

"Elucidating φ meson production from K⁺K⁻ decay channel in pp@4.5 GeV using HADES"

Suman Deb Laboratoire De Physique Des 2 Infinite Irène Joliot-Curie, Orsay

Laboratoire de Physique des 2 Infinis

Outline

Introduction

Motivation

- Analysis details
- Some Initial Results

Summary

Outlook

Introduction

why Resonance particle?

Different hadron class / Strangeness

Introduction

Why is ϕ meson interesting?

Meson	ω	782.7	23.25
Neutral			

 $\Gamma = 8.5 \text{ MeV}$; $\omega \rightarrow 3 \Pi$ (89 %); $\omega \rightarrow e^+e^-$ (7.3 *10⁻⁵)

Introduction

Why is ϕ meson interesting?

Important questions

baryons? Impact for hadronic medium studies \Rightarrow Are ϕ properties modified in the nuclear medium ?

• φ production mechanism in interactions between hadrons with u, d quarks ? Coupling to

How does ϕ contribute to in-medium strangeness and e⁺e⁻ production ?

Analysis Plan

Some Initial Results

Summary

Outlook

Test of OZI rule (Okubo-Zweig-lizuka) Source: Phys. Rev. D 16, 2336, (1977)

Test of OZI rule (Okubo-Zweig-lizuka) Source: Phys. Rev. D 16, 2336, (1977)

Def. A process in which there are disconnected quark lines, is less probable to occur

Test of OZI rule (Okubo-Zweig-lizuka)

Def. A process in which there are disconnected quark lines, is less probable to occur

From OZI rule,

- Explains the suppression of $\phi \rightarrow 3 \prod w.r.t \ \omega$
- Predicts strong suppression of φ production in hadronic interactions

Validity of OZI rule

- Validity of this rule was studied by ratio of production cross section of φ and ω meson as

$$R_{\phi/\omega} = \frac{A + B \to \phi X}{A + B \to \omega X} =$$

- First observation of violation of OZI rule in pp

Validity of OZI rule

 Validity of this rule was studied by ratio of production cross section of ϕ and ω meson as

$$R_{\phi/\omega} = \frac{A + B \to \phi X}{A + B \to \omega X} =$$

First observation of violation of OZI rule in pp \bullet

Is the enhanced cross section of ϕ related to the strange quark content of the nucleon?

OZI rule in pp reactions

- ϕ and ω meson production matrix elements measured as a function of excess energy
- OZI rule prediction for the ω/ϕ mixing is $-4.2*10^{-3}$

OZI rule in pp reactions

- ϕ and ω meson production matrix elements measured as a function of excess energy
- OZI rule prediction for the ω/ϕ mixing is <u>~4.2*10⁻³</u>

OZI rule Violation can be explained by

- Meson exchange models + FSI e.g. Titov et al. Eur. Phys. J. A, 7 (2000) 543-557 \bullet
- Or rescattering process, Kaon loops, Locher and Lu Z. Phys. A 351, 83 (1995)

OZI rule in pp reactions

- ϕ and ω meson production matrix elements measured as a function of excess energy
- OZI rule predication for the ω/ϕ mixing is <u>~4.2*10⁻³</u>

For this analysis

Available data : close to threshold or at high energies:

Important to fill the gap : new HADES data at 4.5 GeV

pp@4.5 GeV

This analysis is here

Motivation : pp -> ppΦ : Available data

Phase space only normalised to highest ANKE data

- Parameterised including FSI

- Available data : close to threshold or at high energies:
- Important to fill the gap : new HADES data at 4.5 GeV

Motivation : pp -> ppΦ : Available data

Phase space only normalised to highest ANKE data

Parameterised including FSI

Our measurement $\varepsilon = 563$ MeV

Motivation: Φ meson Angular distribution

Close to threshold: low relative angular momenta between the two protons and between ϕ and pp system

 $cos(\Theta_{pp}^{p})$: in the pp reference frame relative to the beam direction $cos(\Psi_{pp}^{p})$: in the pp reference frame relative to the Φ direction

Motivation: Φ meson Angular distribution

Close to threshold: low relative angular momenta between the two protons and between ϕ and pp system

 $cos(\Theta_{pp}^{p})$: in the pp reference frame relative to the beam direction

 $cos(\Psi^p_{pp})$: in the pp reference frame relative to the ${f \Phi}$ direction

Disto results pp 2.85 GeV (3.67 GeV/c) Balestra et al. PRC63 024004 (2001)

After acceptance corrections, ϕ angular distribution is found to be isotropic It is expected as the measurement is close to threshold, (Q=83 MeV)

In S wave relative to the protons

We are at much higher energy (Q=563 MeV), probably higher partial waves

Motivation: Φ meson Angular distribution and production mechanisms

K. Nakayama et al. Phys. Rev. C, 57:1580, 1998.

(b) contributing to meson production in NN reactions.

