

QCD-related uncertainties on precision measurement of electroweak parameters

Émilien CHAPON (CEA/Irfu)

Assemblée générale 2024 du GDR QCD

May 26, 2024

Electroweak precision measurements

- The electroweak sector of the SM is overconstrained by precision measurements of the weak and Higgs boson masses and properties
- Best measured parameters ($\alpha(0)$ scheme):
 - $\alpha = 1/137.03599139(31)$
 - $G_F = 1.1663787(6) \times 10^{-5} \, \text{GeV}^{-2}$
 - *m_Z* = 91.1876(21) GeV
- Relation between these parameters:

- Predicting the value for one parameter based on the measurement of the others
- Internal consistency checks of the SM
- Radiative corrections certain the loops

Global electroweak Standard Model fits

Comparing direct measurements (horizontal and vertical bands) with Standard Model predictions using other data (ellipses)

GFitter

How to measure the W mass

- Main observables: p_T^{ℓ} and m_T
 - Physics modelling (W p_T and helicity states, PDFs) \rightarrow larger impact on p_T^{ℓ}
 - Hadronic recoil (reconstruction of particles recoiling against the W boson, needed for p_T^{ν}) → larger impact on m_T
 - Need ≲ permil precision on all effects!

Ingredients to the W mass measurement

- Physics corrections: width, ISR (nonzero p_T^W), FSR (QED)
- Detector effects: lepton calibration and resolution, missing transverse energy resolution (\rightarrow recoil; for m_T), efficiencies and acceptance
- All with uncertainties!

- Clear interest in combining measurements from different experiments (e.g. very different PDF effects)
- However they are in clear tension
- Need also to bring the measurements to a common QCD framework (PDFs, etc.)

Update to Additional (small) common PDF updates undate $= m_{W}^{ref} + \delta m_{W}^{PDF} + \delta m_{W}^{pol} + \delta m_{W}^{other}$ m_{M} Common W boson Published polarization update Émilien Снаром (CEA/Irfu) AG GDB OCD value 26/05/2024 6/16

Effective meaxing angle in a nutshell

■ Parity-violating vector coupling of the Z to fermions → non-vanishing forward-backward asymmetry:

$$A_{FB} = rac{N_{
m fwd} - N_{
m bwd}}{N_{
m fwd} + N_{
m bwd}} \propto 1 - 4 \sin^2 heta_W$$

- "forward" vs "backward": defined in the Collins-Soper frame (rest frame of the Z boson)
- q vs \bar{q} disambiguation: better at high $|y_z|$ (high-x valence q vs low-x sea \bar{q})
 - Large $|\eta_{\ell}|$ acceptance crucial for high precision

Weak mixing angle and PDFs

- The forward-backward asymmetry depends strongly on the initial state quark flavour and on the dilepton rapidity and mass
- At large $|y_Z|$ the sensitivity is larger
- Can exploit the different dependence on y, m to disentangle PDF effects

QCD modelling for W and Z measurements

Precision measurements of electroweak parameters at the LHC (e.g. $\sin^2 \theta_{\text{eff}}^{\ell}$, m_W) require excellent QCD modelling of the data

- Distributions to be modeled:
 - $\blacksquare m_W: p_T^\ell, m_T = \sqrt{2p_T^\ell p_T^\nu (1 \cos \Delta \phi)}$
 - $\sin^2 \theta_{\text{eff}}^{\ell}$: A_{FB} (forward-backward asymmetry in the Collins-Soper frame)

QCD uncertainties in m_W and $\sin^2 \theta_{\text{eff}}^{\ell}$ measurements

W mass

QCD modelling uncertainties:

W-boson charge	W	7+	W	r —	Com	bined
Kinematic distribution	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower μ_F with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

Weak mixing angle

Theoretical uncertainties (excluding PDFs):

Modeling parameter	Muons	Electrons
Dilepton $p_{\rm T}$ reweighting	0.00003	0.00003
$\mu_{\rm R}$ and $\mu_{\rm F}$ scales	0.00011	0.00013
POWHEG MINLO Z+j vs. Z at NLO	0.00009	0.00009
FSR model (PHOTOS <i>vs.</i> PYTHIA 8)	0.00003	0.00005
Underlying event	0.00003	0.00004
Electroweak $\sin^2 \theta_{\text{eff}}^{\ell} vs. \sin^2 \theta_{\text{eff}}^{u,d}$	0.00001	0.00001
Total	0.00015	0.00017

