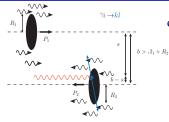


Inclusive quarkonium photoproduction at the LHC

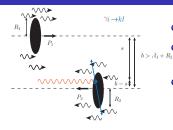
Kate Lynch Jean-Philippe Lansberg (IJCLab), Charlotte Van Hulse (UAH) & Ronan McNulty (UCD)

GDR, Tours 2024

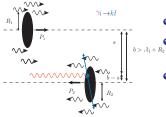
This project is supported by the European Union's Horizon 2020 research and innovation programme under Grant agreement no. 824093

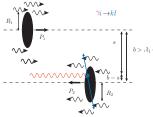

K. Lynch (IJCLab & UCD)

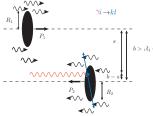
Inclusive UPC @ LHC


1/19

Part I

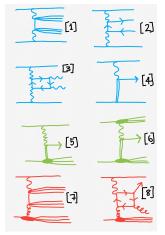

Introduction


• Accelerated charged particles emit photons


- Accelerated charged particles emit photons
- Photoproduction usually studied in ep colliders \rightarrow clean photoproduction environment
- However, the LHC is an excellent source of photons \rightarrow can reach extremely large $W_{\gamma p}$

- Accelerated charged particles emit photons
- Photoproduction usually studied in *ep* colliders ightarrow clean photoproduction environment
- However, the LHC is an excellent source of photons \rightarrow can reach extremely large $W_{\gamma p}$
- Energies available at the LHC:
 - $pp @ \sqrt{s} = 13 \text{ TeV} \rightarrow \frac{W_{\gamma p}^{max}}{\gamma p} \approx 5 \text{ TeV} \rightarrow x_{\gamma}^{max} = 0.14$ $pPb @ \sqrt{s_{NN}} = 8.16 \text{ TeV} \rightarrow \frac{W_{\gamma p}^{max}}{\gamma p} \approx 1.5 \text{ TeV} \rightarrow x_{\gamma}^{max} = 0.03$
- Energies available at ep colliders:
 - $W_{\gamma p}^{\max \text{HERA}} = 240 \text{ GeV}$ $W_{\gamma p}^{\max \text{EIC}} = 100 \text{ GeV}$

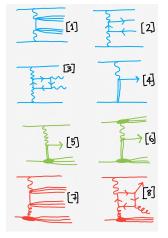
- Accelerated charged particles emit photons
- Photoproduction usually studied in ep colliders \rightarrow clean photoproduction environment
- However, the LHC is an excellent source of photons \rightarrow can reach extremely large $W_{\gamma p}$
- Energies available at the LHC:
 - $pp @ \sqrt{s} = 13 \text{ TeV} \rightarrow \frac{W_{\gamma p}^{max}}{\gamma p} \approx 5 \text{ TeV} \rightarrow x_{\gamma}^{max} = 0.14$ • $pPb @ \sqrt{s_{NN}} = 8.16 \text{ TeV} \rightarrow \frac{W_{\gamma p}^{max}}{\gamma p} \approx 1.5 \text{ TeV} \rightarrow x_{\gamma}^{max} = 0.03$
- Energies available at *ep* colliders:
 - $W_{\gamma p}^{\text{max HERA}} = 240 \text{ GeV}$
 - $W_{\gamma p}^{\text{max EIC}} = 100 \text{ GeV}$
- At hadron-hadron colliders: Ultra Peripheral Collisions select photoproduction
 - Done so far only for exclusive processes



- Accelerated charged particles emit photons
- Photoproduction usually studied in *ep* colliders \rightarrow clean photoproduction environment • However, the LHC is an excellent source of photons
 - However, the LHC is an excellent source of photons \rightarrow can reach extremely large $W_{\gamma p}$
- Energies available at the LHC:
 - $pp @ \sqrt{s} = 13 \text{ TeV} \rightarrow W_{\gamma p}^{max} \approx 5 \text{ TeV} \rightarrow x_{\gamma}^{max} = 0.14$ • $pPb @ \sqrt{s_{NN}} = 8.16 \text{ TeV} \rightarrow W_{\gamma p}^{max} \approx 1.5 \text{ TeV} \rightarrow x_{\gamma}^{max} = 0.03$
- Energies available at *ep* colliders:
 - $W_{\gamma p}^{\text{max HERA}} = 240 \text{ GeV}$
 - $W_{\gamma p}^{\text{max EIC}} = 100 \text{ GeV}$
- At hadron-hadron colliders: Ultra Peripheral Collisions select photoproduction
 - Done so far only for exclusive processes

We advocate inclusive quarkonium photoproduction can be measured via UPC at the LHC

K. Lynch (IJCLab & UCD)


- So far focus of UPCs @ LHC on exclusive processes (fully determined final state) [1-4]
- Recently there have been studies with nuclear break up [5,6*]
- Only existing inclusive UPC study [7]

