Answer (i) The stress-tensor has dimension n = 2 so the real-space two-point function
⟨TµνTρσ⟩ scales as length−4. The Fourier transform is an integral d2x so
the momentum-space two-point function scales as length0. But there is
a momentum-conservation delta function δ(total momentum), which has
dimension momentum−2, so what remains has dimension momentum2. Since
the tensor structure is quartic in q it has to be cancelled by a 1/q2.

Then we just need to contract indices µ, ν in the tensor structure, and
remember δµµ = 2, to get

⟨Tµµ (q)Tρσ(−q)⟩ = −c(qρqσ − q2δρσ),

which is indeed polynomial in q. Fourier-transforming gives derivatives of
delta functions, namely contact terms.

(ii) In flat space ⟨Tµµ ⟩ = 0 because it has non-trivial scaling dimension
but there is no length scale available. Now turn on a non-trivial metric:

⟨Tµµ (x)⟩g=δ+h = ⟨Tµµ (x)e−
1
2

∫
hρσT ρσd2x⟩g=δ +O(h2)

= −1

2

∫
hρσ(y)⟨Tµµ (x)T ρσ(y)⟩g=δdy +O(h2)

= − c

2

∫
hρσ(y)(∂yρ∂yσ − δρσ∆y)δ(x− y)dy +O(h2)

where ∆y = δνλ∂yν∂yλ . Note that ∂yµδ(x−y) = −∂xµδ(x−y) so we can trade
y derivatives for x derivatives, pull them out of the integral, then perform
the y integral of hρσ(y)δ(x− y) to get the desired answer.

(iii) to be completed, time-permitting
Exercise 3. (i) Consider a chiral conserved current jz in a 2d CFT. From ⟨jz(z)jz(w)⟩ =

k/(z−w)2 (k is called the level) deduce ⟨jzjz⟩ = kq2z/q
2 in momentum space.
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(ii) Consider a U(1) conserved current jµ in a (translation & rotation
invariant) 2d QFT. Show that symmetries fix (for some functions aL, a, aR)

⟨jzjz⟩ = q2zaL(q
2)/q2, ⟨jzjz⟩ = −a(q2), ⟨jzjz⟩ = q2zaR(q

2)/q2.

Using the separated-point conservation equation qzjz + qzjz = polynomial,
and adjusting contact terms by shifting correlators by polynomial in qz, qz,
find that aL−a and aR−a are constant. If the UV and IR limits q2 → +∞, 0
are CFTs deduce that levels of chiral currents obey kUV

R − kUV
L = kIR

R − kIR
L ,

a simple version of ’t Hooft anomaly matching.
(iii) In a background gauge field A, show ⟨∂µjµ⟩ = (1/2)(aL−aR)ϵ

µνFµν+
O(A2) for a suitable choice of contact terms.

Answer (i) Compute (where pz, pz are simply the (anti)holomorphic components of p,
nothing to do with z, sorry for the bad notation2)

⟨jz(q)jz(p)⟩ =
∫∫

eiqzz+iqzz+ipzw+ipzw⟨jz(z)jz(w)⟩d2z d2w

= kδ(q + p)

∫
eiqzz+iqzz

z2
dz dz.

Intuitively, rescaling the z and z integration variables to absorb qz and qz
shows that it must scale as qz/qz = q2z/q

2. A more proper approach is to
split z = reiθ and qz = |q|eiψ and qz = |q|e−iψ, and evaluate

⟨jz(q)jz(−q)⟩ = k

∫ +∞

0

∫ 2π

0
e2ir|q| cos(θ+ψ)e−2iθdθ

dr

r

= −2πe2iψk

∫ +∞

0
J2(2r|q|)

dr

r
= −πe2iψk = −π

q2z
q2

k.

Up to unimportant numerical factors that are not properly taken into account
this gives the desired answer.

