
Exercise sheet 1: Monday June 24, 2024.
(See chapter 2 of Zohar Komargodski’s notes https://indico.ictp.it/
event/7624/session/19/contribution/84/material/0/0.pdf)

Quantum field theories here are assumed local, invariant under translations
and rotations (but not necessarily reflections). They have a symmetric
conserved stress-energy tensor Tµν : the operator equations Tµν = Tνµ and
∂µTµν = 0 are valid at separated points in correlators. We assume there is
no local gravitational anomaly: the equations hold at coincident points
too. In contrast we allow anomalies in current conservation ⟨∂µjµ . . .⟩ =
(contact terms) namely ⟨pµjµ(p) . . .⟩ = (polynomial) in momentum space.

Exercise 1. The stress-tensor two-point function is characterized by its (center of
mass) momentum space expression ⟨Tµν(q)Tρσ(−q)⟩, which can only1 depend
on qµ and the metric δµν . (i) Using symmetry and conservation show that,
in n ≥ 2 spacetime dimensions, for a pair of scalar functions g, f ,

⟨Tµν(q)Tρσ(−q)⟩ = f(q2)(qµqν − q2δµν)(qρqσ − q2δρσ)

+ g(q2)
(
(qµqρ − q2δµρ)(qνqσ − q2δνσ)

)
|symmetrize(ρ,σ).

(ii) Check that in 2d the two tensor structures coincide, so
without loss of generality

wlog g(q2) = 0.
Exercise 2. Assume that the QFT is two-dimensional and scale-invariant.

(i) Show that f(q2) = c/q2 for some constant c. Check that ⟨Tµ
µ (q)Tρσ(−q)⟩

is polynomial in q hence Tµ
µ has a vanishing two-point function with Tρσ at

separated points.
(ii) Couple the QFT to a frozen metric gµν = δµν +hµν close to Euclidean.

At first order this adds 1
2

∫
gµνT

µνd2x to the action. Deduce

⟨Tµ
µ (x)⟩g=δ+h ∼ c(∂ρ∂σ − δρσ□)hρσ +O(h2).

This is c times the linearized Ricci scalar R of g; higher-order corrections
in h come from higher-point functions of Tρσ. This is the famous 2d trace
anomaly ⟨Tµ

µ ⟩ = − c
24πR.

(iii) In a metric gµν = eφδµν , check that T ′
zz = Tzz + αc(−(∂φ)2 + 2∂2φ)

is holomorphic for some value of α: use the conservation equation ∇µTµν = 0
and R = −4e−φ∂z∂zφ.

Exercise 3. (i) Consider a chiral conserved current jz in a 2d CFT. From ⟨jz(z)jz(w)⟩ =
k/(z−w)2 (k is called the level) deduce ⟨jzjz⟩ = kq2z/q

2 in momentum space.
1This is a slight lie: in 3d theories without reflection symmetry, one has an extra tensor

structure obtained by symmetrizing qλελµρ(qσqν−q2δσν) in µ ↔ ν and also in ρ ↔ σ, where
ε is the Levi–Civita tensor. It is correctly invariant under swapping (µ, ν, q) ↔ (ρ, σ,−q).
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(ii) Consider a U(1) conserved current jµ in a (translation & rotation
invariant) 2d QFT. Show that symmetries fix (for some functions aL, a, aR)

⟨jzjz⟩ = q2zaL(q
2)/q2, ⟨jzjz⟩ = −a(q2), ⟨jzjz⟩ = q2zaR(q

2)/q2.

Using the separated-point conservation equation qzjz + qzjz = polynomial,
and adjusting contact terms by shifting correlators by polynomial in qz, qz,
find that aL−a and aR−a are constant. If the UV and IR limits q2 → +∞, 0
are CFTs deduce that levels of chiral currents obey kUV

R − kUV
L = kIR

R − kIR
L ,

a simple version of ’t Hooft anomaly matching.
(iii) In a background gauge field A, show ⟨∂µjµ⟩ = (1/2)(aL−aR)ϵ

µνFµν+
O(A2) for a suitable choice of contact terms.

Exercise 4. Consider a Poincaré-invariant 2d QFT with a U(1) conserved current j.
Understand how charge conjugation and time-reversal acts on j and T .
Show that ⟨jµTνρ⟩ = 0. (More generally, no mixed anomaly between these
symmetries: gauging either one does not spoil the other.)

Exercise 5. (i) In 2d, take currents jµ and j′µ with ⟨jµj′ν⟩ = qµενρq
ρ/q2. Show j′µ is ex-

actly conserved while conservation of jν has contact terms. By adding contact
terms to ⟨jµj′ν⟩ make ∂µjµ = 0 exact and see that ∂µj′µ gets contact terms.

(ii) In n = 2k dimensions, same questions with k + 1 currents and〈
j
(0)
µ0 (q

(0))j
(1)
µ1 (q

(1)) . . . j
(k)
µk (q

(k))
〉
= εµ1...µkν1...νkq

(1)ν1 . . . q(k)νkq
(0)
µ0 /q

(0)2.
(iii) Turn on backgrounds A(i) for j(i), i = 1, . . . , k, and compute the

effect of the previous line on ⟨∂µj
(0)
µ ⟩ in terms of field strengths of A(i).

