
Lectures on Generalized Symmetries
and Phases of Gauge Theory

Thomas T. Dumitrescu

June 26, 2024

[ROUGH DRAFT VERSION: Please report typos/errors/misconceptions to

tdumitrescu@physics.ucla.edu]

Lectures at IHES Summer School (June/July 2024) on Symmetries and Anomalies

xxx



Contents

1. Exercise Sheet (45 min/lecture) 2

1.1. Lecture 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1. Exercise: Mean Field Ising Model . . . . . . . . . . . . . . . . . . . . 2

1.1.2. Exercise: Abelian Duality in Diverse Dimensions . . . . . . . . . . . . 3

1.2. Lecture 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1. Derivation of BF Theory . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2. Gauging Subgroups of U(1)(1)
e,m. . . . . . . . . . . . . . . . . . . . . . 4

1.2.3. Gravitational 2-Group . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. References 7

3. Symmetries, Phases, Landau Paradigm 7

4. The O(2) Model 9

5. Ordinary (0-Form) Symmetry Basics 11

6. Free Maxwell Theory 13

6.1. Maxwell Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.2. Electric-Magnetic Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.3. 1-form Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.4. Wilson and ’t Hooft Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.5. Coulomb Phase as Spontaneous 1-Form Symmetry Breaking . . . . . . . . . 20

6.6. Background Fields and Anomalies . . . . . . . . . . . . . . . . . . . . . . . . 23

6.7. Comments on Flat Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . 27

7. The Abelian Higgs Model 28

7.1. 1-Form Symmetry Breaking by a Charged Scalar . . . . . . . . . . . . . . . . 28

7.2. Phases of the Abelian Higgs Model . . . . . . . . . . . . . . . . . . . . . . . 30

7.2.1. Coulomb Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2.2. Higgs Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.3. Duality, Monopoles, and Confinement . . . . . . . . . . . . . . . . . . . . . . 35

7.4. Higgs-Confinement Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1



8. Multi-Flavor QED 36

8.1. An Overly Naive Guess at the Symmetry . . . . . . . . . . . . . . . . . . . . 38

8.2. 2-Group Global Symmetry from Triangle Anomalies . . . . . . . . . . . . . . 39

9. Yang-Mills Theory and QCD 41

9.1. 1-Form Symmetries in Pure SU(N) Gauge Theory . . . . . . . . . . . . . . . 41

9.2. From YM to QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10.QCD Has No 1-form Symmetries; Higgs/Confinement Continuity 46

1 Exercise Sheet (45 min/lecture)

1.1 Lecture 1

1.1.1 Exercise: Mean Field Ising Model

Much intuition about phases and transitions can be gleaned from mean-field theory. Let

us consider the mean-field (i.e. semiclassical) dynamics of a real scalar field φ with a Z2

Ising symmetry. Since we are working at leading order in the semiclassical expansion, we

just minimize the potential and ignore loop corrections. Thus the discussion applies in any

spacetime dimension D. (Whether or not this is a good description depends on D.)

• Analyze the vacuum structure as a function of the massm2 ∈ R given a quartic potential

of the form

V (φ) = m2φ2 + λ4φ
4, λ4 > 0 . (1.1)

In particular discuss the order of the transition at m2 = 0. (In applications to the

classical, finite-temperature Ising model m2 ∼ T −Tc, but the discussion also applies to

quantum phase transitions at zero temperature in the Ising universality class, in which

case m2 is some coupling in the Hamiltonian.)

• Show that the transition can be made 1st order by breaking the Z2 symmetry via a

linear perturbation ∆V = hφ. In the Ising model h ∈ R is an external magnetic field.

Sketch the phase diagram as a function of m2, h. Argue that generically the only way

for a line of 1st order phase transition to genuinely end (rather than turn into some

other lines(s) of transitions) is in a 2nd order point.
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• Consider the Ising model with Z2 symmetry and a sextic potential,

V (φ) = m2φ2 + λ4φ
4 + λ6φ

6 . (1.2)

Imagine that λ6 > 0, so that the potential is stable, but that m2, λ4 ∈ R can have

either sign. Analyze the phase diagram and show that the sign of λ4 controls the order

of the phase transition as we dial m2. The point m2 = λ4 = 0 at which the order of

the phase transition changes is called a multi-critical point. Here it is also called a

tri-critical point since we are dialing two parameters (rather than the single parameter

to reach a generic critical point). Is the tri-critical point described by the same physics

as the line of second-order Ising transitions at λ4 > 0?

• The previous point shows that a first order line can change into a second order line at

a multi-critical point. Are there other possible behaviors for a 1st order line other than

this and ending in a second order point? Hint: think of the phase diagram of water.

1.1.2 Exercise: Abelian Duality in Diverse Dimensions

Generalize the derivation of electric-magnetic duality in D = 4 reviewed above to the

following settings. For low D these occur in many QFT applications . The case D > 4 is

interesting in the context of string theory, supergravity, holography etc.

• Start with ordinary U(1) Maxwell theory with field strength f (2) = da(1) as above, but

now work in D spacetime dimensions (with D ≥ 3). Carry out the duality explicitly and

show that the dual gauge field ã(D−3) that must be introduced as a Lagrange multiplier

is a (D − 3)-form gauge field with (D − 2)-form field strength f̃ (D−2) = dã(D−3). Spell

out explicitly the gauge transformations and flux quantization rule for ã(D−3). Hint: if

the general case is confusing, first do D = 3.

• Given a compact boson χ ∼ χ + 2π in any dimension D, show how to dualize it into

a D− 1-form gauge field. Hint: this case overlaps with the D = 3 limit of the pervious

point. In D ≥ 3 such a a compact boson is necessarily a Nambu-Goldstone boson for its

broken shift symmetry, while in D = 2 the compact boson is not a Goldstone boson (in

agreement with the Coleman-Mermin-Wagner theorem on the absence of spontaneously

continuous symmetry breaking in 2d).

• Both Maxwell theory and a compact boson are examples of a p-form gauge field. In

general, a p-form gauge field a(p) has field strenght f (p+1) = da(p) and gauge transfor-

3



mations

a(p) → a(p) + dλ(p−1) . (1.3)

Here λ(p−1) is itself a (p − 1)-form gauge field (defined recursively in p). Thus λ(p−1)

has integer fluxes on (p− 1)-cycles,

1

2π

∫
Σp−1

λ(p−1) ∈ Z , (1.4)

and applying the Dirac argument in this case we learn that f (p+1) has integer fluxes

on (p+ 1)-cycles,
1

2π

∫
Σp+1

f (p+1) ∈ Z . (1.5)

We take the action to be of generalized Maxwell type:

S =
1

2e2

∫
MD

f (p+1) ∧ ∗f (p+1) . (1.6)

What is the mass dimension of the coupling e2? Show that a(p) can be dualized into

a (D − p− 2)-form gauge field ã(D−p−2) with dual field strength f̃ (D−p−1) = dã(D−p−2).

1.2 Lecture 2

1.2.1 Derivation of BF Theory

Start with the Abelian Higgs model deep in the Higgs phase (m2 � 0), where both the

vector boson and the radial mode ρ of the Higgs field h = ρeiχ are very massive. The only

light mode is the compact scalar χ ∼ χ+2π. As in the problems for Lecture 1, apply Abelian

duality to χ to replace it by a dynamical 2-form gauge field b(2). By throwing out all the

massive modes, derive the description of the low-energy Zqe gauge theory as a BF theory

that was introduced in lecture.

1.2.2 Gauging Subgroups of U(1)(1)
e,m.

A useful application of the BF description of Zqe gauge theory that it allows us perform

various discrete gauging in a simple way. Work through the following steps to see how this

is done:

Let us first consider the following question: what happens if we gauge a Z(1)
n ⊂ U(1)(1)

m

in the AHM (Note that this is anomaly free.)? To do this we simply promote B(2)
m → b(2)

m to
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be dynamical and add a BF term with coefficient n and a new 1-form gauge field c(1),

S ⊃ i

2π

∫
M4

b(2)
m ∧ f (2) +

in

2π

∫
M4

b(2)
m ∧ dc(1) . (1.7)

Integrating out b(2) we find that

f (2) = ndc(1) . (1.8)

This shows that the fluxes of f (2) are valued in 2πnZ, rather then 2πZ. It is more convenient

to solve for a(1) = nc(1), up to gauge transformations, so that the action becomes

S[c(1), h] =
n2

2e2

∫
M4

dc(1) ∧ ∗dc(1) +

∫
M4

(|Dh|2 + V (|h|)) , Dµ = ∂µ − inqcµ . (1.9)

Thus we see there are two effects:

• the gauge coupling changes e→ e
n
.

• The charge of the scalar h changes: q → nq. As a result the electric 1-form symmetry

enhances to Z(1)
nq while the magnetic 1-form symmetry remains U(1)(1)

m .

Now let us consider the inverse process where we gauge the full Z(1)
qe

electric symmetry

(we could also do it for a subgroup). This is done by promoting B(2)
e → b(2)

e to be dynamical

and adding the BF term with coefficient qe,

iqe
2π

∫
M4

b(2)
e ∧ dc(1) . (1.10)

The path integral over the conventionally normalized U(1) gauge field c(1) restricts b(2)
e to be

a flat Zqe gauge field with holonomies in 2πZ
qe

. We can therefore write f (2) − b(2)
e = 1

qe
dk(1)

with k(1) a standard U(1) gauge field. We can then also replace qa(1) → k(1) in the covariant

derivative, leading to the action

S[k(1), h] =
1

2q2e2

∫
M4

dk(1) ∧ ∗dk(1) +

∫
M4

(|Dh|2 + V (|h|)) , Dµ = ∂µ − ikµ . (1.11)

Thus we have e→ qe and the charge of the scalar reduces from q to 1, resulting in a theory

with no electric 1-form symmetry, but with a magnetic 1-form symmetry. Thus this operation

is the exact inverse of the one described before.

There are several important lessons here:
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• We can multiply or divide the charge qe of h by an integer n by gauging a Z(1)
n subgroup

of U(1)(1)
m or Z(1)

qe
electric respectively. This allows us to relate different models of

interest.

• gauging a discrete symmetry (0-form or 1-form) commutes with RG flow. Equivalently,

discrete gauging does not alter the theory locally, only globally, and the RG flow is about

the local dynamics from UV to IR. A more sophisticated argument involves placing the

4d theory on the boundary of a 5d bulk TQFT and implementing the different discrete

gaugings via suitable topological boundary conditions in the 5d TQFT.

The commutativity wit the RG flow means we only have to determine the IR dynamics

for one model, e.g. for qe = 1. This model is completely Higgsed in the IR, with no

TQFT. There is no electric 1-form symmetry, and the magnetic U(1)(1)
m is unbroken. In

fact it is important that the IR also has no non-trivial SPT for the background field B(2)
m ,

since there is no gauge-invariant 4d action that one can write for such a 2-form gauge

field. Later we will encounter situations where there are non-trivial SPTs.

If we now gauge a Z(1)
q ⊂ U(1)(1)

m then in the UV we get the ABH model with a charge q

scalar, with Z(1)
q symmetry. In the IR, we take the fully gapped, trivial theory (no SPT

for B(2)
m , and gauge Z(1)

q there. This involves making B(2)
m dynamical and adding a BF

term with coefficient q. This precisely engineers the Zq TQFT that arises in the IR of

the charge-q AHM.

• The two gauging procedures above are inverse operations. Thus no essential informa-

tion is lost as we change the charge q, even though the size of the discrete electric

1-form symmetry changes. (Roughly, this is because the magnetic symmetry U(1)m is

infinite. In discrete cases the magnetic symmetry grows as the electric one shrinks.)

This is rather different from gauging continuous symmetry, which is a much more dra-

matic modification of a theory because it changes the local dynamics. One also loose

global symmetries (at least the global symmetry that was gauged and possibly more).

Sometimes one gains continuous ones (e.g. gauging U(1) symmetry of complex scalar

destroys U(1) global symmetry but leads to U(1)m 1-form symmetry.)

1.2.3 Gravitational 2-Group

Consider a triangle anomaly involving 2-Stress-tensors and one photon in an abelian

gauge theory. Argue that it leads to 2-group where U(1)(1)
m is extended by the Poincaré

symmetry. Find an example of a U(1) gauge theory with fermions ψi of charge qi that is
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gauge-anomaly-free but has a non-trivial mixed anomaly/2-group of this kind.