(ii) ⟨jzjz⟩ has charge 2 under rotations so we need something with charge 2,
built from the momentum components qz and qz which have charges ±1. This
means q2z times some function of qzqz. We write the function as aL(q

2)/q2

for convenience. Same story for the other two-point functions: just track the
U(1) = SO(2) charge. Then conservation says that

⟨jz(qzjz + qzjz)⟩ = qz⟨jzjz⟩+ qz⟨jzjz⟩ = qz
(
aL(q

2)− a(q2)
)

2In this notation, components of xµ are xz = xz = z and xz = xz = z, and the scalar
product is p · q = pzqz + pzqz. Factors of 2 are probably wrong.
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must be a polynomial in qz, qz. This means aL − a is polynomial in q2.
Likewise a− aR is a polynomial due to the polynomiality of the two-point
function of jz and (qzjz + qzjz). Any term of order q2l, l ≥ 1, in these
polynomials can be eliminated by shifting aL and aR by them: this shifts
two-point functions by q2zq

2l−2 and q2zq
2l−2, respectively. There remains the

constants. Only the constant aL − aR matters since a can be freely shifted
by a constant.

If the UV limit q2 → +∞ is a CFT then aL → kUV
L and aR → kUV

R in
that limit. Same in the IR. Thus aL − aR, which is a constant, takes the
value kUV

L − kUV
R in the UV and kIR

L − kIR
R in the IR.

(iii) Without background A, ⟨jµ⟩ vanishes by rotation invariance (there
is no momentum available), hence ⟨∂µjµ⟩ = 0. In a background gauge field A,

⟨∂µjµ(x)⟩A =

∫
Aν(y)⟨∂µjµ(x)jν(y)⟩ dy +O(A2).

We need to look at contact terms ⟨jz(qνjν)⟩ = qz(aL − a) and ⟨jz(qνjν)⟩ =
qz(a− aR). Then

⟨∂µjµ(x)⟩A =

∫
Aν(y)⟨∂µjµ(x)jν(y)⟩ dy

= (aL − a)i∂z

∫
Az(y)δ(x− y)dy + (a− aR)i∂z

∫
Az(y)δ(x− y)dy

= (aL − a)i∂zAz(x) + (a− aR)i∂zAz(x).

In general it is not very nice, but if we adjust the constant part of a (which
is a contact term) such that aL − a = a− aR = (aL − aR)/2, we get the field
strength of A (up to some sign mistake somewhere in my calculations).

Exercise 4. Consider a Poincaré-invariant 2d QFT with a U(1) conserved current j.
Understand how charge conjugation and time-reversal acts on j and T .
Show that ⟨jµTνρ⟩ = 0. (More generally, no mixed anomaly between these
symmetries: gauging either one does not spoil the other.)

Answer Missing; ask Zohar when he comes in the second week.
Exercise 5. (i) In 2d, take currents jµ and j′µ with ⟨jµj′ν⟩ = qµενρq

ρ/q2. Show j′µ is ex-
actly conserved while conservation of jν has contact terms. By adding contact
terms to ⟨jµj′ν⟩ make ∂µjµ = 0 exact and see that ∂µj′µ gets contact terms.

(ii) In n = 2k dimensions, same questions with k + 1 currents and〈
j
(0)
µ0 (q

(0))j
(1)
µ1 (q

(1)) . . . j
(k)
µk (q

(k))
〉
= εµ1...µkν1...νkq

(1)ν1 . . . q(k)νkq
(0)
µ0 /q

(0)2.
(iii) Turn on backgrounds A(i) for j(i), i = 1, . . . , k, and compute the

effect of the previous line on ⟨∂µj(0)µ ⟩ in terms of field strengths of A(i).
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Answer (i) Contracting ⟨jµj′ν⟩ = qµενρq
ρ/q2 with qν gives zero since qνενρq

ρ = 0.
Contracting with qµ gives ενρq

ρ, which is polynomial in q hence is a contact
term.