- [1] Exclusive dijet: CMS, PRL 131 (2023) 5, 051901
- Exclusive dilepton: ATLAS, PRC 104 (2021) 024906, PLB 777 (2018) 303-323, PLB 749 (2015) 242-261; CMS, JHEP 01 (2012) 052
- Light-by-light scattering: ATLAS, Nature Phys. 13 (9) (2017) 852–858; CMS, PLB 797 (2019) 134826
- [4] Exclusive quarkonium: ALICE, EPJC 79 (5) (2019)
 402, PRL 113 (23) 232504; LHCb, JHEP 06 (2023)
 146, JPG 40 (2013) 045001, JHEP 10 (2018) 167
- [5] Diffractive quarkonium with nuclear break up: ALICE, PRD 108 (2023) 11
- [6] Peripheral* quarkonium photoproduction: ALICE, PRL 116 (2016) 22, 222301, PLB 846 (2023) 137467; LHCb, PRC 105 (2022) L032201
- Inclusive UPC: ATLAS, PRC 104, 014903 (2021), Not yet published: ATLAS-CONF-2022-021, ATLAS-CONF-2017-011

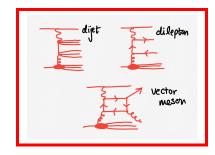
*non-UPC

- So far focus of UPCs @ LHC on exclusive processes (fully determined final state) [1-4]
- Recently there have been studies with nuclear break up [5,6*]
- Only existing inclusive UPC study [7]

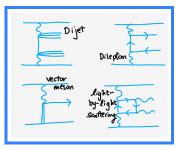
- [1] Exclusive dijet: CMS, PRL 131 (2023) 5, 051901
- Exclusive dilepton: ATLAS, PRC 104 (2021) 024906, PLB 777 (2018) 303-323, PLB 749 (2015) 242-261; CMS, JHEP 01 (2012) 052
- Light-by-light scattering: ATLAS, Nature Phys. 13 (9) (2017) 852–858; CMS, PLB 797 (2019) 134826
- Exclusive quarkonium: ALICE, EPJC 79 (5) (2019)
 402, PRL 113 (23) 232504; LHCb, JHEP 06 (2023)
 146, JPG 40 (2013) 045001, JHEP 10 (2018) 167
- [5] Diffractive quarkonium with nuclear break up: ALICE, PRD 108 (2023) 11
- [6] Peripheral* quarkonium photoproduction: ALICE, PRL 116 (2016) 22, 222301, PLB 846 (2023) 137467; LHCb, PRC 105 (2022) L032201
- Inclusive UPC: ATLAS, PRC 104, 014903 (2021), Not yet published: ATLAS-CONF-2022-021, ATLAS-CONF-2017-011

[8]Inclusive quarkonium photoproduction: NOT YET MEASURED AT THE LHC!

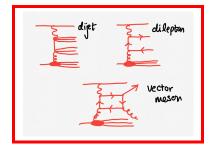
*non-UPC


K. Lynch (IJCLab & UCD)

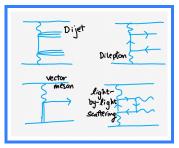
Inclusive UPC @ LHC


May 28, 2024

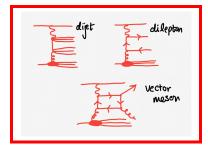
Exclusive: fully determined final state


Vector Vector

Exclusive: fully determined final state

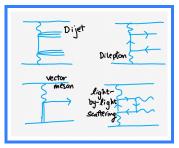


• Probe Generalised Parton Distributions Inclusive: not fully determined final state

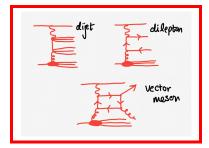


Probe Parton Distribution Functions

Exclusive: fully determined final state

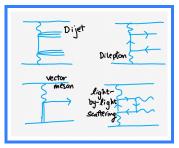


- Probe Generalised Parton Distributions
- Colourless exchange

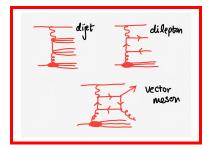


- Probe Parton Distribution Functions
- Colourful exchange

Exclusive: fully determined final state

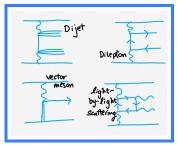


- Probe Generalised Parton Distributions
- Colourless exchange
- Experimentally clean: even @ LHC

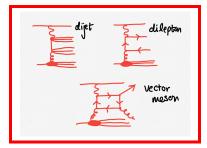


- Probe Parton Distribution Functions
- Colourful exchange
- Experimentally challenging: large backgrounds

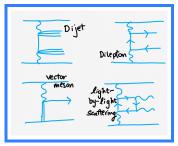
Exclusive: fully determined final state



- Probe Generalised Parton Distributions
- Colourless exchange
- Experimentally clean: even @ LHC
- Smaller rates

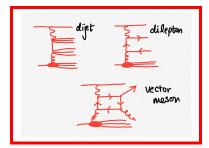

- Probe Parton Distribution Functions
- Colourful exchange
- Experimentally challenging: large backgrounds
- Larger rates

Exclusive: fully determined final state


- Probe Generalised Parton Distributions
- Colourless exchange
- Experimentally clean: even @ LHC
- Smaller rates
- Initial state kinematics fully determined