2 References

• Gaiotto, Kapustin, Seiberg, Willett : “Generalized Global Symmetries”

• McGreevy: “Generalized Symmetries in Condensed Matter” (Review)

• Cordova, Dumitrescu, Intriligator, Shao: “Snowmass White Paper: Generalized Sym-

metries in Quantum Field Theory and Beyond” (Review)

• Tong: “Lectures on Gauge Theory” (for lots of background on gauge theory and anoma-

lies for 0-form symmetries that I will not cover in detail here).

3 Symmetries, Phases, Landau Paradigm

Symmetries play an important role in physics. Broadly, we encounter two things com-

monly referred to as symmetries:

1. Global symmetries: These act non-trivially on something physical/observable,

e.g. rotations act on the position operator ~x in quantum mechanics. The Hamiltonian H

(equivalently Lagrangian) of the theory may or may not be rotationally symmetric,

depending on whether we allow symmetry-violating terms such as ~E ·~x (with a fixed c-

number background electric field ~E) in H. There is nothing wrong with breaking

rotational symmetry, but if it is preserved it has consequences: selection rules for

matrix elements, Hilbert space organizes into symmetry multiplets, etc.

Even approximate symmetries, where the breaking is suppressed by a small parameter,

are useful, e.g. they lead to approximate degeneracies/multiplets. Many examples in

atomic and nuclear physics. In particle physics, the proton (938 MeV) and the neutron

(940 MeV) have approximately the same mass, because they are related to an approxi-

mate isospin symmetry. The small mass difference comes from explicit isospin breaking

(up-down quark mass difference, electromagnetic contributions to the proton mass) and

is responsible for many important phenomena in nuclear physics (finely tuned).

Things get even more interesting if we do quantum mechanics with an infinite number

of degrees of freedom (i.e. QFT), in which case we can have things like spontaneous
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symmetry breaking, where the symmetry is there and has consequences, just not the

naive ones familiar from quantum mechanics.

Another things that happens in QFT is that there is a notion of locality in space and

time. This greatly enriches the notion of both operators/observables and symmetries,

e.g. we can have standard local operators/fields, e.g. a real scalar field φ(x = t, ~x),

which can be acted on by conventional global symmetries, e.g. φ → −φ. (In modern

parlance these are called zero-form symmetries.) But we can also have operators/defects

that live on higher-dimensional submanifolds (lines, surfaces, ...) of spacetime. Corre-

spondingly we have generalized symmetries that act on such extended operators. The

simplest such generalized symmetries are called higher-form symmetries (but there are

more exotic generalizations than that).

2. Gauge Symmetries: These appear as an useful – one might say essential – tool in

the construction/description of many theories of physical interest, e.g. it is essential

to describe the long-range electromagnetic force in nature in a way that is compatible

with unitarity (i.e. quantum mechanics) and locality (i.e. special relativity). They also

naturally arise in many condensed matter systems, where they are typically emergent.

Whenever the notion of a gauge symmetry is sensible, it refers to an exact redundancy

of the system we are trying to describe (i.e. we quotient by gauge transformations in

the Feynman path integral), not an actually physical symmetry acting on observables.

In fact the hallmark of a gauge symmetry is that it does not act on any physical

observables, which must all be gauge invariant!

The fact that gauge symmetries don’t act on anything makes it impossible to determine

“what the gauge group is” in the abstract. A notion of gauge group make sense in a

particular semi-classical limit, but it does not make sense for theories that are strongly

quantum mechanical and/or coupled. This fact underlines the rich set of gauge-theory

dualities that have emerged over the past decades in field theory, string theory, and

condensed matter physics. These dualities show that e.g. the same theory can be

described by gauge theories with different gauge groups, and some gauge theories

have dual descriptions that do not involve any gauge fields at all. (Simple example:

Chiral Lagrangian for Pions in QCD.)

So even though physically, we are interested in gauge theories, the tool that will help

us understand them better are the global (non-gauge) symmetries, roughly for two (related)

reasons:
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• Symmetries (and the long list of things they can do) are very rigid structures that can

often be tracked form weak to strong coupling. Thus they give insight into strongly

coupled physics even if the strong-coupling problem cannot be solved. (If it can be

that is very special, e.g. 2d Ising model, integrable models, typically in low dimensions,

though planar 4d N=4 SYM is an example in 4d).

• Symmetries characterize phases and phase transitions: Landau’s paradigm of symmetry

breaking.

Prototypical example: ising model (lattice), equivalently φ4 theory, with effective La-

grangian

L ∼ (∂φ)2 − V (φ) , V (φ) = m2φ2 + λφ4(λ > 0) . (3.1)

Note that there is a unitary, internal (i.e. non-spacetime) Z2 symmetry sending

Z2 : φ(x)→ −φ(x) . (3.2)

This is the spin-flip symmetry of the Ising model. Discuss phase diagram as function

of m2 ∈ R: two phases, one with unique vacua and Z2 unbroken. In that case Z2 acts

on φ and is realized “linearly” a la Wigner (selection rules etc), e.g. < φodd >= 0.

One with two vacua and spontaneously broken Z2 symmetry. Which vacuum we are

in depends on vev < φ >= ±v. Now the selection rules don’t apply (“non-linear

realization of symmetry”), but there is something else that results from the broken

symmetry: a finite-tension domain wall separating the two vacua. So the symmetry

has consequences even in the broken phase. Note that the regime with Z2 breaking and

with unbroken Z2 are inevitably separated by a phase transition: Landau paradigm.

Note that we cannot in general predict the order (could be 1st order or continuous),

but the fact that there is a transition is inescapable.

4 The O(2) Model

Before we move to our first gauge theory example, let us first revisit some basic facts

about the O(2) model.

The O(2) model in D spacetime dimensions is describe by a complex-valued scalar

field φ(x) with Lagrangian

L = ∂µφ∂
µφ− V (|φ|) , V (|φ|) = m2|φ|2 + λ|φ|4 , λ > 0 . (4.1)
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Here m2 ∈ R can be any real number, as in the Ising model.

What are the global symmetries of the model?

• There is a continuous U(1) flavor symmetry (aka a zero-form symmetry) under which φ

has charge Q = 1 and thus rotates by phases,

eiαQ : φ(x)→ eiαφ(x) . (4.2)

Noether’s theorem gives the associated conserved current:

jµ = iφ∂µφ− i∂µφφ . (4.3)

One useful consequence of this is that we can couple the theory to a background U(1)

gauge field (which is as of yet non-dynamical):

∆L = Aµjµ , ∂µ → Dµ = ∂µ − iqAµ . (4.4)

The coupling to background gauge fields for global symmetries will be a useful tool for

us, e.g. it allows us to talk about anomalies and SPTs.

• There is a Z2 charge-conjugation symmetry

C : φ(x)→ φ(x) . (4.5)

This is also a unitary zero-form symmetry. Together with U(1), this make the symmetry

O(2) = U(1) o C . (4.6)

Hence the name O(2) model.

• There is the full Poincare symmetry, associated with a conserved symmetric stress-

energy tensor Tµν , and also discrete spacetime symmetries: parity (unitary) and time-

reversal (anti-unitary). Will have more to say about them in the future. Note that

the existence of Tµν allows us to couple the theory to a non-dynamical background

metric gµν , and in fact to study it on arbitrary spacetime manifolds (Euclidean or

Lorentzian). This is a very useful tool.

Sketch the phase diagram as a function of m2:
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• When m2 > 0 there is a unique vacuum, all the symmetries are unbroken and linearly

realized. the massive φ particle transforms in a representation of these. The conserved

charge Q =
∫
d3xj0 is a well-defined operator that annihilates the vacuum and generates

the unbroken U(1) symmetry.

• When m2 < 0 is sufficiently negative, then < φ >= v ∈ C∗ gets a vev, which spon-

taneously breaks the U(1) symmetry to nothing, leading to a circle of vacua and a

massless Nambu-Goldstone Boson (NBG) χ. At long distances,

φ(x) ' veiχ(x) . (4.7)

This means that the current flows to jµ ∼ v∂µχ, so that acting with the current on the

vacuum produces a single, well-defined NGB state (note a 2-particle or multi-particle

state). This is a hallmark of broken currents for internal/flavor symmetries. Note that

the NBG χ ∼ χ+2π is a compact scalar field. This follows from the fact that the broken

symmetry is U(1), which is parameterized by a compact angle. The compactness of χ

will have important consequences for us later.

Note that integrating the charge-density j0 over a spatial slice gives the conserved

charge Q, but in the symmetry breaking phase this charge correspond to a goldstone

bosons of exactly zero-momentum/frequency, which is not a normalizable state in the

Hilbert space. Thus the charge operator Q does not exist in the broken phase. How-

ever commutators of Q with other operators, as well as the current jµ exist and are

interesting objects to analyze (“current algebra”).

Again we learn that the m2 = ±∞ phases must be separated by a transition, since one

breaks the U(1) symmetry while the other does not.

5 Ordinary (0-Form) Symmetry Basics

The most familiar/ubiquitous kind is an ordinary (0-form) symmetry:

• Continuous flavor symmetry with conserved Noether current jµ leading to codimension-

1 charge defects. The simplest version of such a defect is the standard conserved

charge Q obtained by integrating the current over a fixed time-slice:

Q =

∫
d3x j0 . (5.1)
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Here current conservation implies that [Q,H] ∼ Q̇ = 0. A useful generalization appears

in Euclidean signature, where we can integrate the normal component of the current

over an arbitrary closed three-manifolds Σ3,

Q[Σ3] =

∫
Σ3

j⊥ . (5.2)

Now current conservation and Gauss’ theorem implies that Q[Σ3] is independent of Σ3,

i.e. we can deform Σ3 by a small amount, and as long as we do not encounter other

operators/defects this does not change the charge. Thus Q[Σ3] is topological, in the

sense that only the topology of Σ3 matters.

Using the charge Q[Σ3] one can defined an exponentiated topological defect for every

element g = eiα ∈ U(1) of the symmetry group:

U(g,Σ3) = exp (iαQ[Σ3]) . (5.3)

Note that U(g,Σ3)U(g′,Σ3) = U(gg′,Σ3) so that these defects obey the group law.

Here we are considering an abelian symmetry for simplicity, but the statement is true

in general.

If a local operator O(x) carries charge q ∈ Z under the symmetry, this charge can be

detected in various ways:

– By evaluating the commutator [Q,O(x)] = iqO(x) in Lorentzian signature.

– By encircling O(x) with the topological surface operator Q[Σ3] in Euclidean sig-

nature. If Σ3 links the point x where O resides exactly once (e.g. take Σ3 to be a

standard three-sphere with center at x) then

Q[Σ3]O(x) = qO(x) . (5.4)

– By studying the contact term in the OPE ∂µjµ(x)O(0) ∼ qδ(x)O(0), which in

turn integrates up to a non-contact term in the OPE jµ(x)O(x) ∼ q

x
d−1O(0) (here

I am being sloppy about the tensor structure and am only indicating the scaling

with powers of x).

If we act with a local operator O(x) (suitably smeared) on the vacuum |0〉, and we

assume that Q|0〉 = 0 with well-defined Q, so that the symmetry is not spontaneously

broken, then we create a normalizable state of charge q living in the Hilbert space of the
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theory. To detect this charge we must act with Q on the state, i.e. we must integrate

over an entire time-slice, since charge can in principle reside at every point in space.

In simple cases the state O|0〉 will be a single-particle state. If we think of the 1d

worldline of the particle so created, then the spatial integral needed to evaluate Q cuts

it transversely.

• Continuous spacetime symmetry with conserved stress tensor Tµν .

• Discrete symmetries (no currents, but codimension-1 defects)

Given the utility of 0-form symmetries, there have been many attempts at generalizations:

• Higher spin currents j(µνρ··· ), generalizing jµ, T(µν). In d > 2 spacetime dimensions this

is highly constrained by the Coleman-Mandula theorem. Interesting exceptions: CFTs

and SUSY theories.

• Higher-form symmetries. These do not act on local operators/particles but rather on

line defects/strings (evade Coleman-Mandula theorem). This is why they naturally and

frequently arise in gauge theories!