The identity
qµενρq

ρ/q2 − qνεµρq
ρ/q2 = −εµν

can be checked by noting that both sides are antisymmetric in µ ↔ ν
and the (µ, ν) = (1, 2) component is −q1q1/q

2 − q2q2/q
2 = −1. We can

subtract it from the current two-point function (it is a contact term). Then
⟨jµj′ν⟩ = qνεµρq

ρ/q2. The roles of j and j′ were just swapped, so that now j
is exactly conserved.

(ii) In n = 2k dimensions, we have k + 1 momenta summing to q(0) +
· · · + q(k) = 0 by momentum conservation. Contracting the (k + 1)-point
function given in the exercise by q(i)µi to check conservation of the (i)-th
current, for i = 1, . . . , k, gives us an expression with two q(i) contracted with
the Levi–Civita tensor. By antisymmetry this vanishes. On the other hand,
contracting with q(0)µ0 gives the following contact term. This contact term
can be usefully written as (using momentum conservation)

εµ1...µkν1...νkq
(1)ν1 . . . q(k)νk

= −εµ1...µkν1...νk
(
q(0) + q(2) + · · ·+ q(k)

)ν1q(2)ν2 . . . q(k)νk
= −εµ1...µkν1...νkq

(0)ν1q(2)ν2 . . . q(k)νk

where the last step uses that each term q(i) with i = 2, . . . , k in the sum
vanishes by antisymmetry of ε. We can eliminate this term in the conserva-
tion of j(0) by adding the contact term εµ1...µkµ0ν2...νkq

(2)ν2 . . . q(k)νk to the
correlator. This changes the correlator to〈

j(0)µ0 (q
(0))j(1)µ1 (q

(1)) . . . j(k)µk
(q(k))

〉
= εµ1...µkρν2...νkq

(2)ν2 . . . q(k)νk
(
q(1)ρq(0)µ0 /q

(0)2 + δρµ0

)
.

This choice obeys exact conservation of j(i) for i ̸= 1, but j(1) is not conserved:
contracting with q(1)µ1 eliminates the first term by antisymmetry of ε and
yields the contact term εµ1...µkµ0ν2...νkq

(1)µ1q(2)ν2 . . . q(k)νk . This is the same
type of failure as before, with j(0) and j(1) interchanged. It would be good to
see if the new correlator ⟨j(0)j(1) . . .⟩ that we wrote matches on the nose the
image of the original correlator under j(0) ↔ j(1). It is a lot of bookkeeping.

(iii) When expanding ⟨∂µj(0)µ ⟩ in powers of the backgrounds A(i), we have
to worry about all the low-point correlators involving ∂µj

(0)
µ together with
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any number of currents. It’s not obvious why the first term that matters is
the (k + 1)-point function in the exercise, but the reader can try thinking
about it. At the end of the day, we get

⟨∂µj(0)µ (x)⟩A =

∫
d2kyAµ1(y(1)) . . . Aµk(y(k))⟨∂µj(0)µ (x)j(1)µ1 (y

(1)) . . . j(k)µk
(y(k))⟩A+lower.

The correlator is purely contact terms, as we just saw, involving antisym-
metrized q(i), namely position derivatives, and delta functions at y(i) = x.
We get

⟨∂µj(0)µ (x)⟩A =
√
−1

?
εµ1...µkν1...νk∂

ν1Aµ1(y(1)) . . . ∂νkAµk(y(k)) + lower.

Up to a phase and some factors of 2 this is F (1) ∧ · · · ∧ F (k).
Exercise 6. Switch to 4d. Left-handed fermions of the Standard Model transform

in (three generations of) (1,2)c1 + (1,1)c2 + (3,2)c3 + (3,1)c4 + (3,1)c5
under the gauge symmetry SU(3)×SU(2)×U(1), where the notation (a,b)c
denotes the tensor product of a representation of SU(3) of dimension a, of
SU(2) of dimension b, and of a charge c representation of U(1). Denoting
generators of the gauge group by tα, the gauge anomaly for any triplet of
generators tα, tβ, tγ can be calculated by a triangle Feynman diagram, and is
proportional to ∑

fermion representation R
TrR(tαtβtγ + tαtγtβ).