Inclusive: not fully determined final state

- Probe Parton Distribution Functions
- Colourful exchange
- Experimentally challenging: large backgrounds
- Larger rates
- Initial state kinematics **not** fully determined


Exclusive: fully determined final state

- Probe Generalised Parton Distributions
- Colourless exchange
- Experimentally clean: even @ LHC
- Smaller rates
- Initial state kinematics fully determined
- Measured at the LHC

K. Lynch (IJCLab & UCD)

Inclusive: not fully determined final state

- Probe Parton Distribution Functions
- Colourful exchange
- Experimentally challenging: large backgrounds
- Larger rates
- Initial state kinematics not fully determined
- Should be measured at the LHC

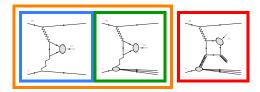
Quarkonium production status

- Discovered 50 years ago quarkonia are bound states of heavy quarks
- To date there is no theoretical mechanism that can describe all of the data
- Different models make different assumptions of the hadronisation
 - Colour Evaporation model: 1 free parameter per meson
 - $imes\,$ fails to describe di- J/ψ data
 - Colour Singlet model: no free parameters
 - \times tends to undershoot large p_T data
 - Colour Octet mechanism (extension to CSM via non-relativistic QCD): free parameters
 - × cannot simultaneously describe the photoproduction and polarisation data

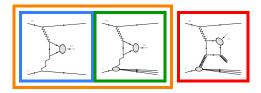
Maxim Nefedov, QaT 2023

LDME fit	J/ψ hadropr.	J/ψ photopr.	J/ψ polar.	η_c hadropr.
Butenschön et al.	$\checkmark (p_T > 3 \text{ GeV})$	✓	×	×
Chao et al. + η_c	$\checkmark (p_T > 6.5 \text{ GeV})$	×	1	1
Zhang et al.	$\checkmark (p_T > 6.5 \text{ GeV})$	×	1	1
Gong et al.	$\checkmark (p_T > 7 \text{ GeV})$	×	1	×
Chao et al.	$\checkmark (p_T > 7 \text{ GeV})$	×	1	×
Bodwin et al.	$\checkmark (p_T > 10 \text{ GeV})$	×	1	×

Quarkonium production status

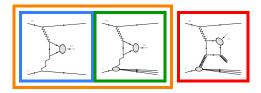

- Discovered 50 years ago quarkonia are bound states of heavy quarks
- To date there is no theoretical mechanism that can describe all of the data
- Different models make different assumptions of the hadronisation
 - Colour Evaporation model: 1 free parameter per meson
 - $imes\,$ fails to describe di- J/ψ data
 - Colour Singlet model: no free parameters
 - \times tends to undershoot large p_T data
 - Colour Octet mechanism (extension to CSM via non-relativistic QCD): free parameters
 - imes cannot simultaneously describe the photoproduction and polarisation data

Maxim Nefedov, QaT 2023


LDME fit	J/ψ hadropr.	J/ψ photopr.	J/ψ polar.	η_c hadropr.
Butenschön et al.	$\checkmark (p_T > 3 \text{ GeV})$	✓	×	×
Chao et al. + η_c	$\checkmark (p_T > 6.5 \text{ GeV})$	×	1	1
Zhang et al.	$\checkmark (p_T > 6.5 \text{ GeV})$	×	1	1
Gong et al.	$\checkmark (p_T > 7 \text{ GeV})$	×	1	×
Chao et al.	$\checkmark (p_T > 7 \text{ GeV})$	×	1	×
Bodwin et al.	$\checkmark (p_T > 10 \text{ GeV})$	×	1	×

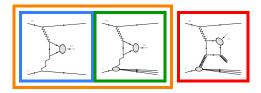
Want more inclusive photoproduction data \rightarrow EIC in 10 years LHC today!

K. Lynch (IJCLab & UCD)



• Data exists for diffractive (exclusive and proton-dissociative) & inclusive/inelastic photoproduction @ HERA $\sqrt{s} = 320$ GeV

- Data exists for diffractive (exclusive and proton-dissociative) & inclusive/inelastic photoproduction @ HERA $\sqrt{s} = 320$ GeV
- Different contributions separated using experimental cuts on p_T and $z = \frac{P_p \cdot P_{\psi}}{P_p \cdot P_{\psi}}$...


diffractive region: $p_T < 1$ GeV, z > 0.9; inclusive region: $p_T > 1$ GeV, z < 0.9

- Data exists for diffractive (exclusive and proton-dissociative) & inclusive/inelastic photoproduction @ HERA $\sqrt{s} = 320$ GeV
- Different contributions separated using experimental cuts on p_T and $z = \frac{P_p \cdot P_{\psi}}{P_p \cdot P_{\psi}}$...

