ID de Contribution: 12 Type: Non spécifié

Damien Roy

mardi 4 juin 2024 14:10 (1 heure)

Parametric geometry of numbers and simultaneous approximation to geometric progressions

An important problem in Diophantine approximation is to determine, for

a given positive integer n, the supremum $\lambda \boxtimes n$ of the exponents $\lambda \boxtimes n(\xi)$ of uniform simultaneous rational approximation to geometric progressions $(1,\xi,\xi2,\ldots,\xi n)$ whose ratio ξ is either a transcendental real number or an algebraic real number of degree > n. In 1969, Davenport and Schmidt provided an upper bound on $\lambda \boxtimes n$ and, via geometry of numbers, they deduced a corresponding lower bound on the exponent of best approximation to such ξ by algebraic integers of degree at most n+1. The same general transference principle applies to other classes of numbers, like approximation to ξ by algebraic units of degree at most n+2, as Teuli´e showed in 2001. Recall that Dirichlet's theorem on simultaneous rational approximation yields $\lambda \boxtimes n \ge 1/n$. However, we still don't know, for any $n \ge 3$, if $\lambda \boxtimes n$ is equal to 1/n or strictly greater.

Inthistalk,weconcentrateonthecasesn=2andn=3. Forn=2,Ishowedin 2003 that the upper bound of Davenport and Schmidt for $\lambda\boxtimes 2$ is best possible, namely that $\lambda\boxtimes 2=1/\gamma\sim 0.618$, where γ stands for the golden ratio. Then, for many years, I thought that $\lambda\boxtimes 3$ could be equal to the positive root $\lambda 3\sim 0.4245$ of the polynomial T $2-\gamma 3T+\gamma$, until I realized that it is strictly smaller. As the argument lead only to a very small improvement on the upper bound, I simply published, in 2008, the proof that $\lambda\boxtimes 3\leq \lambda 3$.

In the presentation, we take the point of view of parametric geometry of numbers. We first recall the basic facts that we need about n-systems and dual n-systems. For n=2, we explain why a point $(1,\xi,\xi 2)$ with optimal exponent $\lambda \boxtimes 2(\xi) = 1/\gamma$ admits a very simple self-similar dual 3-system, we give generic algebraic relations between the points of Z3 that realize this map up to a bounded difference, and we show how these in turn determine the point $(1,\,\xi,\,\xi 2)$. One can hope that a similar phenomenon holds for each $n\geq 2$. For n=3, assuming that $\lambda\boxtimes 3(\xi)=\lambda 3$, we find an interesting self-similar dual 4-system attached to the point $(1,\xi,\xi 2,\xi 3)$ and algebraic relations with similar properties between the points that realize it up to bounded difference. However, they eventually lead to a contradiction. . .

In general, the theory attaches a dual n-system $P=(P1,...,Pn)\colon [0,\infty) \to Rn$ to any non-zero point u of Rn, and P is unique up to bounded difference. This encodes most of the Diophantine approximation properties of u. For a geometric progression $u=(1,\xi,\xi 2,\xi 3)$ in R4 with $\lambda \boxtimes 3(\xi)>$

 $2-1 \sim 0.4142$, we can show that the behavior of P is qualitatively much simpler than that of a general dual 4-system. Moreover, the differences P3(q) - P1(q) and P4(q) - P2(q) both tend to infinity with q. Based on this, we deduce the existence of a sequence of integral bases of R4 which, in a simple way, realize P up to a bounded difference. We propose this as a tool to improve the present upper bound $\lambda 3$ on $\lambda \square 3(\xi)$. By contrast, the current way of studying $\lambda \square n(\xi)$ for a general n is to form a sequence of so-called minimal points for $u = (1,\xi,...,\xi n)$, which can be loosely described as a sequence of points of Zn+1 that realize the first component P1 of P up to bounded difference.