• There are also non-invertible/categoricaal versions of 0-form and higher form symme-

tries (other lectures). I will focus on the invertible case: higher-form and higher-group

symmetries – in particular the first non-trivial case, i.e. 1-form and 2-group symmetries.

Goal: study 4d gauge theory examples of increasing complexity through the lens of

these global symmetries and see what we can learn.

6 Free Maxwell Theory

Prototypical example of gauge theory with 1-form symmetries.

Many close analogies with the compact (c = 1) boson in 2d. Roughly, 4d Maxwell theory is

to 1-form symmetries as the 2d compact boson is to 0-form symmetries.

We will work in Euclidean signature. Therefore without specific mention to the contrary,

we will consider Euclidean path integrals with suitable insertions/defects along points, lines,

surfaces etc., without thinking about states and operators in Hilbert space. Nevertheless

we will be sloppy and refer to such insertions as operators. This sloppiness is standard in

the context of Lorentz-invariant theories, because it does not cause any trouble there: every

operator can be a defect and vice versa, depending on how we orient it in spacetime.
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6.1 Maxwell Basics

The action in flat spacetime M4 = R4 is

S[a(1)] =
1

2e2

∫
M4

f (2) ∧ ∗f (2) =
1

4e2

∫
d4x fµνfµν . (6.1)

Comments:

• Superscript (p) denotes a p-form, e.g. gauge field is a 1-form,

a(1) = aµdx
µ , (6.2)

and its field strength is a 2-form,

f (2) = da(1) , fµν = ∂µaν − ∂νaµ . (6.3)

Theen f (2) is closed (Bianchi identity),

df (2) = 0 . (6.4)

• The other two Maxwell equations come from varying a(1),

d ∗ f (2) = 0 . (6.5)

• Gauge “symmetry” – more precisely gauge redundancy (does not act on any physical

quantities),

a(1) → a(1) + dλ , λ ∼ λ+ 2π . (6.6)

Here λ(x) is a circle-valued gauge parameter (function of spacetime). With these gauge

transformations, aµ is a conventional U(1) gauge field (or connection). The standard

Dirac argument links the periodicity of λ to the allowed fluxes:

1

2π

∫
Σ2

f (2) ∈ Z . (6.7)

Here Σ2 is any closed, oriented surface (e.g. S2). In the path integral we integrate over

distinct gauge orbits of aµ, i.e. we divide out by gauge transformations.

• We cannot rescale aµ without modifying the periodicity of λ or the integrality of the
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fluxes. This means that the gauge coupling e is meaningful even in the free theory

(c.f. radius of the compact boson in 2d).

• 0-form symmetries of Maxwell theory:

– Spactime translations and SO(4) rotations (bosonic theory, no local operators in

spinor representations of Spin(4)). Continuous symmetries with conserved cur-

rent Tµν .

– Z2 charge conjugation

C : aµ → −aµ . (6.8)

– In Lorentzian signature there are parity P (unitary) and time-reversal T (anti-

unitary) symmetries. By the CPT theorem these are not independent. This is

because in Euclidean signature, both amount to a reflection symmetry R, which

enhances SO(4) to O(4).

• We can couple Maxwell theory to any Riemannian metric gµν and take M4 to be any

(sufficiently smooth) 4-manifold. If we only use SO(4) symmetry then M4 must be

oriented. Using the O(4) symmetry of Maxwell theory (which involves parity/time-

reversal) we can even generalize to non-orientable manifolds. One should think of M4

and gµν as background fields for the spacetime symmetries, just as bundles and connec-

tions are background fields for internal symmetries. Unless stated otherwise we assume

that M4 is oriented.

6.2 Electric-Magnetic Duality

Free Maxwell theory has many equivalent presentations. An important/useful one is

related to the original presentation by electric-magnetic duality or S-duality (analogous to

R→ 1
R

duality of the compact boson). To derive it we start with1

S =
1

2e2

∫
M4

f (2) ∧ ∗f (2) , (6.9)

but instead of trivilaizing the constraints

df (2) = 0 ,
1

2π

∫
Σ2

f (2) ∈ Z , (6.10)

1 Equivalently, we can start with a formulation of the theory (e.g. the one due to Sen and Schwarz) in
which duality is manifest. This is analogous to the Luttinger liquid presentation of the compact boson in 2d.
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by writing f (2) = da(1) in terms of a U(1) connection, we impose these constraints (in an

equally local way) using a Lagrange multiplier ã(1),

S[f (2), ã(1)] =
1

2e2

∫
M4

f (2) ∧ ∗f (2) +
i

2π

∫
M4

dã(1) ∧ f (2) . (6.11)

Now f (2) is an unconstrained 2-form, while ã(1) is the Lagrange multiplier field, which is itself

a conventionally normalized U(1) connection,

ã(1) → ã(1) + dλ̃, λ̃ ∼ λ̃+ 2π ,
1

2π

∫
Σ2

f̃ (2) ∈ Z . (6.12)

The path integral over ã(1) can be done exactly: it is a path-integral Fourier representation

for a δ-function that sets df (2) = 0 (this comes from the ã(1) equation of motion, which

are enforced by path integrating over its Gaussian fluctuations in every flux sector) and

restricts the fluxes of f (2) to lie in 2πZ (this comes from summing over all possible fluxes

of ã(1)). A simple example to keep in mind is M4 = S2 × S2. There the ã(1) flux sum over

one S2 enforces f (2) flux quantization on the other (Poincaré dual) sphere, but it works on

any (oriented) four-manifold. Thus integrating over ã(1) leads to the original presentation of

Maxwell theory.

The magnetic dual description is obtained by integrating out the unconstrained f (2),

i

e2 ∗ f
(2) =

1

2π
f̃ (2) , f̃ (2) = dã(1) . (6.13)

The regrettable but essential factor of i comes about because we are in Euclidean signature,

where electric fields are naturally imaginary and magnetic fields naturally real. It is absent

in Lorentzian signature, where the same equation reads ?Lf
(2) ∼ f̃ (2), which implies that the

conventional, real, Lorentzian electromagnetic fields are related via

Ei ∼ B̃i , Bi ∼ −Ẽi . (6.14)

We can now eliminate f (2) from the action to find

S[ã(1)] =
1

2ẽ 2

∫
f̃ (2) ∧ ∗f̃ (2) , ẽ 2 =

4π2

e2 . (6.15)

For generic values of e the S-duality operation is a change of presentation, not a symmetry.

At the self-dual value e2 = ẽ 2 = 2π the model is invariant under S, which is therefore a
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symmetry. It is a 0-form symmetry that acts on the local field-strength operator,2

S : f (2) → f̃ (2) = i ∗ f (2) . (6.16)

Note that it is not a Z2 symmetry, but rather a Z4 symmetry, since S2(f (2)) = − ∗2 f (2) =

−f (2). In particular, S2 = C. (Similarly, R → 1
R

duality of the compact boson is also a Z4

symmetry at the self-dual radius.)

6.3 1-form Symmetries

A continuous p-form global symmetry is associated with a conserved (p+1)-form current,

d ∗ J (p+1) = 0 ⇐⇒ ∂µJ[µν2···νp+1] = 0 . (6.17)

We can then integrate over a co-dimension (p+ 1)-cycle Σd−p−1 to construct the correspond-

ing p-form charge,

Q(p) =

∫
Σd−p−1

∗J (p+1) . (6.18)

The conservation equation implies that the dependence on Σd−p−1 in spacetime is topological.

In particular, this means that Q(p) is invariant under time-translations and hence conserved.

Let us focus on the case p = 1, i.e. 1-form symmetries, which are relevant for Maxwell

theory, which has two closed 2-form operators,

d ∗ f (2) = df (2) = 0 . (6.19)

The correctly normalized 2-form currents are given by

∗ J (2)
e =

i

e2 ∗ f
(2) , ∗J (2)

m =
1

2π
f (2) , (6.20)

which allows us to define two conserved 1-form charges,

Q(1)
e =

i

e2

∫
Σ2

∗f (2) , Q(1)
m =

1

2π

∫
Σ2

f (2) . (6.21)

In our (Euclidean) conventions, these are precisely the electric and magnetic Gaussian flux

integrals over Σ2, which measure the total amount of charge enclosed. (We will confirm this

2 In Lorentzian signature S(f (2)) = ∗Lf
(2), where ∗L is the Lorentzian Hodge star operator that satis-

fies ∗2L = −1 on 2-forms.

17



below.) Note that S-duality acts via

S : Q(1)
e → Q̃(1)

m , Q
(1)
b → −Q̃

(1)
e . (6.22)

In U(1) gauge theory the charges Q(1)
e,m above are integers, and hence they generate

compact U(1)(1)
e,m symmetries, which are generated by the following codimension-2 topological

defects (sometimes called symmetry defects),

U (1)
e (θ,Σ2) = exp

(
−iθQ(1)

e [Σ2]
)

= exp

(
θ

e2

∫
Σ2

∗f (2)

)
,

U (1)
m (θ,Σ2) = exp

(
−iθQ(1)

m [Σ2]
)

= exp

(
− iθ

2π

∫
Σ2

f (2)

)
.

(6.23)

Here θ ∼ θ + 2π is an angle which parameterizes a group element in U(1)(1)
e,m respectively.

The structure worked out above is only when we have continuous 1-form symmetries

with associated 2-form currents. However, the symmetry defects also exist for discrete 1-

form symmetries, with θ replaced by an element of the discrete group.

Comments:

• By virtue of their codimension, 1-form symmetry defects can always moved past each

other, so that the corresponding 1-form symmetries commute.

• In gauge theories one typically finds electric 1-form symmetries associated with the cen-

ter of the gauge group, sometimes called center symmetries. In the case of free Maxwell

theory this is the U(1)(1)
e symmetry. Note that the notion of center symmetry depends

on the presentation of the theory, e.g. it is not invariant under duality (c.f. momentum

and winding symmetry in the 2d compact boson).

6.4 Wilson and ’t Hooft Lines

In Euclidean signature, topological defects such as Q(1)
e,m or U (1)

e,m(θ,Σ2) act on other

operators/defects by linking. For instance, codimension-1 charge defects associated with

a 0-form symmetry link local (point) operators in spacetime.

By contrast the 1-form charges can link with line-defects, but not with local operators.

The former can therefore be charged under 1-form symmetries, while the latter cannot. (This

has important consequences that we will return to.)

The line defects that are charged under Q(1)
e,m are electrically charged Wilson lines and

magnetically charged ’t Hooft lines:

18



• A Wilson line of charge qe along a closed curve C is defined as follows,

Wqe
(C) = exp

(
iqe

∫
C

a(1)

)
. (6.24)

Note that this can be thought of as the worldline of a charged particle traversing C.

Gauge invariance under 2π-periodic gauge transformations requiers qe ∈ Z. It can be

checked by direct computation3 that

Q(1)
e

(
Wqe

(C)
)

= qeWqe
(C) , Q(1)

m

(
Wqe

(C)
)

= 0 . (6.25)

Here we assume that the surface Σ2 over which we evaluate Q(1)
e,m is a small sphere

linking C exactly once.

We will soon obtain this result by simpler, but less direct route. The Wilson line

thus represents an infinitely massive, non-dynamical probe particle of electric charge qe

traversing C in spacetime.

• ’t Hooft lines Hqm
(C) along C represent non-dynamical probe particles of magnetic

charge qm traversing C. They are defined by imposing the condition that at each

point on C the magnetic field has a Dirac monopole singularity of charge qm. A more

careful regularization involves drilling a small hole (e.g. in the shape of a ball B3, with

boundary ∂B3 = S2) around the Dirac singularity and imposing the condition that

the magnetic flux across the boundary of the hole is qm. This is precisely the quantity

measured by Q(1)
m , so that

Q(1)
m

(
Hqm

(C)
)

= qmHqm
(C) , Q(1)

e

(
Hqm

(C)
)

= 0 . (6.26)

Note that Wilson and ’t Hooft lines are exchanged under electric-magnetic duality, so

that the ’t Hooft lines Hqn
(C) can be thought of as Wilson lines for the magnetic dual

gauge field ã(1).