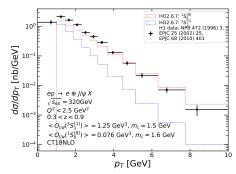
diffractive region: $p_T < 1$ GeV, z > 0.9; inclusive region: $p_T > 1$ GeV, z < 0.9

- HERA result: $\sigma_{\text{exclusive}}^{\text{HERA}} \simeq \sigma_{\text{dissociative}}^{\text{HERA}} \simeq \sigma_{\text{inclusive}}^{\text{HERA}}$
- Expectation: $\sigma_{\text{exclusive}}^{\text{LHC}} \simeq \sigma_{\text{dissociative}}^{\text{LHC}} \simeq \sigma_{\text{inclusive}}^{\text{LHC}} \rightarrow \text{only difference is photon flux!}$
- Exclusive and proton-dissociative photoproduction have been measured @ LHC
- Expect that inclusive yield is sufficiently large we will demonstrate this

- Data exists for diffractive (exclusive and proton-dissociative) & inclusive/inelastic photoproduction @ HERA $\sqrt{s} = 320$ GeV
- Different contributions separated using experimental cuts on p_T and $z = \frac{P_p \cdot P_{\psi}}{P_p \cdot P_{\psi}}$...

diffractive region: $p_T < 1$ GeV, z > 0.9; inclusive region: $p_T > 1$ GeV, z < 0.9

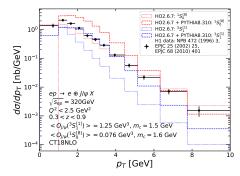
- HERA result: $\sigma_{\text{exclusive}}^{\text{HERA}} \simeq \sigma_{\text{dissociative}}^{\text{HERA}} \simeq \sigma_{\text{inclusive}}^{\text{HERA}}$
- Expectation: $\sigma_{\text{exclusive}}^{\text{LHC}} \simeq \sigma_{\text{dissociative}}^{\text{LHC}} \simeq \sigma_{\text{inclusive}}^{\text{LHC}} \rightarrow \text{only difference is photon flux!}$
- Exclusive and proton-dissociative photoproduction have been measured @ LHC
- Expect that inclusive yield is sufficently large we will demonstrate this
- Measuring inclusive quarkonium photoproduction presents the opportunity to understand the production mechanism


Part II

Methodology

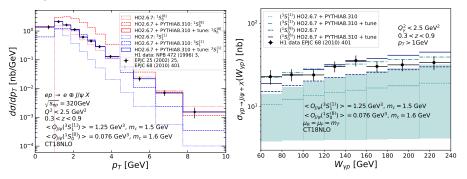
Is it feasible to measure inclusive quarkonium photoproduction at the LHC?

We must:


- Evaluate yield & P_T reach: need reliable Monte Carlo (MC) sample Problem:
 - Only LO MC for quarkonia + QCD corrections are large!
 - LO CS undershoots undershoots large P_T data
 - LO CO captures large P_T data

Is it feasible to measure inclusive quarkonium photoproduction at the LHC?

We must:


- Evaluate yield & P_T reach: need reliable Monte Carlo (MC) sample Problem:
 - Only LO MC for quarkonia + QCD corrections are large!
 - LO CS + PS undershoots improved but still undershoots
 - LO CO + PS captures overshoots low P_T data

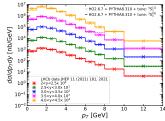
Is it feasible to measure inclusive quarkonium photoproduction at the LHC?

We must:

Solution: perform tune in P_T to HERA data + keep \sqrt{s} and y dependence from photon flux

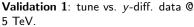
*p*Pb no ambiguity as to the photon emitter: allows for reconstruction of *z* & *W*_{γp}
 Reject background: reliable background MC + background reduction strategy

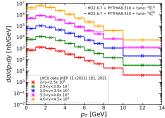
K. Lynch (IJCLab & UCD)

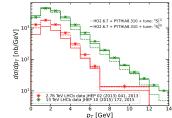

Background Monte Carlo: hadroproduction P_T distribution

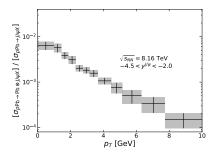
- Just as for photoproduction we tune our background Monte Carlo to data
- Compute tune factors using 5 TeV rapidity-integrated LHCb data under the assumptions:

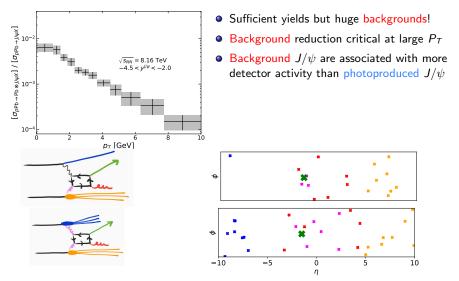
Background Monte Carlo: hadroproduction P_T distribution


- Just as for photoproduction we tune our background Monte Carlo to data
- Compute tune factors using 5 TeV rapidity-integrated LHCb data under the assumptions:
 - Tuning is y independent

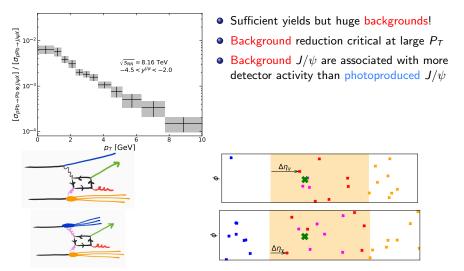

Validation 1: tune vs. *y*-diff. data @ 5 TeV.