<u>Calculation of angular distribution of ω-meson</u>

Nucleonic current < Mesonic current : isotropic

Possible similar qualitative behaviour for ϕ ?

Motivation: Φ meson Angular distribution and production mechanisms

K. Nakayama et al. Phys. Rev. C, 57:1580, 1998.

(b) contributing to meson production in NN reactions.

<u>Calculation of angular distribution of ω-meson</u>

Nucleonic current > Mesonic current : Strong Anisotropy Nucleonic current < Mesonic current : isotropic

Possible similar qualitative behaviour for ϕ ?

- Angular distribution of ϕ meson at T_{lab} = 2.85 GeV and $\varepsilon = 83$ MeV
- Angular distribution is fairly flat
- Only small contribution of nucleonic current is required if the angular distribution drops at forward and backward angles

Motivation: Φ **coupling to baryon resonances**

<u>Φ resonance production via baryon resonance</u>

Mass range around 2 GeV

$pp \rightarrow pB_{\phi} \rightarrow pp\phi$

In this analysis, we would also be exploring this baryon resonance "by investigating ϕ proton invariant mass in the exclusive pp->pp ϕ channel"

Source: Bleicher and Steinheimer J.Phys.G 43 (2016) 1,015104

branching ratio of 2% added to URQMD to describe sub-threshold ϕ -production in heavy ion reactions

Motivation: Φ meson Polarisation

(1). At threshold, outgoing pp pair in ${}^{1}S_{0}$ state:

full alignment between spin projection of Φ and incident pp pair

(2). Alignment expected to be diluted at higher energies, due to the contribution of higher incident partial waves, K⁺-> K⁺/K⁻

Motivation: Φ meson Polarisation

(1). At threshold, outgoing pp pair in ${}^{1}S_{0}$ state:

(2). Alignment expected to be diluted at higher energies, due to the contribution of higher incident partial waves, K⁺-> K⁺/K⁻

<u>Angular distribution of K⁺ in Φ reference frame:</u>

$$W(\Theta_{\phi}^{K}) = \frac{3}{2} [\rho_{11} \sin^{2} \Theta_{\phi}^{K} + \rho_{00} \cos^{2} \Theta_{\phi}^{K}].$$

<u>Theoretical predictions : Titov et al. Phys.Rev.C 59 (1999) 999</u>

 $\rho_{00} = 0.23 + 0.04$, with mixture of ${}^{1}S_{0}$ and ${}^{3}P_{1,2}$

full alignment between spin projection of Φ and incident pp pair

Motivation: Φ meson Polarisation

(1). At threshold, outgoing pp pair in ${}^{1}S_{0}$ state:

(2). Alignment expected to be diluted at higher energies, due to the contribution of higher incident partial waves, K⁺-> K⁺/K⁻

<u>Angular distribution of K⁺ in Φ reference frame:</u>

$$W(\Theta_{\phi}^{K}) = \frac{3}{2} [\rho_{11} \sin^{2} \Theta_{\phi}^{K} + \rho_{00} \cos^{2} \Theta_{\phi}^{K}].$$

<u>Theoretical predictions : Titov et al. Phys.Rev.C 59 (1999) 999</u>

 $\rho_{00} = 0.23 + 0.04$, with mixture of ${}^{1}S_{0}$ and ${}^{3}P_{1,2}$

Extraction of spin density matrix elements via K+/K- angular distribution $\checkmark \Phi$ polarisation

 \checkmark additionnal information on production mechanism

full alignment between spin projection of Φ and incident pp pair

With this motivation, We Proceed Further

Objectives of this work : p(4.5 GeV)+p -> pp\phi[K⁺K⁻]

- 1) Inclusive/exclusive production cross section of φ meson
- Angular distribution of φ meson 2
- **φ** Polarisation via kaon angular distribution 3
- **Production Mechanism of φ meson** 4)
- Baryon resonance (φ,N) 5)

Objectives of this work : p(4.5 GeV)+p -> ppφ[K⁺K⁻]

1) Inclusive/exclusive production cross section of ϕ meson Angular distribution of ϕ meson 2 **φ** Polarisation via kaon angular distribution 3 **Production Mechanism of φ meson** 4