• Fusing Wqe
(C) and Hqm

(C) leads to a general dyonic line of electromagnetic/1-form

charges (qe, qm). Note that while pure electric or magnetic lines are naturally bosonic,

dyons can be fermions if the Dirac angular momentum qeqm
2

is half-integral. For instance

this is the case for the minimal (1, 1) dyon that results from fusing the fundamental qe =

qm = 1 Wilson and ’t Hooft lines. As we will explain in more detail below, it is really

3 The theory is free, so all correlators can be evaluated by saddle point.
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the statistics of a line (i.e. whether it is a boson or a fermion, correlated with whether

its spin is in Z or Z+ 1
2
) that is a meaningful, scheme-independent property of the line.

[KEY FACT ABOUT 1-FORM SYMMETRIES:]

The fact that the electric and the magnetic flux surrounding the lines is conserved implies

that the charged lines that are sourcing this flux cannot end. For otherwise one could slide the

topological flux surface past the endpoint of the line, where there is no more flux. [DRAW

PICTURE. 1-form symmetries are flux conservation symmetries!]

We will soon see that the presence of electrically or magnetically charged matter fields

will enable certain lines to end, and this will break some or all of the 1-form symmetry of

Maxwell theory.

[END OF LECTURE 1]

6.5 Coulomb Phase as Spontaneous 1-Form Symmetry Breaking

One common way to characterize phases of gauge theory is via the potential energy VQQ(r)

between a charge Q and its CPT conjugate Q. As we will see, the qualitative behavior of

this potential is related to the realization of the 1-form symmetry in the IR, i.e. whether it

is spontaneously broken or not. Note that here Q may be a dynamical charge in the theory

(e.g. an electron or positron in QED), or it could be an external, non-dynamical, infinitely

heavy probe charge.

The corresponding concept for 0-form symmetries is central to the study of phases and

phase transitions (Landau paradigm): to phases with different realizations of the symmetry

must be separated by a phase transition. Any spontaneously broken 0-form symmetry leads

to massless Nambu-Goldstone bosons (NBGs), which are created by the 1-form currents

associated with the broken symmetry generators. We will here see the analgoue of this for

1-form symmetries.

Let us first discuss the static QQ potential for electric and magnetic charges,

Vqeqe(r) ∼ −
e2q2

e

r
, Vqmqm(r) ∼ − ẽ

2q2
m

r
∼ − q

2
m

e2r
. (6.27)

Here the computation for the magnetic case is best done in the magnetic dual description.

We recognize the standard electric and magnetic Coulomb potentials. For this reason free

Maxwell theory is said to be in a Coulomb phase.

Let us now switch to the seemingly unrelated question of whether or not the U(1)(1)
e,m

symmetries of Maxwell theory are spontaneously broken or not. (We will soon see that these
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two questions are in fact related.) We will argue from two point of view (one fast and less

so) that the 1-form symmetries are in fact spontaneously broken:

1.) The fast way to see this is to note that the charges Q(1)
e,m are linear in the free photon

field f (2). Thus they create 1-photon states (of zero-momentum and hence not nor-

malizable), and thus they do not annihilated the vacuum. This shows that they are

spontaneously broken. (In principle this leaves open the possibility that ad discrete

subgroup might remain unbroken. We will rule this out momentarily.)

2.) Another way to check whether a symmetry is spontaneously broken in a given vacuum is

to exhibit a charged operatorO that has a vacuum expectation value (vev). Rather than

examining 〈O〉 directly, it is often more convenient to examine the correlator 〈O†O〉 as

we separate the operators by a large distance. If the result is non-zero, then by cluster

decomposition 〈O〉 6= 0.

Example: in the O(2) model we could take O = φ to be the fundamental scalar field.

Then looking at 〈φ〉 is one way to determine whether the symmetry is broken or note.

But we can also instead look at 〈φ†(x)φ(0)〉 in the limit xµ →∞ and see whether the

correlation function decays to zero or not, the latter case implying SSB.

For line defects the analogue of the O†O correlator is a line defect L(C) along a large

loop C,

〈L(C)〉 , C →∞ . (6.28)

Here it does not matter precisely in which way the loop is taken to infinity (e.g. we

could uniformly scale up the contour C), much as it does not matter precisely how O
and O† are taken to infinity either. If 〈L(C → ∞)〉 6= 0, then the line defect L has a

non-zero vev.

An important subtlety is that a loop operator can be modified by local counterterms

along the loop (much like a local operator O can be rescaled by a wavefunction renor-

malization constant, e.g. φ → Zφ). The simplest such counterterm is the length of

the loop, also known as its perimeter P (C) =
∫
C
ds. Other counterterms involve the

extrinsic curvature of the loop and can be shown to be irrelevant for our conclusions

below.4

4 A term involving a single power of the extrinsic curvature κ is marginal since κds is dimensionless.
However it can be shown that this is only fully covariant local counterterm in 2d, roughly because lines
are codimension-1 there. (In general the extrinsic curvature Ki

ab is valued in the normal bundle of the
curve, which is d − 1 dimensional, thus no fully local counterterm containing a single power of Ki

ab can be
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We can thus redefine

L(C)→ e−MP (C)L(C) . (6.29)

Here M is a (finite or infinite, positive or negative) constant with dimensions of mass.

It can be thought of as a mass renormalization for the (infinitely) heavy probe particle

represented by L(C). Thus as long as a loop operator behaves as

〈L(C)〉 ∼ (const.)e−MP (C) , C →∞ , (6.30)

then L(C) has a non-zero vev after a suitable redefinition of the operator.

By contrast, if 〈L(C)〉 decays faster than perimeter law for large loops C, we say

that L(C) has zero vev.

Let us relate this to our previous discussion of the QQ effective potential VQQ(r),

which can be extracted from a large rectangular Q-loop of width r and height T =

euclidean time, with vev

〈�(r, T )〉 = exp
(
−TVQQ(r)−MP (�)

)
(6.31)

Here we have already accounted for a possibly perimeter counterterm. Note that the

section of the perimeter along the T -direction shifts ∆V ∼M by a constant, reflecting

the ambiguous additive scale of the potential.

Since the Coulomb potentials between static charges vanish, so that VQQ → const., we

see that all loops in Maxwell theory obey perimeter law, i.e. they have a vev.

A similar (and very general) result holds for circular Wilson loops: consider any confor-

mal field theory (CFT), of which free Maxwell theory is an example. Then conformal

symmetry forces the QQ potential associated with any line defect L to be Coulomb like

(e.g. this also happens in N = 4 SYM),

V (r) =
α

r
, α = const. . (6.32)

Up to scheme-dependent perimeter terms, the vev of the circular loop L(C) (the radius

constructed.) Moreover, CPT requires that orientation reversal complex conjugates the loop and this implies
that the extrinsic curvature counterterm is purely imaginary, i.e. it would only affect the phase, not the
magnitude of the loop. Finally, terms ∼ κnds with n > 1 vanish for large loops and can be ignored in our
discussion below.
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does not matter by conformal symmetry) is

〈L(C)〉 = exp (−α) , (6.33)

Recall that in Maxwell theory α ∼ e2q2
e for charge-qe Wilson loops and α ∼ ẽ 2q2

m for

charge-qm ’t Hooft loops.

The discussion above shows that all loops in Maxwell theory have a vev, and hence

both U(1)(1)
e,m symmetries of the theory are completely spontaneously broken, i.e. there

is no unbroken subgroup.

6.6 Background Fields and Anomalies

An essential tool in the study of 0-form symmetries and their anomalies is the introduc-

tion of suitable background gauge fields. For instance, to study a standard U(1) current jµ

it is useful to couple it to a background U(1) gauge field Aµ, via

∆L ∼ Aµj
µ + · · · . (6.34)

The resulting partition function Z[A] generates correlators of jµ, and it is a useful tool for

detecting anomalies and other subtle aspects of those correlators.

The appropriate generalization of Aµ for a higher-form symmetry is a totally anti-

symemtric abelian gauge field B[µ1···µn]. Such fields are prominent in string theory. In D < 5

dynamical fields of this kind can always be dualized into ordinary scalars and Maxwell fields,

which is why they are less common there. However, duality is only a statement about dy-

namical gauge fields, i.e. it is an on-shell statement. It does not apply to background fields.

Thus there is an interesting role for background B-fields even in D = 2, 3, 4.

For 1-form symmetries such background fields are 2-form gauge fields,

B(2)
e,m → B(2)

e,m + dΛ(1)
e,m . (6.35)

Here Λ(1)
e,m are themselves (locally defined) 1-form gauge fields, with standard U(1) gauge

transformations and fluxes,
1

2π

∫
Σ2

dΛ(1)
e,m ∈ Z . (6.36)

2-form gauge fields such as B(2)
e,m are familiar from string theory and supergravity, but there

they are typically dynamical (unless we take a decoupling limit, e.g. to engineer a standard
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QFT in string theory). Here they are (at least for now) non-dynamical background fields.

We claim that the way to couple B(2)
e and B(2)

m to Maxwell theory is as follows,

S[a(1), B(2)
e , B(2)

m ] =
1

2e2

∫
M4

(f (2) −B(2)
e ) ∧ ∗(f (2) −B(2)

e ) +
i

2π

∫
M4

B(2)
m ∧ f (2) . (6.37)

Note that the terms linear in the background fields precisely couple to the 2-form currents

via

S
∣∣
O(B)

= i

∫
M4

(
B(2)
e ∧ ∗J (2)

e +B(2)
m ∧ ∗J (2)

m

)
. (6.38)

The quadratic counterterm ∼ B(2)
e ∧∗B(2)

e (sometimes known as a seagull term) ensures that

the first term in the action is invariant under Λ(1)
e gauge transformations if we also transform

a(1) → a(1) + Λ(1)
e . (6.39)

Note that this is consistent since both a(1) and Λ(1)
e are conventionally quantized U(1) gauge

fields. Note that the actual global symmetry, which leaves the background field B(2)
e invariant,

corresponds to a flat 1-form gauge parameter dΛ(1)
e = 0. Clearly f (2) is also invariant under

such a shift, while the Wilson loop transforms as follows,

Wqe
(C)→ exp

(
iqe

∫
C

Λ(1)
e

)
Wqe

(C) . (6.40)

Since Λ(1)
e is flat, this phase can only be non-trivial if C is non-contractible, either because

it is a non-trivial cycle in the geometry of M4, or because it links some other defect.

We now consider the invariance of the second term in the action above,

SBF =
i

2π

∫
B(2)
m ∧ f (2) . (6.41)

This is a so-called BF term; it is somewhat analogous to a Chern-Simons term. It is invariant

under B(2)
m → B(2)

m + dΛ(1)
m , since both dΛ(1)

m and f (2) have fluxes in 2πZ. (In general, gauge

invariance requires this term to have an integer coefficient, but we normalize B(2)
m so that this

coefficient is 1.)

Consider an ’t Hooft line Hqm
(C) of charge qm. Then the flux integral

∫
f (2) on a small

sphere linking C is 2πqm, so that the BF term above collapses to

SBF = iqm

∫
Σ2

B(2)
m , ∂Σ2 = C . (6.42)
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This shows that under a gauge-transformation B(2)
m → B(2)

m + dΛ(1)
m , the ’t Hooft line trans-

forms as follows,

Hqm
(C)→ exp

(
−iqm

∫
C

Λ(1)
m

)
Hqm

(C) . (6.43)

In particular this means that the magnetic dual gauge fields shifts as

ã(1) → ã(1) + Λ(1)
m . (6.44)

Since SBF is invariant under magnetic background gauge transformations, and the

Maxwell kinetic term is invariant under electric ones, it follows that the full variation of

the action is entirely due to the electric background gauge transformation of the BF term,

S[a(1) + Λ(1)
e , B(2)

e + dΛ(1)
e , B(2)

m + dΛ(1)
m ] = S[a(1), B(2)

e,m] +
i

2π

∫
M4

B(2)
m ∧ dΛ(1)

e . (6.45)

Thus the action is invariant, up to a c-number shift that only depends on the background

fields. This is the hallmark of an ’t Hooft anomaly for the global electric and magnetic 1-form

symmetries (c.f. momentum-winding mixed anomaly of the compact boson in 2d).