Check that the anomalies involving SU(3) and SU(2) generators vanish.
Check that the remaining gauge-anomaly cancellations (together with the
gauge-gravitational anomaly 2c1+ c2+6c3+3c4+3c5 = 0) only allow for two
possible hypercharge assignments up to scaling. One of them is the Standard
Model answer c1 = 1/2, c2 = −1, c3 = −1/6, c4 = 2/3, c5 = −1/3.

Answer With only SU(3) and SU(2) generators, we have either two generators tα, tβ
from one group and one generator tγ from the other, in which case the
trace vanishes because Tr(tαtβtγ) = Tr(tαtβ)Tr(tγ) = 0 since Tr(tγ) = 0
as the matrices are traceless. So we only need to worry about SU(3)3 and
SU(2)3 anomaly cancellation. Fermions that do not transform under the
given group cannot contribute to the anomaly since tα simply vanishes in that
representation. So for SU(3)3 we only get contributions from 2× 3+ 2× 3,
which vanishes because tα in a representation and its dual are conjugate
transpose of each other. Same story for SU(2)3, together with 2 ≃ 2.

For the mixed anomalies involving U(1), the same argument as above
shows that we cannot have a single SU(3) or SU(2). So the anomalies

8



to consider are U(1) × SU(3)2 and U(1) × SU(2)2 and U(1)3. In the first
two cases the traces factorize as Trc(tα)Tra(tβtγ) or similar. Now 3 and 3
contribute the same since the trace is quadratic in SU(3) generators, and
similarly 2 contributes non-trivially for the U(1)× SU(2)2 anomaly. We get
three equations

2c3 + c4 + c5 = 0, c1 + 3c3 = 0, 2c31 + c32 + 6c33 + 3c34 + 3c35 = 0,

in addition to the U(1)× (gravity)2 anomaly. For that anomaly all matter
contributes the same to the gravity part so we just the total U(1) charge of
all fermions:

2c1 + c2 + 6c3 + 3c4 + 3c5 = 0.

We solve the three linear equations and get c2 = −2c1 = 6c3 and c5 =
−c4 − 2c3. Plugging into the cubic equation gives

0 = 2(−3c3)
3 + (6c3)

3 + 6c33 + 3c34 + 3(−c4 − 2c3)
3 = 3

(
56c33 + c34 + (−c4 − 2c3)

3
)

= 18c3(2c3 − c4)(4c3 + c4),

thus three solutions. The c4 = 2c3 and c4 = −4c3 solutions are the same up
to swapping c4 ↔ c5. They give the Standard Model solution up to a suitable
normalization of the hypercharge. The c3 = 0 solution gives c1 = c2 = c3 = 0
and c5 = −c4. (This amounts to the Cartan subgroup of an isospin symmetry
acting on right-handed quarks I think.)
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Answer sheet Dumitrescu Lecture 1.

Exercise 7 (Abelian Duality in Diverse Dimensions). Much intuition about
phases and transitions can be gleaned from mean-field theory. Let us consider
the mean-field (i.e. semiclassical) dynamics of a real scalar field ϕ with a Z2

Ising symmetry. Since we are working at leading order in the semiclassical
expansion, we just minimize the potential and ignore loop corrections. Thus
the discussion applies in any spacetime dimension D. (Whether or not this
is a good description depends on D.)

• Analyze the vacuum structure as a function of the mass m2 ∈ R given a
quartic potential of the form

V (ϕ) = m2ϕ2 + λ4ϕ
4, λ4 > 0.

In particular discuss the order of the transition at m2 = 0. (In applications to
the classical, finite-temperature Ising model m2 ∼ T − Tc, but the discussion
also applies to quantum phase transitions at zero temperature in the Ising
universality class, in which case m2 is some coupling in the Hamiltonian.)