Background Monte Carlo: hadroproduction P_T distribution

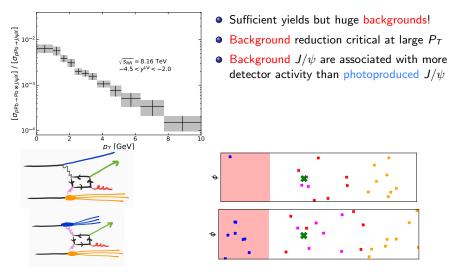

- Just as for photoproduction we tune our background Monte Carlo to data
- Compute tune factors using 5 TeV rapidity-integrated LHCb data under the assumptions:
 - Tuning is y independent
 - 2 Tuning is \sqrt{s} independent



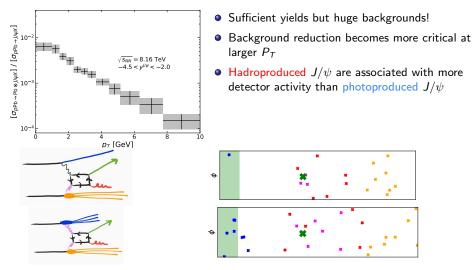
Validation 2: tune vs. 13- and 2.76 TeV data.



- Sufficient yields but huge backgrounds!
- Background reduction critical at large P_T
- Background J/ψ are associated with more detector activity than photoproduced J/ψ


• We propose 3 background reduction techniques based on different regions of detector acceptance

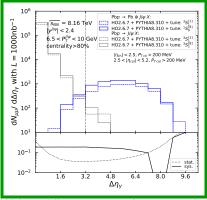
K. Lynch (IJCLab & UCD)


 We propose 3 background reduction techniques based on different regions of detector acceptance: I central Δη_γ: distance in rapidity between main detector on photon-going side and closet particle activity

K. Lynch (IJCLab & UCD)

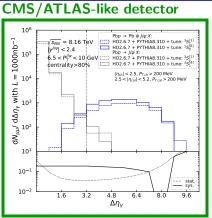
• We propose 3 background reduction techniques based on different regions of detector acceptance: I central II forward

K. Lynch (IJCLab & UCD)

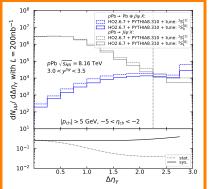


• We propose 3 background reduction techniques based on different regions of detector acceptance: I central II forward III far-forward

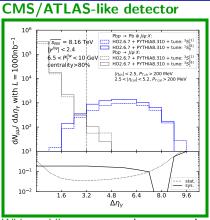
K. Lynch (IJCLab & UCD)


Method I: Rapidity gaps in CMS-, ATLAS-, and LHCb-like detectors

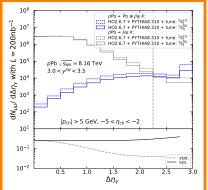
CMS/ATLAS-like detector


Wide rapidity coverage: clean separation between photo- and hadroproduction events

Method I: Rapidity gaps in CMS-, ATLAS-, and LHCb-like detectors


Wide rapidity coverage: clean separation between photo- and hadroproduction events

LHCb-like detector


Narrow rapidity coverage: less pronounced separation between photo- and hadroproduction events

Method I: Rapidity gaps in CMS-, ATLAS-, and LHCb-like detectors

Wide rapidity coverage: clean separation between photo- and hadroproduction events

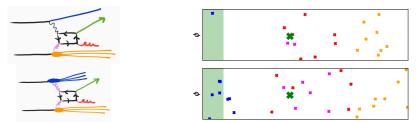
LHCb-like detector


Narrow rapidity coverage: less pronounced separation between photo- and hadroproduction events

 Selecting a cut value that minimises that statistical uncertainty: → removes O(99.99%) (O(99.9%)) of background events

K. Lynch (IJCLab & UCD)

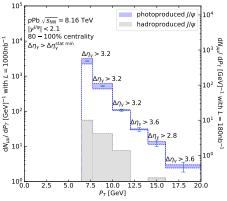
Inclusive UPC @ LHC


Background reducing techniques

Method II: forward activity with HeRSCheL at LHCb

- forward scintillator sensitive to charged particle activity in the region $5 < |\eta| < 10$
- Photoproduction events identified with no HeRSCheL activity

Background reducing techniques


Method III: far-forward activity with zero-degree calorimeter at ALICE, ATLAS, & CMS

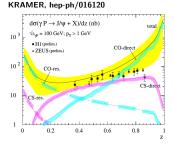
- detector close to the beam pipe ($|\eta|\gtrsim$ 8) sensitive to neutral particles
- UPCs identified as most peripheral events (80 100% centrality)
- Selecting events with 0 neutrons in ZDC can further enhance signal purity