Comments (standard for anomalies):

• Even though the electric and magnetic symmetries appear on equal footing – they are

exchanged by duality – they anomaly breaks this symmetry. In our current presenta-

tion the anomaly appears when we turn on non-zero magnetic B(2)
m and also perform

an electric background gauge transformation. This is because of the way we coupled

the background fields to Maxwell theory. We can add to the action S a local countert-

erm Sc.t., which only depends on the background fields,

Sc.t. =
iK

2π

∫
B(2)
e ∧B(2)

m , K ∈ R . (6.46)

Note that this term modifies the two-point function

〈J (2)
e (x)J (2)

m (y)〉 ∼ 〈f (2)(x) ∗ f (2)(y)〉 . (6.47)

by contact terms involving (derivatives of) δ(4)(x−y), but only at coincident points. By

dialing the constant K, we can choose these contact terms so that either J (2)
e or J (2)

m or

neither are conserved at coincident points. For instance, if we choose K = −1 then S

is invariant under electric gauge transformations and J (2)
e is conserved at coincident

points. However the price to pay is that now the action is not invariant under B(2)
m
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gauge transformations, and hence J (2)
m is not conserved at coincident points.

The statement of the anomaly is that there is no choice of local counter terms such

that both currents are conserved at coincident points, or equivalently that S is com-

pletely invariant under both B(2)
e and B(2)

m background gauge transformations. Thus

the anomaly is a mixed anomaly between the two symmetries. Each symmetry on its

own is not anomalous.

The anomaly of course implies that the theory under discussion cannot be gapped and

trivial – of course it is not, since it has a free massless field, the photon (this is essential

a direct consequence of this mixed anomaly).

• Below we will discuss what it means to gauge the 1-form symmetries by promoting

B(1)
e,m to suitable dynamical fields. Clearly the mixed anomaly prevents us from gauging

both, but we can gauge anomaly-free subgroups.

• It is very useful to characterize the anomaly by inflow from a 5d SPT with action,

S5d =
i

2π

∫
M5

B(2)
e ∧ dB(2)

m . (6.48)

This is a 5d Chern-Simons/BF term for the background fields. It has no dynamical

fields, e.g. its Hilbert space on any closed 4-manifold has precisely one state. Such

a theory is also called invertible (in math) or a symmetry protected topological phase

(SPT) in condensed matter physics. As long asM5 is closed S5d is fully gauge invariant.

It is also symmetric in B(2)
e ↔ B(2)

m since we can integrate by parts. If M5 has a

boundary ∂M5 = M4 then neither statement is true: integrating by parts induces a

local counterterm on M4, and background gauge transformations lead to a boundary

anomaly of the kind described above.

Note: Here we have taken the sign of S5d to reproduce the boundary anomaly found

above. This is often done in QFT/higher-energy physics, where the 5d bulk is viewed

as a fictitious machine whose only job it is to summarize the anomaly.

In situations where there are no net anomalies to begin with (e.g. in most condensed

matter systems, or if the symmetries are gauged, like in string theory, supergravity,

or holography) we can add the bulk as a physical extra dimensions, and flip the sign

of S5d. Then the 5d bulk cancels the anomaly of the 4d boundary and the coupled

4d/5d system is anomaly free. In this case there is also no obstruction to gauging the

coupled bulk-boundary system.
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6.7 Comments on Flat Backgrounds

Because the 1-form symmetries are continuous, the gauge fields B(1)
e,m need not be flat.

However, various simplifications happen when we assume that they are flat. The flat case is

also more similar to the discrete case we will encounter soon.

If B(2)
e,m are flat, then their holonomies on 2-cycles are topological and 2π-periodic,

θe,m[Σ2] =

∫
Σ2

B(2)
e,m ∼ θe,m[Σ2] + 2π . (6.49)

We can therefore think of them as angles θe,m. Recall that the coupling of the background

fields to the theory looks as follows,

S
∣∣
O(B)

= i

∫
M4

(
B(2)
e ∧ ∗J (2)

e +B(2)
m ∧ ∗J (2)

m

)
. (6.50)

Now we see that fixing a particular Σ2, as well as well as holonomies θe,m[Σ2] for the back-

ground fields, inserts into the path integral symmetry defects located on the Poincare-dual

2-cycle PD[Σ2],

U (1)
e (θe,PD[Σ2])U (1)

m (θm,PD[Σ2]) . (6.51)

Another thing we can do when B(2)
e is to trade the conventionally quantized U(1) gauge

field a(1) used above for a new twisted gauge field c(1) which has the property that

dc(1) = f (2) −B(2)
e . (6.52)

In particular this means that the fluxes of c(1) are not integers, because they are shifted by

the holonomies of B(2)
e , ∫

Σ2

dc(1) ∈ 2πZ + θe[Σ2] . (6.53)

This is only possibly if the periodicity of the gauge transformations of c(1) are modified in a

way that is compatible with this equation. This is called a twisted cocycle condition. Perhaps

the most well-known example of such a twisted connection is a Spinc connection, which arises

naturally in theories like QED, where all fermions have odd electric charges.
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7 The Abelian Higgs Model

7.1 1-Form Symmetry Breaking by a Charged Scalar

Let us generalize our discussion of Maxwell theory by adding a single complex scalar h

of electric charge qe ∈ Z. The resulting model has the following (Euclidean) Lagrangian

L =
1

4e2f
µνfµν + |Dµh|2 + V (|h|) , Dµ = ∂µ − iqeaµ . (7.1)

Here V (|h|) is any gauge-invariant potential for h that we can tune to engineer different

phases. The coupling to the background fields B(2)
e,m is as before, i.e. we substitute f (2) →

f (2) −B(2)
e and add SBF = i

2π

∫
M4

B(2)
m ∧ f (2).

Since the charged scalar does not modify the Bianchi identity, df (2), the magnetic sym-

metry is completely intact.

However, the electric symmetry is explicitly broken. This can be seen by examining

Maxwell’s equation,

d ∗ J (2)
e =

i

e2d ∗ f
(2) = ∗j(1)

e 6= 0 . (7.2)

Thus the electric 2-form current is not conserved, and hence the electric flux integral Q(1)
e [Σ2]

is no longer topological: consider a cobordism M3 from Σ2 to Σ′2 so that ∂M3 = Σ2 − Σ′2.

Then

Q(1)
e [Σ2]−Q(1)

e [Σ′2] =

∫
M3

∗j(1)
e . (7.3)

The operator on the right-hand side measures the total electric charge enclosed inM3. Since

the fundamental unit of charge is qe it is natural to suspect that the violation of Q(1)
e is also

a multiple of qe. If this is true, the exponentiated generators,

Ue,k = exp

(
2πik

qe

∫
Σ2

∗J (2)
e

)
(7.4)

are still topological and generate a Z(1)
qe

1-form symmetry.

Thus adding a charge-qe scalar explicitly breaks

U(1)(1)
e −→ Z(1)

qe
. (7.5)

A quick way to see this is to note that the field h must be attached to a Wilson line of

charge qe to make a gauge-invariant operator. Thus such a line can end. (We also say that
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such a line can be screened.) And since all local field constructed out of h have charge that

is a multiple of qe, no Wilson line of charge less than qe can end. Thus the electric 1-form

symmetry is broken to its order qe cyclic subgroup.

Let us now show that we can modify the coupling of Maxwell theory to B(2)
e to exhibit

this symmetry. Under a 1-form gauge transformation,

a(1) → a(1) + Λ(1)
e , Dµ → (Dµ − iqeΛe,µ) . (7.6)

The only chance we have of absorbing the qeΛ
(1)
e term in the covariant derivative of h is to

reduce B(2)
e to a flat gauge field,

dB(2)
e = 0 . (7.7)

This is only correct as a statement about differential forms. In integer cohomology it is

enough that the class 1
2π
H(3) = 1

2π
dB(2)

e is N -torsion, i.e. that N
2π
H(3) = 0 in H(3)(M4,Z).

As we have already discussed, all gauge-invariant information in the flat B(2)
e is contained

in the holonomies on 2-cycles,

θe[Σ2] =

∫
Σ2

B(2)
e ∼ θe[Σ2] + 2π , (7.8)

and the dependence on Σ2 is topological.

We can restrict to a Zqe ⊂ U(1) by choosing all holonomies to satisfy

θe ∈
2π

qe
Zqe . (7.9)

Up to gauge transformations, we therefore have

B(2)
e =

2π

qe
b(2)
e , b(2)

e ∈ H2(M4,Zqe) . (7.10)

A change of cohomology representative, b(2)
e → b(2)

e + δλ(1)
e with λ(1)

e ∈ C1(M4,Zqe), can

similarly be identified with a 1-form gauge transformation of the form

B(2)
e → B(2)

e + dΛ(1)
e , Λ(1)

e =
2π

qe
λ(1)
e . (7.11)

Returning back to our original problem of determining the 1-form symmetry of Maxwell

theory with a charge-qe scalar, we find that the covariant derivative of the scalar shifts as
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follows under an electric Z(1)
qe

background gauge transformation,

(
∂µ − iqeaµ

)
−→

(
∂µ − iqeaµ − 2πiλ(1)

e

)
. (7.12)

Now 2πλ(1)
e is a 1-cochain that whose periods over any 1-chain lie in 2πZqe ⊂ 2πZ. Locally

we can therefore find a periodic scalar χ ∼ χ+2π such that 2πλ(1)
e = dχ. Now we can remove

this term by shifting h → heiχ. Note that this is single-valued and that it leaves all other

terms in the Lagrangian invariant.

Note that the actually symmetry, which leaves b(2)
e invariant consists of closed chains,

which can therefore be identified with cohomology classes,

δλ(1)
e =⇒ λ(1)

e ∈ H1(M4,Zqe) , (7.13)

or equivalently flat Zqe 1-form gauge fields. For instance, a Wilson loop of charge n transforms

as

Wn(C)→ exp

(
2πin

qe
λ(1)
e (C)

)
Wn(C) . (7.14)

We can also reduce the anomaly modulo qe by noting that 1
2π
dB(2)

m defines an integer

cohomology class in H3(M4,Z), which can be reduced modulo qe. Thus the anomaly inflow

action reads,

S5[be, Bm] =
2πi

qe

∫
M5

b(2)
e ∪

[
1

2π
dB(2)

m

]
qe

, (7.15)

where [· · · ]q implies reduction modulo q. Thus the anomaly is still there and must be matched

in every phase of the theory.

7.2 Phases of the Abelian Higgs Model

Let us illustrate this for the simple case of the potential

V (|h|) = m2|h|2 + λ4|h|2 . (7.16)

It is known that this model has two phases, separated by a first-order phase transition at some

critical m2
∗, which we renormalize to be at m2

∗ = 0. The transition is first order because of

the Coleman-Weinberg mechanism., i.e. due to radiative corrections that become important

near the transition. Let us discuss instead the physics in the different phases. In particular

we would like to understand the realization of the 1-form symmetries.
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7.2.1 Coulomb Phase

When m2 > 0 and sufficiently large, we can reliably integrate out the scalar. This leads

to a IR effective action which consists of free Maxwell theory deformed by irrelevant operators

(sometimes called Euler-Heisenberg effective action),

LIR =
1

4e2f
µνfµν +O

(
f 4

m4

)
· · · . (7.17)

Thus the long-distance theory is in a Coulomb phase, with its leading IR behavior described

by free Maxwell theory, i.e. all loops have perimeter law. In particular U(1)(1)
m is spontaneously

broken and the photon is the corresponding NGB. The discrete Z(1)
q symmetry is also sponta-

neously broken. In fact, in the deep IR it enhances to an accidental/emergent U(1)(1)
e . This

can be seen explicitly because Maxwell’s equations now read

d

(
∗f (2) +O

(
f 3

m4

)
+ · · ·

)
= 0 , (7.18)

so there appears to be an exactly conserved electric 1-form current at long distances, even

though the symmetry is emergent and violated by the massive h particles at sufficiently high

energies. This is unlike the case of emergent 0-form symmetries, which are generically violated

by irrelevant operators at long distances. The reason this does not happen for emergent 1-

form symmetries is that there are no local operators that are charged under them, so it is not

possible to capture the breaking at the level of the IR effective action. Remembering that this

effective action is a power-series expansion in the small parameter ε = EIR

m
, with EIR a low

energy scale, this means that explicit violations of emergent 0-form symmetries are typically

power suppressed at long distance (think neutrino masses from dimension 5 operators O(ε)

or proton decay from dimension 6 operators O(ε2) in the standard model). By contrast, the

violations of emergent 1-form symmetries are exponential small and non-analytic in ε,

e−1/ε ∼ e−m/E ∼ e−mRIR , RIR ∼
1

EIR

� m−1 . (7.19)

The factor e−mRIR can be thought of an instanton effect where the heavy particle travels some

distance RIR, which is very suppressed at long distances.
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7.2.2 Higgs Phase

The model for m2 < 0 is famously the Landau-Ginzburg effective description of a super-

conductor with a charge-qe Cooper pair of electrons (usually qe = 2).

