IHES Problems

Clay Córdova

For details and solutions to the following problems see 2011.09600.

1) Consider an axion a, a periodic scalar field with identification $a \sim a+2 \pi f$ where f is a constant. We work in four spacetime dimensions. The action is assumed to be free:

$$
\begin{equation*}
S=\frac{1}{2} \int d a \wedge * d a \tag{1}
\end{equation*}
$$

- Identify the charged defects under the $U(1)^{(0)}$ and $U(1)^{(2)}$ symmetries.
- Write the coupling to background fields $A^{(1)}$ and $A^{(3)}$.
- Show that these symmetries have a mixed anomaly.

2) Now couple the axion to a dynamical $U(1)$ gauge field:

$$
\begin{equation*}
S=\frac{1}{2} \int d a \wedge * d a+\frac{1}{2 g^{2}} \int F \wedge * F-\frac{i K}{8 \pi^{2} f} \int a F \wedge F, \tag{2}
\end{equation*}
$$

where g is the gauge coupling and K is a coupling constant.

- Show that K is quantized to be an integer.
- Construct the symmetry defect for the unbroken $\mathbb{Z}_{K}^{(0)}$.
- Construct the symmetry defect for the unbroken electric symmetry $\mathbb{Z}_{K}^{(1)}$.

3) Consider the Chern-Simons theory $U(1)_{k}$ with action:

$$
\begin{equation*}
S=\frac{i k}{4 \pi} \int b \wedge d b . \tag{3}
\end{equation*}
$$

For simplicity take k to be even below.

- Show that the Wilson lines define a discrete one-form symmetry $\mathbb{Z}_{k}^{(1)}$
- Write the coupling of this one-form symmetry to an appropriate background gauge field.
- Deduce the anomaly of this one-form symmetry and write the inflow action.

4) Exercises on gauging and duality:

- Consider a d-dimensional QFT T which is invariant under gauging a $\mathbb{Z}_{k}^{(p)}$ symmetry. (Here d denotes the spacetime dimension). For which d and p is this possible?
- Working in $\mathrm{d}=2$, with a $\mathbb{Z}_{k}^{(0)}$ symmetry. Write the action for T with $\mathbb{Z}_{k}^{(0)}$ gauged in a half-space $x \geq 0$. Assuming Dirichlet boundary conditions this defines a topological duality defect \mathcal{D}.
- Consider a situation where the theory is on an infinite cylinder $S^{1} \times \mathbb{R}$ with defects \mathcal{D} and \mathcal{D}^{\dagger} wrapped around the circle. Following the logic of the lecture the fusion $\mathcal{D} \times \mathcal{D}^{\dagger}$ can be viewed geometrically as the partition function of $\mathbb{Z}_{k}^{(0)}$ gauge theory in a cylinder $S^{1} \times I$ with Dirichlet boundary conditions at the ends of the interval. Evaluate the partition function to show that:

$$
\begin{equation*}
\mathcal{D} \times \mathcal{D}^{\dagger}=\sum_{i=0}^{k-1} L^{i}, \tag{4}
\end{equation*}
$$

where L is the invertible symmetry line generating the $\mathbb{Z}_{k}^{(0)}$ symmetry. (Wrapped around S^{1}.)