• Show that the transition can be made 1st order by breaking the Z2 symmetry
via a linear perturbation ∆V = hϕ. In the Ising model h ∈ R is an external
magnetic field. Sketch the phase diagram as a function of m2, h. Argue that
generically the only way for a line of 1st order phase transition to genuinely
end (rather than turn into some other lines(s) of transitions) is in a 2nd order
point.

• Consider the Ising model with Z2 symmetry and a sextic potential, V (ϕ) =
m2ϕ2+λ4ϕ

4+λ6ϕ
6. Imagine that λ6 > 0, so that the potential is stable, but

that m2, λ4 ∈ R can have either sign. Analyze the phase diagram and show
that the sign of λ4 controls the order of the phase transition as we dial m2.
The point m2 = λ4 = 0 at which the order of the phase transition changes is
called a multi-critical point. Here it is also called a tri-critical point since
we are dialing two parameters (rather than the single parameter to reach a
generic critical point). Is the tri-critical point described by the same physics
as the line of second-order Ising transitions at λ4 > 0?

• The previous point shows that a first order line can change into a second
order line at a multi-critical point. Are there other possible behaviors for
a 1st order line other than this and ending in a second order point? Hint:
think of the phase diagram of water.
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m2 < 0 m2 = 0 m2 > 0

ϕ

V (ϕ)

ϕ

V (ϕ)

ϕ

V (ϕ)

ϕ

V ′(ϕ)

ϕ

V ′(ϕ)

ϕ

V ′(ϕ)

Figure 1: Depiction of V (ϕ) = m2ϕ2+λ4ϕ
4 and V ′(ϕ) for various signs of m2.

Minima are indicated by black dots on the plot of V .

Answer (i) For λ4 > 0 the potential V (ϕ) = m2ϕ2 +λ4ϕ
4 is positive at infinity. It has

extrema at V ′(ϕ) = (2m2 + 4λ4ϕ
2)ϕ = 0. For m2 ≥ 0 the only real solution

is ϕ = 0; it is a minimum since V (0) = 0 and V (ϕ) > 0 for ϕ ̸= 0. For
m2 < 0 there are three solutions ϕ = 0 and ϕ = ±

√
−m2/(2λ4). One easily

checks that ϕ = 0 is a local maximum and the other two are local minima.
These local minima are degenerate (have the same value of V ) by ϕ → −ϕ
symmetry. See Figure 1 ....second-order phase transition....

(ii) For V = hϕ + m2ϕ2 + λ4ϕ
4 the condition for an extremum is for

V ′(ϕ) = h+ 2m2ϕ+ 4λ4ϕ
3 to vanish. For m2 ≥ 0 this goes monotonically

from −∞ to +∞ so V has a unique minimum; there is a unique ground state.
For m2 < 0 the cubic V ′(ϕ) can have one or three roots, corresponding to a
minimum, or two local minima and a maximum, as depicted in Figure 2. To
understand the phase diagram we must focus on the global minimum. For
h = 0 and m2 < 0 we had two degenerate minima. For 0 < h < h1 the local
minima have different values of V (ϕ). For h = h1 the local maximum merges
with one of the local minima, destabilizing it. Inevitably, the other local
minimum is lower than that local maximum, so this transition at h1 does
not concern the global minimum. The resulting phase diagram is depicted in
Figure 3.