The theory is in a Higgs phase, i.e. the charge-q scalar field gets a vev 〈h〉 6= 0. This

Higgses the U(1) gauge group to its Zqe subgroup (it is common, but imprecise, to say that

the gauge symmetry is broken to Zqe). The theory is fully gapped: the photon eats the phase

of h to make a massive vector boson, and the radial Higgs mode of h gets a mass from the

potential. However, it is not trivial at long distances: the is a discrete Zqe topological gauge

theory at long distance (i.e. there is topological order).

In this phase the U(1)(1)
m symmetry is unbroken, and the ’t Hooft lines Hqm

charged

under that symmetry create from the vacuum Abrikosov-Nieleson-Oleson (ANO) magnetic

vortices of integer magnetic flux/vorticity qm. All of these have finite tension Σ(qm). If

we repeat the calculation of the static potential for monopoles, the ’t Hooft line will create

an ’t Hooft line connecting the monopoles from the vacuum. This will lead to a static

potential Vqmqm(r) = σ(qm)r, i.e. a linearly confining potential for the monopoles. Plugging

into the expectation value for a large rectangular loop of width r and height T , we find that

〈Hqm
(�→∞)〉 ∼ exp (−σ(qm)Tr) ∼ exp (−σ(qm)A(C)) = 0 . (7.20)

Here A(C) = rT is the area bounded by the rectangular loop. This is the famous area law for

loops. Since the area is much larger than the perimeter for large loops, the loop expectation

value vanishes. This is the statement that the U(1)(1)
m symmetry is unbroken.

In fact, because of the unbroken Z2 gauge symmetry, there are also fractional vortices

with vorticity ∈ 1
q
Z. (In a superconductor with qe = 2, a half-vortex is known as a π-flux).)

The fractional vortices are not created by genuine ’t Hooft lines, but rather by open topolog-

ical surfaces ending on a fractional ’t Hooft line. The fractionalized vortices are a potential

source of an anomaly, as we will elaborate soon. [General theme: fractionalization can

lead to anomalies.]

However the Z(1)
q symmetry is spontaneously broken and this matches the ’t Hooft

anomaly from above. One way to see this is to note that in the Higgs phase the electric

field is screened and Vqeqe(r) ∼ e−Kr + const., leading to perimeter law for the Wilson loops,

and hence a vev.

To see this explicitly, let us consider an explicit Lagrangian describing the low-energy Zqe
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TQFT,

STQFT =
iqe
2π

∫
M4

b(2) ∧
(
f (2) −B(2)

e

)
+

i

2π

∫
M4

B(2)
m ∧ f (2) . (7.21)

Here f (2) = da(1) is the original Maxwell gauge field from above, while b(2) is a new dynami-

cal U(1) 2-form gauge field, with gauge transformations

b(2) → b(2) + dλ(1) ,
1

2π

∫
Σ2

dλ(1) ∈ Z . (7.22)

The field b(2) can be thought of as arising from the compact scalar χ ∼ χ + 2π that rep-

resents the phase of the dynamical scalar field h = ρeiχ via an electric-magnetic duality

transformations (much like the one we studied in Maxwell theory itself).

Let us first turn off the background fields B(2)
e,m. Then the equations of motion imply

that b(2) and a(1) are flat, with holonomies in Zqe . [More precisely, doing the path

integral over f (2) implies that the flux db(2)
e is qe-torsion, qe

2π
db(2) = 0 in H3(M4,Z).

Similarly, doing the path integral over b(2)
e implies that f (2) is qe-torsion.] Integrating

out b(2) we find a Zqe 1-form gauge theory, while integrating out a(2) leads to a Zqe 2-form

gauge theory. These are simply dual description of the same TQFT. The topological operators

are Wilson lines of a(1) and Wilson surfaces of b(2), which have non-trivial correlation function

(explicitly computable from the Gaussian path integral)

〈exp

(
im

∫
C

a(1)

)
exp

(
in

∫
Σ2

b(2)

)
〉 = exp

(
2πimn

qe
Link(Σ2, C)

)
. (7.23)

Here Link(Σ2, C) is the oriented Linking number. Note that this answer is periodic in n,m ∼
n,m+ qe, as is appropriate for Zqe charges.

Thus the Wilson surface of b(2) is the topological defect implementing the Z(1)
qe

symmetry

acting on the Wilson lines of a(1). Conversely, the Wilson lines of a(1) are generators of Z(2)
qe

symmetry acting on the Wilson surfaces of b(2). This symmetry was not present in the UV:

it emergent in the IR. The fact that the symmetry defects link non-trivially is an indicator

of the mixed ’t Hooft anomaly between them.

Note that all of these topological operators have non-zero expectation values. This can

be seen by taking large loops or surfaces and then shrinking them to a point, leading to

expectation value 1 modulo perimeter or surface counterterms. Thus both the Z(1)
qe

and

the Z(2)
qe

symmetry are spontaneously broken.

Note that no mention was made here of the unbroken U(1)m symmetry. How is the

mixed anomaly of this symmetry with Z(1)
qe

matched in this phase? Here the emergent Z(2)
qe
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symmetry is key. Let us explain this by re-activating the background fields:

STQFT =
iqe
2π

∫
M4

b(2) ∧
(
f (2) −B(2)

e

)
+

i

2π

∫
M4

B(2)
m ∧ f (2) . (7.24)

This is manifestly gauge-invariant under a(1) → a(1) + λ(0), but to ensure invariance un-

der b(2) → b(2) + dλ(1) we must require

dB(2)
e = 0 ,

∫
Σ2

B(2)
e ∈

2π

qe
Z . (7.25)

This is precisely the statement that B(2)
e is a background field for the discrete Z(1)

qe
subgroup

of U(1)(1)
e . We can now investigate background gauge transformations,

a(1) → a(1) + Λ(1)
e , B(2)

e,m → B(2)
e,m + dΛ(1)

e,m . (7.26)

As in the UV, all terms except the BF term are invariant, and this term exactly spits out

the same anomaly as in the UV.

Note that the Z(1)
qe

symmetry with background B(2)
e is intrinsic to the IR TQFT: it acts

on the topological Wilson loops, which spontaneously break the symmetry. By contrast the

’t Hooft loops which are charged under U(1)(1)
m with background B(2)

m are all confined and

disappear from theory. It is thus superficially confusing how the anomaly (which involves Bm)

is matched in the IR.

The answer involves fractionalization of the U(1)(1)
m magnetic symmetry. Genuine ’t

Hooft lines are confined, but the theory has vortices of fractional vorticity n
qe

. The world-

sheet Σ2 of these fractional vortices is represented at long distances by the charge-n Wilson

surface of b2 along Σ2,

exp

(
in

∫
Σ2

b(2)

)
. (7.27)

Inserting this into the path integral and integrating out b(2) we find that

f (2) =
2πn

qe
PD[Σ2] +B(2)

e , (7.28)

where PD indicates the closed 2-form that is δ-function localized along the PD cycle of Σ2,

i.e. the cycle linking the worldsheet. Inserting this into the path integral we find that the BF

term gives rise to
i

2π

∫
M4

B(2)
m ∧ f (2) =

in

qe

∫
Σ2

B(2)
m . (7.29)
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This is precisely the statement that the vortex carries fractional charge n
qe

. Thus charge

fractionalization for the unbroken U(1)(1)
m symmetry gives a non-trivial coupling of B(2)

m to

the low-energy TQFT that matches the anomaly.

Note that B(2)
m is not intrinsic to the low-energy theory. Rather, the low-energy theory

has a Z(2)
q symmetry generated by the topological Wilson lines of a(1). The appropriate

background field is a flat 3-form C(3) with Zqe periods,

dC(2) = 0 ,

∫
Σ3

C(3) ∈ 2π

qe
Z . (7.30)

This couples to the BF theory as follows,

∆S =
iqe
2π

∫
M4

a(1) ∧ C(3) . (7.31)

Note that the restriction of C(3) to a flat Zqe gauge field is needed for a(1) gauge invariance.

We thus see that the anomalous shift of the action under a(1) → a(1) + Λ(1)
e is

S → S +
iqe
2π

∫
Λ(1)
e ∧ C(3) . (7.32)

Then we can embed B(2)
m in C(3) via

C(3) =
1

qe
dB(2)

m , (7.33)

which indeed has holonomies in 2π
qe
Z.

7.3 Duality, Monopoles, and Confinement

Above we described everything for a scalar of electric charge qe. We can use electric-

magnetic (or S-) duality do map this to a system with no electric charges and a scalar of

magnetic charge qm. The whole discussion then plays out the same, with e and m switched:

• The model has an electric U(1)(1)
e symmetry and a Z(1)

qm
magnetic symmetry.

• In the magnetic Higgs phase U(1)(1)
e is unbroken, there are electric flux/vortex strings

that have finite tension and linearly confine all electric charges, i.e.

Vqeqe(r) ∼ σ(qe)r . (7.34)
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Equivalently, all Wilson loops have area law. Magnetic charge is deconfined and

screened modulo qm, there is a Zqm TQFT whose Wilson lines are the UV ’t Hooft

lines mod qm. All ’t Hooft lines have perimeter law.

Thus a magnetic Higgs phase is tantamount to electric confinement: confinement and

Higgsing are electric-magnetic dual. This key insight (due to Mandelstam and ’t Hooft)

is central to our modern understanding of confinement in non-Abelian gauge theories.

This is because there are certain (mostly supersymmetric) models where confinement

is described by an effective Abelian Higgs Model for magnetic monopoles.

If a theory has both electric and magnetic charges then we cannot always to to a purely

electric duality frame. However, we can still use the screening picture to determined the

1-form symmetry group (which may be trivial).

If the charge lattice is not fully populated by dynamical charges, the theory has some

1-form symmetry that can be used to diagnose different phases, depending whether the loops

charged under that symmetry satisfy perimeter or area law.

7.4 Higgs-Confinement Continuity

What happens when there is no 1-form symmetry whatsoever, e.g. because the charge

lattice is fully populated? Then ever single line can be screened. In this situation there is no

symmetry that can be used to distinguish e.g. Higgs and confining phases. It is then natural to

expect that there is no phase transition in the model (c.f. breaking Z2 symmetry in the Ising

model via magnetic field: phase transition can be avoided). This was first shown explicitly in

certain lattice models, but has since been observed in many (e.g. supersymmetric) examples.

We will return to this point in the last lecture on Wednesday, when we will discuss QCD

and QCD-like theories, i.e. non-Abelian Yang-Mills gauge theories with matter fields in the

fundamental (e.g. quarks).

8 Multi-Flavor QED

So far we have seen 0-form symmetries and 1-form symmetries, but there has not been

any particularly dramatic interplay between the two.

A simple example where such an interplay – in the form of a structure called 2-group

symmetry – arises is massless QED with Nf ≥ 2 flavors.

Reference: Cordova, Dumitrescu, Intriligator “Exploring 2-Group Global Symmmetry”
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We are thus studying U(1) gauge theory withNf flavors of 4-component Dirac fermion Ψi
D

(with flavor index i = 1, . . . , Nf of electric charge qe = 1. We can write the QED Lagrangian

in the standard Dirac form,

L = − 1

4e2f
µνfµν − iΨDiγ

µDµΨi
D . (8.1)

For many purposes, but especially for discussing symmetries, it is useful to work with 2-

component Weyl fermions, rather than 4-component Dirac fermions,

Ψi
D =

(
ψiα

χα̇
ĩ

)
, i = 1, . . . , Nf . (8.2)

Here α = 1, 2 is a left-handed 2-component spinor index, and α̇ = 1̇, 2̇ is a right-handed 2-

component spinor index. For a detailed introduction to 2-component spinors see for instance

the SUSY book by Wess and Bagger (whose conventions I typically follow) or the QFT

book by Mark Srednicki. Note that Hermitian conjugation exchanges left- and right-handed

spinors,

(ψα)† = ψα̇ . (8.3)

Spinor indices are raised and lowered from the left using the SL(2,C) invariant Levi-Civitta

symbols εαβ, εαβ (and their dotted counterparts), which satisfy

ε12 = ε21 = 1 . (8.4)

When spinor indices are suppressed they are contracted (like Xα
α and Y α̇

α̇
for undotted and

dotted spinors).