PDF uncertainties (profiling them or not):

Channel	Not constraining PDFs	Constraining PDFs
Muons	0.23125 ± 0.00054	0.23125 ± 0.00032
Electrons	0.23054 ± 0.00064	0.23056 ± 0.00045
Combined	0.23102 ± 0.00057	0.23101 ± 0.00030

Parton distribution functions

L. Harland-Lang @ DIS2024

$$\sigma = \sum_{ij} \int dx_1 dx_2 f_i(x_1, \mu_F^2) f_j(x_2, \mu_F^2) \hat{\sigma}_{ij}(x_1 p_1, x_2 p_2, Q, \mu_F^2)$$

- Assuming collinear factorisation (universality), PDFs can be fitted from data (fixed target, HERA DIS, collider incl. LHC)
- High precision PDFs require high precision theory (NNLO–N³LO QCD + NLO EW)
- Different PDF groups use different methodologies and different parametrisations
- Uncertainties: incredibly difficult to assess
 - Basic idea is simple: typically χ^2 (data, theory+PDF) scan
 - Methodology ("tolerance" dealing with tensions / inconsistencies between datasets)? Parametrisation? Missing higher orders? Correlations with new physics, SM params?

cea

Parton distribution functions: impact on W/Z measurements

- PDFs have a very large impact on the results
- Recent PDFs are very precise... but tensions between different groups
- Is profiling OK? How to handle results from different PDF groups?

Xuan Chen

Boson $p_{\rm T}$ modelling

- Several codes reaching N³LO QCD accuracy and beyond
 - DYTurbo, NNLOJet, CuTe-MCFM...
 - NNLO $\alpha_{EW} \times \alpha_S$ also studied (but beware of factorisation!)
 - Resummation: N³LL or beyond

Boson $p_{\rm T}$ modelling

- Several ways to handle large Λ_{QCD}/q_T logs at low q_T
 - q_T resummation, SCET, TMDs
 - Good agreement found between different formalisms
- Event generators use parton shower
- For W: tune generators to very precise p_T^Z and use p_T^W/p_T^Z from theory

EPJC 76 (2016) 291

- ATLAS found PYTHIA 8 AZ to be the best model
- $W \rightarrow Z$: critical to handle (heavy) flavour and EW effects
- Émilien CHAPON (CEA/Intuity) measured (same data as used for next ATLAS mW)

26/05/2024 **14 / 16**

Angular coefficients

The cross section for the production of a spin-1 resonance can be expanded to all orders in QCD into an angular coefficients decomposition:

 $\frac{d\sigma}{d\Omega} = \frac{d\sigma}{dmdp_T dy} [(1 + \cos^2 \theta) + \frac{1}{2}A_0(1 - 3\cos^2 \theta) + A_1\sin 2\theta\cos\phi + \frac{1}{2}A_2\sin^2\theta\cos 2\phi + A_3\sin\theta\cos\phi + A_4\cos\theta]$

+ $A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi$]

- Well predicted by pQCD (N³LO) and measured in data
- However inaccurate in old event generators (Resbos1) \rightarrow care needed in m_W combination

Summary

- Precision measurements of EW parameters \rightarrow stringent tests of the SM consistency
- Very challenging measurements experimentally
- Many challenges on the theoretical side too
- Very active community with frequent discussions between experiments and theorists (e.g. LHC-EWWG)

A few interesting papers and talks:

- ATLAS measurement of *m_W* (2403.15085, superseding EPJC 78 (2018) 110)
- W mass combination (2308.09417)
- CMS measurement of $\sin^2 \theta_{\text{eff}}^{\ell}$ (CMS-PAS-SMP-22-010, 2024)
- Joint session with GDR QCD at 2023 IRN Terascale workshop
- Orsay 2023 W mass workshop
- Discussion on theoretical systematics in LHC precision measurements (LHC-EWWG, 2024)

Thank you

cea irfu

CEA SACLAY 91 191 Gif-sur-Yvette Cedex France emilien.chapon@cern.ch