Part III

Results

Photoproduction yields

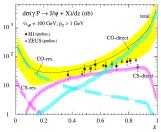
- It is possible to isolate photoproduction in the CMS & ATLAS detectors using methods I & III
- With Run3+4 lumi it is possible to **double** the HERA P_T reach (10 GeV \rightarrow 20 GeV)
- pPb in Run 3?
 Workshop: https://indico. cern.ch/e/pA_LHC_2024


detector	CMS-like	LHCb-like	CMS-like	LHCb-like
	<u>Run 2 lumi:</u>		Run 3+4 lumi:	
yield	$\mathcal{O}(10^3-10^5)$	$\mathcal{O}(10^3-10^4)$	$\mathcal{O}(10^4-10^6)$	$\mathcal{O}(10^4-10^5)$
P_T reach	14 GeV	8 GeV	20 GeV	14 GeV

K. Lynch (IJCLab & UCD)

- We have shown that it is possible to measure a P_T differential inclusive photoproduction cross section
- We would also like differential to be in $W_{\gamma p}$ and z:
 - complementary to HERA measurement

- We have shown that it is possible to measure a P_T differential inclusive photoproduction cross section
- We would also like differential to be in $W_{\gamma p}$ and z:
 - complementary to HERA measurement
 - quarkonium production mechanism


octet vs. singlet

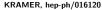
- We have shown that it is possible to measure a P_T differential inclusive photoproduction cross section
- We would also like differential to be in $W_{\gamma p}$ and z:
 - complementary to HERA measurement
 - quarkonium production mechanism
 - control the resolved-photon contribution direct and resolved photons

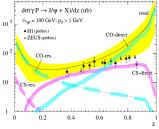
NNNY

KRAMER, hep-ph/016120

- We have shown that it is possible to measure a P_T differential inclusive photoproduction cross section
- We would also like differential to be in $W_{\gamma p}$ and z:
 - complementary to HERA measurement
 - quarkonium production mechanism
 - control the resolved-photon contribution direct and resolved photons

• Both variables are dependent on the photon energy! $Pb(P_{Pb}) + p(P_p) \rightarrow Pb(P'_{Pb}) + J/\psi(P_{\psi}) + X(P_X)$

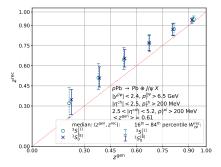

• By momentum conservation $P_{\gamma} = P_{\psi} + P_X - P_p$


$$W_{\gamma p} \simeq \left(2 \underbrace{\left(\underline{P_{\psi} + \underline{P_{X} - \underline{P_{p}}}}_{P_{p}}\right)^{1/2}}_{Q_{p}} \& z = \frac{\underline{P_{p} \cdot P_{\psi}}}{\underline{P_{p} \cdot \left(\underline{P_{\psi} + \underline{P_{X} - \underline{P_{p}}}\right)}}$$

- In the exclusive case $z \stackrel{P_{\gamma}}{=} 1$ and the rapidity of the J/ψ gives $W_{\gamma p}$
- In the inclusive case we have to examine the final state
- ? How well can we capture P_X at the LHC?

K. Lynch (IJCLab & UCD)

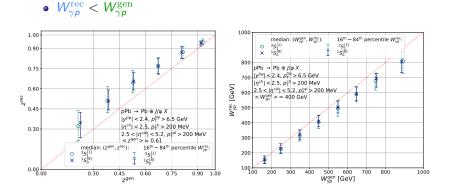
Inclusive UPC @ LHC


Kinematic reconstruction: results

• We remind that $P_X^- = \sum_i^N P_i^-$ and due to limited detector coverage $N_{\text{meas}} < N_{\text{true}}$

Kinematic reconstruction: results

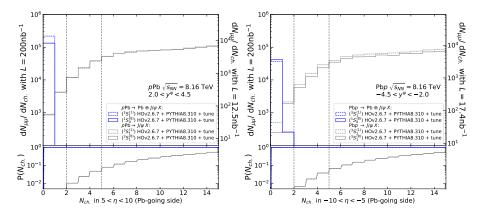
- We remind that $P_X^- = \sum_i^N P_i^-$ and due to limited detector coverage $N_{\text{meas}} < N_{\text{true}}$
- This results in the following biases;


```
• z_{\rm rec} > z_{\rm gen}
```

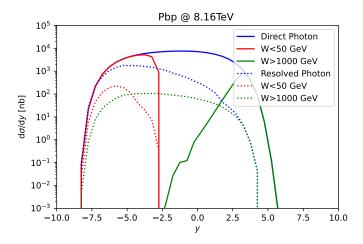

Kinematic reconstruction: results

- We remind that $P_X^- = \sum_i^N P_i^-$ and due to limited detector coverage $N_{\text{meas}} < N_{\text{true}}$
- This results in the following biases;

• $Z_{\rm rec} > Z_{\rm gen}$



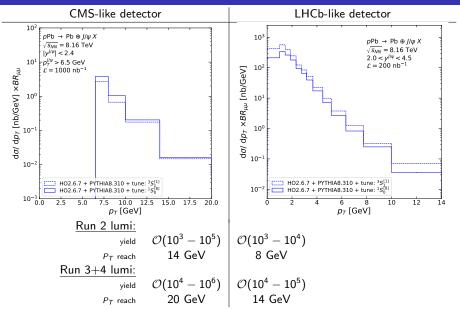
- z reconstruction improves with increasing values of z
- $W_{\gamma p}$ reconstruction improves for decreasing values of $W_{\gamma p}$