Then the charge-one Dirac fermions Ψi
D amounts to having Nf 2-component Weyl

fermion ψiα of charge 1 (sometimes referred to as the left-handed component) and one 2-

component Weyl fermion χĩα of charge −1 (sometimes called the right-handed component).

In these variables, the QED Lagrangian reads

L = − 1

4e2f
µνfµν − iψiσ

µ(∂µ − iaµ)ψi − iχĩσ
µ(∂µ + iaµ)χĩ . (8.5)

Note, crucially, that the flavor index i on the left-handed field and the flavor index ĩ on the

right-handed field are completely independent. This will be important in our analysis of the

symmetries below.
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8.1 An Overly Naive Guess at the Symmetry

To figure out what the symmetry of the theory might be, let’s start with the free fermions,

prior to gauging the vector-like U(1) symmetry. Then the symmetry is clearly

U(Nf )L × U(Nf )R , (8.6)

where the left symmetry only acts on the ψiα, with i a fundamental index, and the right

symmetry only acts on the χĩα with ĩ a fundamental index.

Now let us gauge the U(1)V symmetry of QED under which the fermions have electric

charge ±1. We then know that three things happen:

• Since the U(1)V is now gauged, it is no longer a zero-form symmetry.

• We do not get any electric 1-form symmetry since our fields have electric charge ±1.

• We do get a continuous magnetic 1-form symmetry U(1)(1)
m due to the fact that the

Bianchi identity holds, df (2) = 0.

Very naively, this suggests that the global symmetry of the model is

G(0) ×G(1) , G(0) =

(
U(Nf )L × U(Nf )R

)
U(1)V

, G(1) = U(1)(1)
m . (8.7)

This is wrong for two reasons, both of which have to do with triangle anomalies:

• The U(1)A symmetry suffers from an Adler-Bell-Jackiw (ABJ) triangle anomaly [DRAW

DIAGRAM] and as a result it is not a conventional 0-form symmetry. Depending on

which observables you study, it may or may not be a symmetry (e.g. it is a symmetry

in flat space, but not in the presence of generic monopoles/’t Hooft lines). This can

be formulated more usefully by recasting U(1)A as a non-invertible symmetry – you’ll

hear more about it from other lecturers, and for today we’ll simply ignore it.

• The second reason is that the remaining symmetry is not a direct product

G(0) ×G(1) , G(0) = SU(Nf )L × SU(Nf )R , G(1) = U(1)(1)
m . (8.8)

Rather the product is deformed into a non-trivial 2-group, wherein G(0) non-trivially

extends G(1).

We will now explain how this works starting using background fields and triangle anomalies.
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8.2 2-Group Global Symmetry from Triangle Anomalies

Triangle anomalies in QED involve a single fermion loop with three insertions, which

could be either a SU(Nf )L current jaL,µ, with a and adjoint index of SU(Nf )L, or a SU(Nf )R

current jãR,µ with ã an adjoint index of SU(Nf ), or a dynamical photon (equivalently, an

insertion of the magnetic 1-form current ∼ f (2)).

An important fact is that the vector-like SU(Nf )V ⊂ SU(Nf )L × SU(Nf )R is free of

anomalies, because we can add a Dirac mass term that respect this symmetry. Recall that

anomalies only receive contributions from massless fields.

For this reason it is sufficient to focus on e.g. SU(Nf )L symmetry with current jaL,µ for

the purpose of discussing anomalies in this theory. We will call the SU(Nf )L background

gauge field that couples to this current Laµ as a source.

Let is discuss the triangle anomalies of this theory in turn:

• You can consider a triangle diagram involving three external photons. [DRAW DI-

AGRAM] This vanishes in QED by charge-conjugation symmetry. This triangle dia-

gram represents a genuine gauge anomaly, which would make the theory inconsistent.

So its essential that it vanishes.

• There is a triangle diagram involving three insertions of jaL,µ. [DRAW DIAGRAM]Schematically,

∂µx 〈jaµ(x)jbν(y)jcρ(z)〉 6= 0 . (8.9)

More precisely, the right-hand side is a c-number contact term, which is only non-zero

at coincident points x = y = z. While it can be written down in detail, it is easier to

characterizing it by activating an SU(Nf )L non-dynamical background gauge field Laµ,

which couples to jaµL as a source.

The the anomalous triangle can be expressed by the following equation:

Dµj
µa
L ∼ dabcεµνρλ∂µL

b
ν∂ρL

c
λ + · · · .

Here the dots mean additional non-Abelian terms, and dabc is a (suitably normalized)

totally symmetric invariant symbol of SU(Nf ), which exists as long as Nf ≥ 3. The

factor of N in front of the anomaly is due to the fact that the quarks ψα, which are in

the fundamental of SU(Nf )L, are also in the fundamental of SU(N), so there are N

fundamentals of SU(Nf ).

Note that the right-hand side of this anomaly equation is not an operator: it vanishes
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when we turn off the background field Laµ. Thus the symmetry is not actually broken.

Instead, the right-hand side in the presence of a background field means that the

symmetry has an ’t Hooft anomaly (with itself). We have previously discussed mixed

’ t Hooft anomalies, e.g. between the electric and magnetic 1-form symmetries in

Maxwell theory, but here it is an anomaly intrinsic to SU(Nf )L.

Just as was the case there, this ’t Hooft anomaly is rigid along RG flows and not

renormalized. And in particular, the anomaly must be matched in any IR phase that

the theory can flow to without explicitly breaking the SU(Nf )L symmetry. Of course

this example is weakly coupled and so the matching is trivial.

• Finally, we can consider a triangle diagram involving a single photon and two SU(Nf )L

currents, [DRAW DIAGRAM]. This leads to the following non-conservation equa-

tion for the SU(Nf )L current,

d ∗ j(1)a
L ∼ kdL(1)a ∧ f (2) + · · · , (8.10)

where the ellipsis represents non-linear terms required by SU(Nf )L background gauge

invariance. Her k ∈ Z is a quantized anomaly coefficient, which is minimal k = 1 in

our QED example (since our electrons have unit electric charge), L(1)a is the SU(Nf )L

background field, and f (2) is the dynamical photon field strength.

Note that this is somewhere in between an ABJ anomaly, where the right-hand side

is an operator, and an ’t Hooft anomaly, where the right-hand side is a c-number

background. Note also that when we turn off the background, L(1)a = 0, then the

current is conserved so the SU(Nf )L symmetry is not broken by the anomaly.

What then is the effect of this mixed background-operator anomaly? The answer is

that it deforms the symmetry into a non-trivial 2-group, where the SU(Nf )
(0)
L 0-form

symmetry extends the U(1)(1)
m magnetic 1-form symmetry.

The quickest way to see this is is to consider SU(Nf )
(0)
L background gauge transforma-

tions,

L(1)a → L(1)a + dλ(0)a + · · · , (8.11)

under which the integrand of the Euclidean path integral measure transforms as

exp

(
ik

∫
λ(0)adL(1)a ∧ f (2) + · · ·

)
(8.12)

Note that this is not just some innocuous c-number phase that multiplies the partition
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function like in the case of an ’t Hooft anomaly, because it contains the field/operator f (2).

The fix for this is that f (2) is precisely the current for the U(1)(1)
m symmetry, which

couples to its own background field B(2)
m via

Sm =
i

2π

∫
B(2)
m ∧ f (2) . (8.13)

We thus see that we can absorb the anomalous, operator-valued transformation of the

path integral measure if we declare that B(2)
m transforms non-trivially under SU(Nf )L

background gauge transformations – schematically (and up to factors):

B(2)
m → B(2)

m − kλ(0)adL(1)a + · · · . (8.14)

We recognize this as a version of the Green-Schwarz anomaly cancellation mechanism

from string theory, but for background fields rather than dynamical ones. This is one

of many ways of characterizing the fact that SU(Nf )
(0)
L and U(1)(1)

m fuse to a non-trivial

2-group global symmetry.

The Green-Schwarz shift ofB(2)
m under SU(Nf )L gauge transformation shows that SU(Nf )L

is not a subgroup of the 2-group. By contrast U(1)(1)
m is a subgroup, and the two-group

is a non-trivial extension of U(1)(1)
m by SU(Nf )

(0)
L . (The integer k coming from the

mixed anomaly represents the obstruction class that prevents the extension from split-

ting.) This fact has many interesting consequences for the dynamics of theories with

2-group symmetry – you’ll hear more about this in the lectures by Clay Cordova.

9 Yang-Mills Theory and QCD

9.1 1-Form Symmetries in Pure SU(N) Gauge Theory

A primary motivation of these lectures is to better understand the dynamics (phases,

phase transitions) of interesting 4d non-Abelian gauge theories, like QCD – an SU(3) theory

with quarks in the fundamental representation.

Recall: free Maxwell theory has both a U(1)(1)
e electric and a U(1)(1)

m magnetic 1-form

symmetries, because it has neither dynamical electric nor magnetic charges. This means that

Wilson and ’t Hooft lines cannot end – flux conservation symmetry.

Adding electric/magnetic charges in multiples of n breaks U(1)(1)
e,m → Z(1)

n . Now Wilson

and ’t Hooft lines can end, but only in multiples of n. In other words flux is conserved
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modulo n.

What happens in pure YM theory, say with gauge group SU(N)? They key is the

gluons themselves carry color charge: they transform in the adjoint representation of the

gauge group.

This means that the adjoint Wilson line can always be physically screened and in par-

ticular it can end:

Tradj Pexp

(
i

∫ x

Aadj

)
F (x) (9.1)

This is gauge invariant. The same applies to any representation R of SU(N) that occurs in

the product of any number of adjoint representations.

What are these representations? They are precisely the ones described by Young Dia-

grams whose number of boxes p is divisible by N , i.e. p is an integer multiple of N .

What is algebraically specially about these representations? There is an important

subgroup of the SU(N) gauge group called the center: it consists of precisely those SU(N)

transformations that commute with all elements of the SU(N) gauge group. For SU(N) this

central subgroup (also just called the “center”) consists of the following matrices,

Uω = ω1N×N , ωN = 1 , (9.2)

i.e. ω is an N -th root of unity. Note that Uω is clearly unitary, and that detUω = ωN = 1, so

it is in fact an SU(N) matrix. Thus the center of SU(N) consists of the N -th roots of unity.

This is a cyclic group of order N , i.e. it is ZN .

Every representation R of SU(N) induces a representation of the ZN center. since this

group is abelian it suffices to specify a ZN valued charge, in other words an integer mod N .

For SU(N) this mod-N charge is also called the N -ality. (For SU(3), which is the case

relevant for QCD, it is called triality.)

It can be shown that the N -ality of a representation R is precisely the number of boxes

in its Young diagram. Simple examples:

• The SU(N) fundamental representation � always has N -ality 1.

• The SU(N) adjoint representation can be made by taking N ⊗ N − trace, so it is a

Young diagram with one fundamental � times one anti-fundamental N − 1 vertical

box-stack. [DRAW FIGURE!] It thus has N boxes and trivial N -ality.

• The symmetric and anti-symmetric representations both have N -ality 2.

Thus the Wilson lines that can be screened by, i.e. end on, gluon fields are precisely
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those that transform trivially under the ZN center of SU(N), or equivalently those that

have vanishing N -ality. This is in one to one correspondence with saying that these are all

representations of the the quotient group

PSU(N) = SU(N)/ZN . (9.3)

As a simple example PSU(2) = SU(2)/Z2 = SO(3).

Let us discuss the flip side of this: consider any Wilson line WR(C) in some representation

of SU(N) that has non-trivial N -ality, the most obvious candidate being the fundamental

representation � with N -ality 1, but also the symmetric or anti-symmetric representations

(at least for sufficiently large N : for N = 2 the anti symmetric is the singlet and the

symmetric the adjoint, while for N = 3 the symmetric and anti-symmetric representations

have triality 2 ≡ −1(3). In fact the anti-symmetric of SU(3) is exactly the anti-fundamental

representation.)