For a general potential V (ϕ), consider a first-order phase transition,
namely a pair of local minima whose energy difference goes from negative
to positive across the transition. The minima are degenerate at the phase
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h = 0 0 < h < h1 h = h1 h > h1

ϕ

V (ϕ)

ϕ

V (ϕ)

ϕ

V (ϕ)

ϕ

V (ϕ)

ϕ

V ′(ϕ)

ϕ

V ′(ϕ)

ϕ

V ′(ϕ)

ϕ

V ′(ϕ)

Figure 2: Depiction of V (ϕ) = hϕ +m2ϕ2 + λ4ϕ
4 for m2 < 0 and varying

values of h. We only plot for h ≥ 0 due to the h → −h and ϕ → −ϕ invariance.
The cross-over value h1 beyond which one of the local minima destabilizes is
h1 =

√
−8m6/(27λ4) (value where the discriminant of V ′ vanishes).

m2

h

first order

h = h1(m2)

Figure 3: Phase diagram for V (ϕ) = hϕ + m2ϕ2 + λ4ϕ
4. The only phase

transition is along h = 0 and m2 < 0. The dotted lines (where a sub-leading
local minimum disappears) are just drawn for reference; they do not affect
the low-energy physics. Dashed lines are just the coordinate axes.
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transition itself. As we move along (not across!) the phase transition
(remaining at the phase transition itself), the minima remain degenerate.
The situation can only simplify if somehow the minima merge. But this
means that the potential (minus the energy of these minima) has a pair
of double zeros that merge, hence a quadruple zero. Such a transition is
second-order. Alternatively the local minima can stop being global minima:
this happens if some other minimum goes from larger energy to the same
energy as them, which would then be some other first-order phase transition
line. In other words, a first-order phase transition line can either end at a
second-order phase transition or when it intersects with some other first-order
phase transition line, where the situation is more complicated.

(iii) Now V (ϕ) = Q(ϕ2) with Q(X) = m2X + λ4X
2 + λ6X

3. What
matters is the global minimum (and degeneracy thereof) of Q(X) for X ∈
[0,+∞). Such a minimum lies either at the end-point X = 0 of the interval
(not at X → +∞ since λ6 > 0), or at a point with vanishing Q′(X) =
m2 + 2λ4X + 3λ6X

2, namely X = X± with

X± :=
1

3λ6

(
−λ4 ±

√
λ2
4 − 3λ6m2

)
,

provided these are real and positive. This leads to a case distinction. Let me
be sloppy about which of the following inequalities should be strict.

• If m2 < 0 then X− < 0 < X+ so that on the interval [0,+∞) the
polynomial Q is decreasing then increasing. Thus, the potential V has
a local maximum at ϕ = 0 and a Z2 pair of global minima at ±

√
X+.

• If m2 > min(0, λ4)
2/(3λ6) then Q′(X) > 0 for X > 0, hence V has a

unique minimum at ϕ = 0.

• If λ4 < 0 and 0 < m2 < λ2
4/(3λ6) then the two roots X± of Q′ are

positive, so that on the interval [0,+∞) the polynomial Q is increasing,
decreasing, and increasing. The potential V has three local minima at
ϕ = 0 and ϕ = ±

√
X+, and the key question is which of V (0) = 0 and

V (±
√
X+) is the smallest. We evaluate

V (±
√
X+) = Q(X+) = Q(X+)−X+Q

′(X+)

= (1/3)X2
+

(
−λ4 − 2

√
λ2
4 − 3λ6m2

)
.

The parenthesized term has the following sign (in the first step we
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multiply by something positive since λ4 < 0)

sgn
(
−λ4 − 2

√
λ2
4 − 3λ6m2

)
= sgn

∏
±

(
−λ4 ± 2

√
λ2
4 − 3λ6m2

)
= sgn 3

(
4λ6m

2 − λ2
4

)
so the transition is actually at m2 = λ2

4/(4λ
2
6).

In summary, if m2 > min(0, λ4)
2/(4λ6) then V has a global minimum at

ϕ = 0, and if m2 < min(0, λ4)
2/(4λ6) then V has a pair of global minima at

ϕ = ±
√
X+.

m2

λ4

second
order

first order

multi
-cri

tica
l

ϕ

V (ϕ)

ϕ

V (ϕ)

ϕ

V (ϕ)

ϕ

V (ϕ)

ϕ

V (ϕ)

ϕ

V (ϕ)
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