- The LHC can be used as a photon-nucleon collider
 - measuring inclusive J/ψ photoproduction at the LHC appears feasible which is complimentary to existing HERA measurements
- CMS is the most favourable experiment with the largest yield and P_T reach
- Possible to make a measurement at ALICE, ATLAS, and LHCb too!
- The $\Delta \eta_{\gamma}$ cut value allows for control over statistics and purity
- Both z and $W_{\gamma p}$ reconstruction appear possible with varying resolution which will allow control of the resolved contribution and offer the possibility to constrain the quarkonium production mechanism.
- Possible addition to the virtual access using: https://nloaccess.in2p3.fr/
- Possible extension of gamma-UPC to inclusive regieme JHEP 09 (2022) 248

Backup

Activity in HeRSCeL

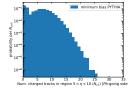
Direct and resolved photon rapidity comparison

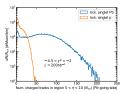


Resolved photon contribution increases with increasing photon energy $(W_{\gamma p})$; however, at most forward rapidities is suppressed.

K. Lynch (IJCLab & UCD)

Inclusive UPC @ LHC


Results: photoproduction P_T distributions and yields


K. Lynch (IJCLab & UCD)

From p to Pb in the HeRSCheL region

- The background is modelled by generating *p*A events with HELAC-Onia and passing them through PYTHIA; PYTHIA reads these as *pp* events.
- In a *pp* collision $N_{coll.} = 1$; whereas in a *p*A collision there are many more nucleons and therefore it is possible to have $N_{coll.} > 1$ [typically modelled using Glauber-type models].
- Using minimum bias events generated by PYTHIA, one can obtain a probability distribution for the number of charged tracks in the HeRSCheL region. [bottom left]
- To model the HeRSCheL signal using the PYTHIA events (i.e., converting *pp* to *pA*) events are randomly assigned a centrality class and then assigned *N_{coll}*. based on ALICE results. [bottom centre arXiv:1605.05680]
- For a given event, the total number of charged tracks in the HeRSCheL region is given by throwing $i = 1, ..., N_{coll.} 1$ points into the probability distribution, and summing over $N_{coll.}$.
- The transformation from pp to pA HeRSCheL distribution. [bottom right]

Centrality class	$\langle N_{\rm coll} \rangle_{\rm opt.}$	$\langle N_{\rm coll} \rangle_{\rm ALICE}$	b [fm]
2 - 10%	14.7	$11.7\pm1.2\pm0.9$	4.14
10 - 20%	13.6	$11.0 \pm 0.4 \pm 0.9$	4.44
20 - 40%	11.4	$9.6\pm0.2\pm0.8$	4.94
40-60%	7.7	$7.1\pm0.3\pm0.6$	5.64
60-80%	3.7	$4.3\pm0.3\pm0.3$	6.29
80-100%	1.5	$2.1\pm0.1\pm0.2$	6.91

Kinematics: z and $W_{\gamma p}$ reconstruction

$$\mathsf{Pb}(P_{\mathsf{Pb}}) + p(P_p)
ightarrow \mathsf{Pb}(P'_{\mathsf{Pb}}) + J/\psi(P_\psi) + X(P_X)$$

• By momentum conservation $P_{\gamma} = P_{\psi} + P_X - P_p$

- $P_{Pb} \simeq \frac{1}{2} P_{Pb}^{-} \eta_{+}$: lead-ion moving backward with negative rapidity
- $P_p \simeq \frac{1}{2} P_p^+ \eta_-$: proton moving forward with positive rapidity
- $P_X = \sum_{i}^{N} P_i$: sum over particle momenta

$$z = \frac{P_{\rho} \cdot P_{\psi}}{P_{\rho} \cdot \underbrace{(P_{\psi} + P_X - P_{\rho})}_{P_{\gamma}}} \simeq \frac{P_{\psi}^-}{P_X^- + P_{\psi}^-}$$
$$W_{\gamma \rho} \simeq \sqrt{2(P_{\psi} + P_X - P_{\rho}) \cdot P_{\rho}} \simeq \sqrt{(P_X^- + P_{\psi}^-)P_{\rho}^+}$$

• A particle *i* collinear to the proton has $P_i^- = 0$ and does not contribute to z

- Exclusive case: $P_X^- = 0 \rightarrow z = 1$
- A particle *i* collinear to the photon emitter has a large P_i^-
 - As we expect a rapidity gap between the photon emitter and the produced particles, much of the produced particles can be captured by the main LHC detectors

Lightcone four-vector representation

Choose two vectors along an axis such that,

$$\eta^{\pm} \cdot \eta^{\pm} = 0 \quad \& \quad \eta^{\mp} \cdot \eta^{\pm} = 2.$$
 (1)

A particle's four-momentum can be written as,

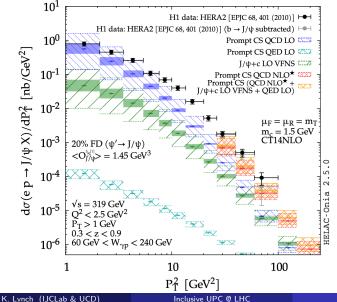
$$p = (E, p_x, p_y, p_z) = [P^+, P^-, \mathbf{p}].$$
 (2)