Since the Gluons have trivial N -ality they cannot screen the N -ality of any such line.

Thus the N -ality of a Wilson line is a meaningful, conserved notion of “electric flux”, in other

words it is a 1-from symmetry. One often denotes this one-form symmetry by Z(1)
N , with the

superscript (1) emphasizing the fact that it is a 1-form symmetry.

One can explicitly show this by: a) constructing topological surface operators that im-

plement the action of the symmetry on Wilson lines and b) by explicitly coupling pure YM

theory to discrete Z(1)
N background gauge fields. These are discrete versions of the electric

B-field B(2)
e in Maxwell theory. I will not explain this construction in detail because it is

somewhat technical. But if you work on such things it is essential to know it.

Note that SU(N) YM theory does not have magnetic 1-form symmetries. Just like

the electric 1-form symmetries are given by the center of gauge group Z(G) for any gauge

group G, with Z(G) = ZN for G = SU(N), the magnetic 1-form symmetries are given by

(the Pontryagin dual of) π1(G). Since SU(N) is simply connected, its π1(SU(N)) = 0 and

there are no magnetic 1-form symmetries.

In summary: pure SU(N) YM theory has Z(1)
N electric 1-form symmetry, called center

symmetry, and no magnetic 1-form symmetry.

The Z(1)
N center symmetry was discovered in the early days of QCD, by thinking about

what the theory does at finite temperature. There one finds that the symmetry is unbroken

at low temperatures, signaling confinement, and spontaneously broken at high temperatures.

This also means that pure YM theory undergoes a genuine thermal phase transition as it is

heated up. This is relevant to the early universe and physics at heavy ion colliders.
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Let us discuss what unbroken and spontaneously broken Z(1)
N symmetry implies, recalling

the analogy with the U(1)(1)
m symmetry in the Abelian Higgs model. There we learned that:

• Spontaneously broken U(1)(1)
m means a massless photon, interpretable as a Nambu-

Goldstone boson for the symmetry. ’t Hooft lines charged under the symmetry have

perimeter law.

• Unbroken U(1)(1)
m occurs in the gapped Higgs phase. There ’t Hooft lines are confined

– they obey area law, and there are finite tension Magnetic strings (ANO vortices)

carrying magnetic flux, i.e. U(1)(1)
m charge.

In pure YM theory the 1-form symmetry is electric, i.e. acts on Wilson rather than ’t

Hooft lines, and it is a discrete Z
(1)
N symmetry, rather than a continuous one. This means that

if the symmetry is spontaneously broken it need not imply a massless particle (no Goldstone

theorem!), so in principle there could still be a gap. But the IR could not be completely

trivial, e.g. in the Ising model in the Z(0)
2 breaking phase there are two vacua, but the theory

is gapped. Analogously, spontaneously breaking Z
(1)
N can in principle lead to a gapped theory,

but there must be a TQFT in the deep IR. This is similar to what happened in the Abelian

Higgs model with electric charge qe > 1. There the Higgs phase was gapped, but there is

a Zqe TQFT in the deep IR. In any case the Wilson loops have perimeter law, i.e. they are

deconfined.

What does unbroken Z(1)
N symmetry mean? It means confinement, i.e. the expectation

values of all Wilson loops with non-trivial N-ality (which cannot be completely screened

by gluons) decay more rapidly than perimeter law, and thus have zero vev. In terms of

static potentials, it means that the confining potential between a quark Q in some rep R

and its anti-quark Q rises faster than a constant at long distances, thus confining the QQ

pair!Conventional wisdom says that in fact more is true:

• The system will develop a mass gap, and the only particles will be massive glueballs.

Proving this is a million dollar Clay Millenium problem.

• The mechanism for confinement is the existence of finite-tension confining electric

strings, that give rise to a linearly rising QQ potential at long distances, and hence

an area-law decay for all Wilson loops of non-trivial N -ality. This certainly implies

unbroken Z
(1)
N center symmetry, but is (at least at face value) a stronger statement.

Note: there are examples of theories that are gapless and confine in the sense of hav-

ing an unbroken 1-form center symmetry, but the confining potential is not linear and
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there are no finite tension strings. A simple example is 3d Maxwell theory, where the

Coulomb potential V (r) ∼ log r is already confining.

The main evidence that this is true comes from the lattice! It is hardwired into the idea of

Mandelstam and ’t Hooft that electric confinement in YM is somehow the electric-magnetic

dual of magnetic confinement via ANO vortices/flux tubes/strings in a Higgs model. This

has been made sharpest in supersymmetric theories, as explained for instance by Seiberg and

Witten.

Something similar happens in pure YM at finite temperature, which amounts to com-

pactifying euclidean time τ ∼ τ + β with the KK radius β = 1/T the inverse temperature.

As realized early on by Poyakov and Susskind, the natural thing to do is to wrap the Wilson

loop on the circle, so it is topologically non-trivial. Sometimes such a compactified time-like

Wilson loop is known as a Polyakov loop. So we have S1
β × R3 with a wilson loop wrapped

on S1
β. This loop looks from the point of view of the 3d space R3 like a point operator –

a standard local operator in 3d! And correspondingly the surface operator implementing

the Z1
N center symmetry in 4d reduces to a surface operator in 3d, which is codimension

1 and behaves like a standard 0-form symmetry in 3d. This is the conventional setting for

symmetry breaking in 3d: we have a 0-form ZN symmetry under which the Polyakov loop is

charged (according to its N-ality) and a standard 0-form symmetry in 3d that can measure

that N-ality.

Now we can ask whether the symmetry is broken or not: at low temperature T � λ,

i.e. at very large β, we are nearly in 4d, and the fact that the symmetry is unbroken there

means that it should also be unbroken on large circles. This means that the expectation

value of the Polyakov loop on the S1
β should be exactly zero, since it is charged under the

center symmetry (assuming it has non-trivial N -ality, like the fundamental loop).

What happens on small circles, i.e. at large temperatures? The confining phase melts

(the transition is belived to be second order for SU(2) gauge theory, with Ising critical

exponents, and 1-st order for N ≥ 3, becoming strongly 1st order for largere N), and at very

high temperatures one sees the deconfined quarks and gluons of the UV theory. In some very

rough sense (which is not completely correct) high-temperatures should correspond to weak

coupling g(T ) � 1 because of asymptotic freedom, and this is mostly (but not completely)

true. Using this one can say quite a bit about the high-T phase, which is a quark-gluon

plasma. Now the Polyakov loop has an expectation value – this does not mean perimeter

law, since we are not scaling the size of the loop, but simply that it has an expectation value

when viewed as a 3d local operator.

The transition from low-T confined phase to large-T deconfined phase is a sharp ther-
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modynamic phase transition. In fact it is more or less a standard Landau-style symmetry

breaking transition, except that the order parameter is a Polyakov loop (local in 3d, but

not in 4d) and the broken symmetry looks like a normal 3d 0-form symmetry, but actually

descends from a 4d 1-form symmetry.

9.2 From YM to QCD

So far we have mostly discussed pure YM theory, possibly in with very heavy probe

quarks. QCD contains light quarks. They are described by Dirac fermions ΨD in the fun-

damental representation R (or any other representation if we want to consider that) of the

gauge group, with Lagrangian

Lquark = iΨDγ
µ
(
∂µ − iAaµT a(R)

)
ΨD −mqΨDΨD . (9.4)

Here mq is the quark mass. If there are several flavors of quarks, there is such a Lagrangian

for each of them.

In QCD, the quarks are in the fundamental R = � of the SU(N) group. We consider the

situation where there are Nf such quarks, which we take either massless or light compared

to Λ. In the real world we have N = Nf = 3, with the u, d, s quarks being rather light. There

are also c, b, t quarks that are much heavier that we’ll ignore in our discussion.

In this theory, the QCD coupling runs off to very strong values and can make the quarks

of QCD form color-neutral bound states: either QQ meson bound states, or ∧NQ baryon

bound states. Together these make up the Hadronic degrees of freedom we see in real world

QCD, at least for N = 3 colors.

In common parlance one calls this regime of QCD “confined” but it is more correct to

say that it is color neutral or color screened, i.e. all observed particles carry zero net color

charge.

10 QCD Has No 1-form Symmetries; Higgs/Confinement

Continuity

Above, I alluded to the fact that confinement in QCD is less sharply defined than in

QCD. Let us elaborate on this.

Pure YM theory has an exact Z(1)
N one-form center symmetry, which protects the strings.

The conserved “chromoelectric” flux is the center charge (or N -ality) of the string. The fact
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that the symmetry is at most ZN was related to the fact that the adjoint gluons in YM can

screen any line of vanishing N -ality.

Adding additional fields in the adjoint representation of the gauge group, e.g. scalars

or fermions, which naturally appear in supersymmetric extensions of YM theory, does not

interfere with the 1-form symmetry which remains ZN .

However, things are different in the presence of dynamical matter fields in the funda-

mental representation. For instance, QCD has fundamental fermionic quarks. We can also

contemplate theories with fundamental scalar fields, e.g. the standard model Higgs field is in

the fundamental of the SU(2)W weak gauge group. Let us focus for concreteness on QCD.

Just like electrons in QED can end the fundamental qe = 1 Wilson lines, thus breaking

the electric U(1)(1)
e one-form symmetry of free Maxwell theory completely, the fundamental

quarks in QCD completely break the Z(1)
N center symmetry of pure SU(N) YM theory.

This is because such quarks can end a fundamental Wilson line (and products of quarks

can end any Wilson line with non-zero N -ality). Thus the quarks can screen all of these lines.

This has a number of physical ramifications:

• The stable strings of pure YM, which are charged under Z(1)
N , become unstable in the

presence of finite-mass quarks. This is because the strings, which are electric flux

tubes, can break/snap open by pair-creating QQ pairs. The rate for this process is

rapid for light quarks (mQ � Λ) but is exponentially suppressed for heavy quarks. In

the mQ →∞ decoupling limit, the quarks disappear and the 1-form symmetry of pure

YM re-emerges.

• Because of the screening, the expecation values of large Wilson loops now have perime-

ter law. However, because there is no one-form symmetry anymore, the expectation

value of large Wilson loops (at zero temperature) or Polyakov loops (at finite T ) is no

longer an order parameter for symmetry breaking, and hence a non-zero vev does not

necessarily imply a phase transition.

This is most dramatic in real-world QCD at finite temperature: using numerical lattice

simulations, it has been shown that QCD with physical, non-zero quark masses does

not have a sharp phase transition as one dials the temperature T from the confining

“regime” at very low T to the very hot quark-gluon plasma regime at very large T . It

is tempting to think that these regimes are different phases, but they are like the liquid

and vapor phase of water: qualitatively very different, but in principle part of the same

thermodynamic phase.
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• A closely related phenomenon is that it QCD with fundamental matter it is not straight-

forward to distinguish the confining phase from a Higgs phase. Perhaps the simplest

example is SU(2) gauge theory with a single Higgs field ha in the doublet representa-

tion of SU(2). In the positive mass-square phase for ha we can integrate out the Higgs

field and obtain pure YM gauge theory, which is gapped and trivial. If the Higgs mass

is very large it has an emergent Z2 1-form symmetry that is unbroken in the confining

phase, but it is not exact.

In the large negative mass-square phase for h, the theory is in a Higgs phase and

the SU(2) gauge group is completely Higgsed. [Go through this in detail, it is

like in the Standard Model!] Thus both large-mass phases are gapped and trivial,

with no unbroken symmetries. It is reasonable to conjecture that there is no phase

transition in between. This has not been shown analytically for the model I discussed,

but it has been looked ad with the lattice. Also, exact analytic proofs are available for

some lattice gauge theories with matter – most famously due to Fradkin and Shenker

(late 70s). The resulting standard lore that emerges from this is that in the presence

of fundamental matter, Higgsing and confinement cannot be distinguished and should

be continuously connected, without a phase transition. This lore has been verified in

many examples.

However, there are some curious exceptions involving symmetry-protected topological

phases (SPTs), which you can learn about in some recent talks I have given.
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