Exercise 6. Switch to 4d. Left-handed fermions of the Standard Model transform
in (three generations of) (1,2)c1 + (1,1)c2 + (3,2)c3 + (3,1)c4 + (3,1)c5
under the gauge symmetry SU(3)×SU(2)×U(1), where the notation (a,b)c
denotes the tensor product of a representation of SU(3) of dimension a, of
SU(2) of dimension b, and of a charge c representation of U(1). Denoting
generators of the gauge group by tα, the gauge anomaly for any triplet of
generators tα, tβ, tγ can be calculated by a triangle Feynman diagram, and is
proportional to ∑

fermion representation R
TrR(tαtβtγ + tαtγtβ).

Check that the anomalies involving SU(3) and SU(2) generators vanish.
Check that the remaining gauge-anomaly cancellations (together with the
gauge-gravitational anomaly 2c1+ c2+6c3+3c4+3c5 = 0) only allow for two
possible hypercharge assignments up to scaling. One of them is the Standard
Model answer c1 = 1/2, c2 = −1, c3 = −1/6, c4 = 2/3, c5 = −1/3.
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Exercise sheet Dumitrescu Lecture 1.

Exercise 7 (Abelian Duality in Diverse Dimensions). Much intuition about
phases and transitions can be gleaned from mean-field theory. Let us consider
the mean-field (i.e. semiclassical) dynamics of a real scalar field ϕ with a Z2

Ising symmetry. Since we are working at leading order in the semiclassical
expansion, we just minimize the potential and ignore loop corrections. Thus
the discussion applies in any spacetime dimension D. (Whether or not this
is a good description depends on D.)

• Analyze the vacuum structure as a function of the mass m2 ∈ R given a
quartic potential of the form

V (ϕ) = m2ϕ2 + λ4ϕ
4, λ4 > 0.

In particular discuss the order of the transition at m2 = 0. (In applications to
the classical, finite-temperature Ising model m2 ∼ T − Tc, but the discussion
also applies to quantum phase transitions at zero temperature in the Ising
universality class, in which case m2 is some coupling in the Hamiltonian.)

• Show that the transition can be made 1st order by breaking the Z2 symmetry
via a linear perturbation ∆V = hϕ. In the Ising model h ∈ R is an external
magnetic field. Sketch the phase diagram as a function of m2, h. Argue that
generically the only way for a line of 1st order phase transition to genuinely
end (rather than turn into some other lines(s) of transitions) is in a 2nd order
point.

• Consider the Ising model with Z2 symmetry and a sextic potential, V (ϕ) =
m2ϕ2+λ4ϕ

4+λ6ϕ
6. Imagine that λ6 > 0, so that the potential is stable, but

that m2, λ4 ∈ R can have either sign. Analyze the phase diagram and show
that the sign of λ4 controls the order of the phase transition as we dial m2.
The point m2 = λ4 = 0 at which the order of the phase transition changes is
called a multi-critical point. Here it is also called a tri-critical point since
we are dialing two parameters (rather than the single parameter to reach a
generic critical point). Is the tri-critical point described by the same physics
as the line of second-order Ising transitions at λ4 > 0?

• The previous point shows that a first order line can change into a second
order line at a multi-critical point. Are there other possible behaviors for
a 1st order line other than this and ending in a second order point? Hint:
think of the phase diagram of water.
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Exercise 8 (Abelian Duality in Diverse Dimensions).
Generalize the derivation of electric-magnetic duality in D = 4 reviewed

in lecture to the following settings. For low D these occur in many QFT
applications. The case D > 4 is interesting in the context of string theory,
supergravity, holography etc.

• Start with ordinary U(1) Maxwell theory with field strength f (2) = da(1)

as above, but now work in D spacetime dimensions (with D ≥ 3). Carry
out the duality explicitly and show that the dual gauge field ã(D−3) that
must be introduced as a Lagrange multiplier is a (D − 3)-form gauge field
with (D − 2)-form field strength f̃ (D−2) = dã(D−3). Spell out explicitly the
gauge transformations and flux quantization rule for ã(D−3). Hint: if the
general case is confusing, first do D = 3.

• Given a compact boson χ ∼ χ+2π in any dimension D, show how to dualize it
into a D−1-form gauge field. Hint: this case overlaps with the D = 3 limit of
the pervious point. In D ≥ 3 such a a compact boson is necessarily a Nambu-
Goldstone boson for its broken shift symmetry, while in D = 2 the compact
boson is not a Goldstone boson (in agreement with the Coleman-Mermin-
Wagner theorem on the absence of spontaneously continuous symmetry
breaking in 2d).

• Both Maxwell theory and a compact boson are examples of a p-form gauge
field. In general, a p-form gauge field a(p) has field strength f (p+1) = da(p)

and gauge transformations a(p) → a(p)+dλ(p−1). Here λ(p−1) is itself a (p−1)-
form gauge field (defined recursively in p). Thus λ(p−1) has integer fluxes
on (p− 1)-cycles,

1

2π

∫
Σp−1

λ(p−1) ∈ Z ,

and applying the Dirac argument in this case we learn that f (p+1) has integer
fluxes on (p+ 1)-cycles,

1

2π

∫
Σp+1

f (p+1) ∈ Z .

We take the action to be of generalized Maxwell type:

S =
1

2e2

∫
MD

f (p+1) ∧ ∗f (p+1) .

What is the mass dimension of the coupling e2? Show that a(p) can be dualized
into a (D−p−2)-form gauge field ã(D−p−2) with dual field strength f̃ (D−p−1) =
dã(D−p−2).
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