The scalar product of two four-momenta is given as,

$$\boldsymbol{p} \cdot \boldsymbol{q} = \frac{1}{2} \left(\boldsymbol{P}^+ \boldsymbol{Q}^- + \boldsymbol{P}^- \boldsymbol{Q}^+ \right) - \mathbf{p} \cdot \mathbf{q}. \tag{3}$$

() If p lies along the vector η^- , then the scalar product reduces to,

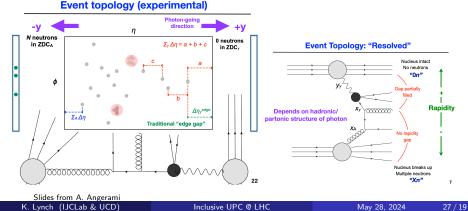
$$p \cdot q = \frac{1}{2} \left(P^- Q^+ \right). \tag{4}$$


Onsider some massless particle q,

- If q lies on the vector η^+ : $p \cdot q$ is maximised $\rightarrow p \cdot q = A$.
- If q is perpendicular to the vectors η^{\pm} : $p \cdot q = A/2$.
- If q lies on the vector η^- : $p \cdot q$ is minimised $\rightarrow p \cdot q = 0$.

K. Lynch (IJCLab & UCD)

NLO inclusive J/ψ photoproduction at HERA


"NLO inclusive J/ψ photoproduction at large P_T at HERA and the EIC", Flore et. al. 2021

ATLAS UPC dijet Study

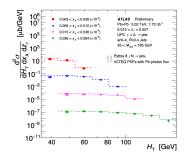
ATLAS-CONF-2022-021

- Pb-Pb @ $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
 - OnXn requirement [E_{ZDC} < 1 TeV]
 - $\sum_{\gamma} \Delta \eta$ requirement [instead of $\Delta \eta_{\gamma}^{edge}$]
 - Include resolved photon in analysis
 - What is the effect of higher order corrections on choice of gap definition?

From LHC programme coordination meeting; pPb and PbPb targets are for Run 3 and 4 and pp targets are for Run 3 only.

	ATLAS	CMS	ALICE	LHCb
рр	160 ft	o^{-1}	200 pb^{-1}	$25 \ {\rm fb}^{-1}$
PbPb	13 nb^{-1}			2 nb^{-1}
<i>p</i> Pb	1 pb	-1	$0.5 \ \mathrm{pb}^{-1}$	$0.2 \ \mathrm{pb}^{-1}$

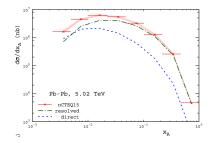
Pb-Pb inclusive dijets


ATLAS-CONF-2017-011, ATLAS-CONF-2022-021

• Triply differential cross section in,

$$z_{\gamma} = \frac{m_{jets}}{\sqrt{s_{NN}}} e^{+y_{jets}}, \quad x_A = \frac{m_{jets}}{\sqrt{s_{NN}}} e^{-y_{jets}}, \quad H_T = p_T^{jet1} + p_T^{jet2}$$
(5)

• Jets defined using anti- k_T with R = 0.4; $p_T^{jet1(2)} > 15(20)$ GeV and $|\eta^{jet}| < 4.4$.


- selection of events:
 - $\Delta \eta_A < 3$ [hadro.] and $\sum_{\gamma} \Delta \eta > 2.5$ [photo.]
 - sum-of-gaps retains high efficiency for the resolved-photon contribution
 - OnXn biases towards lower impact parameter collisions

Pb-Pb inclusive dijets

Guzey, Klasen, PHYSICAL REVIEW C 99, 065202 (2019)

- Resolved contribution dominant in region $x_A > 0.01$ [equivalently, resolved-photon contribution dominant for J/ψ in most forward region]
- Resolved and direct contributions comparable in region x_A < 0.01
- LO results (PYTHIA 8 + EPPS16 nPDF) quantitatively similar
- However, resolved contribution is larger @ NLO [this statement is scheme and scale dependant]

Comput.Phys.Commun. 184 (2013) 2562-2570

- Use MC samples generated by HELAC-Onia in the NRQCD framework to model the photoproduction and hadroproduction
 - Signal $[\gamma g \rightarrow J/\psi({}^3S^1_1)g]$ and $[\gamma g \rightarrow J/\psi({}^1S^8_0)g]$
 - Background $[gg \rightarrow J/\psi({}^3S_1^1)g$] and $[gg \rightarrow J/\psi({}^3S_1^8)g]$
- Use PYTHIA to shower partonic events
- The P_T distribution is not well described by leading order NRQCD or leading order NRQCD + Parton shower
- Perform a tune of leading order NRQCD + Parton shower MC to experimental data to correctly describe the P_T shape
 - photoproduction signal H1 ep 320 GeV data 10.1140/epjc/s10052-010-1376-5; 10.1007/s10052-002-1009-8
 - hadroproduction background LHCb 5 TeV pp data 10.1007/JHEP11(2021)181