- Baryon resonance (φ,N) 5

We will be using HADES and Forward detector @ GSI to achieve this objectives

The HADES Detector @GSI

HADES collaboration and FAIR @ GSI

The HADES Detector - in detail

Experiments (2004-2022)

- Dense and hot hadronic matter studies: C+C (1 and 2 AGeV), Ar+KCI (1.75 AGeV), Au+Au (1.25 AGeV), Ag+Ag (1.65 AGeV).
- Cold matter studies : p+Nb (3.5 GeV), π^-+C/W (1.7 GeV/c), π^-+CH2/C (0.7 GeV/c).
- Elementary reactions: **p+p** (1.25, 2.2, 3.5 and recently 4.5 GeV), **d+p** (1.25 GeV/nucleon).

The HADES Detector - Particle identification for my work

Beam Proton with Kinetic energy 4.5 GeV made to collide with Target Proton

The HADES Detector - Particle identification for my work

$$m = \sqrt{\frac{(1-\beta^2)p^2}{\beta^2}}$$

Outline

Introduction

Motivation

Analysis Strategy

Some Initial Results

Summary

Outlook

Analysis Strategy

Analysis Strategy

This analysis

✓ focuses on both inclusive + exclusive channel ✓ uses both HADES and Forward detector

But this talk

✓ focuses on only <u>Inclusive</u> K+/K- using Energy loss and momentum dependent mass

Analysis details

Data Analysis ~ 15 x 10⁹ events \$Integrated Luminosity = 6.46 pb⁻¹

Methodology

Simulations

<u>PLUTO: event generator developed by the HADES collaboration</u>

Analysis by Rayane Abou Yassine

This analysis

-

 ${f \Phi}$ identified via hadronic decay channel:

Reconstructed by invariant mass distribution of daughter particles:

Particle identification

Particle identification: Step-1: Mass vs momentum from Simulation

 $K^{-} = 494 \text{ MeV/c}^{2}$

 $K^{+} = 494 \text{ MeV/c}^{2}$

Particle identification: Step-1: Mass vs momentum from Simulation

Particle identification: Step-1: Mass vs momentum from Simulation

Width from the fit vs Momentum: Simulation Vs Data

- Stopped kaons are not seen in data at low momentum and at high momentum, consistent kaons yield are not seen.
- However, kaon yield from data seems to be reasonable w.r.t simulation for 125 < mometum < 1200 MeV

So, Mass cut is restricted for momentum range [150 ,1400] MeV

Particle Identification in HADES : Step:3-> Using K⁺ Width on DATA

 $K^+ = 494 \text{ MeV/c}^2$ (PDG mass)

Particle Identification in HADES : Step:4-> particle from (p,dE/dx) of MDC

- Comparison of Energy loss distribution between data and simulation (PLUTO + Geant)
- Energy loss for proton seems bit lower than the theoretical curve in case of data

Particle Identification in HADES : Kaon from (p,dE/dx) of MDC

Particle Identification in HADES (In Summary)

PID for K⁺ in the analysis

- K⁺ region cut on (p, dE/dx)
- charge > 0
- Mass cut with $\sigma = \pm 2.5$ from simulation

And, PID for K⁻ in the analysis

- Similar to K⁺ (it will not change much)
- Charge < 0

Affect of cuts on selection of K+: Data vs Simulation

- In simulation, with cuts, we have almost no primary pions, only a low yield of secondary pions

Cuts remove approx. the same proportion of pions in sim and data, just you have many more pions in data.

Invariant Mass

Invariant mass Spectra (M_{inv}[K⁺K⁻]): Minimum biased

Fitting function:

Signal: Voigtian function (Convolution of Breit-Wigner and Gaussian function)

$$\left|\frac{\mathrm{d}N}{\mathrm{d}m_{\mathrm{KK}}} = \frac{A\Gamma}{(2\pi)^{3/2}\sigma} \int_{-\infty}^{\infty} \exp\left[-\frac{(m_{\mathrm{KK}}-m')^2}{2\sigma^2}\right] \frac{1}{(m'-M)^2 + \Gamma^2/4}$$

where, A -> Normalisation factor; M-> Mass; σ -> detector resolution

Background: Quadratic polynomial

We observe a very good significance of ~80 <u>And number of Φ produced ~80k</u>

Angular Distribution of Φ meson using PID from (p, dE/dx)-MDC + mass cut

$M_{inv}[K^{+}K^{-}]$) vs cos(θ_{Φ}^{cm}): Data vs Simulation

• Invariant mass in data is more inclined towards negative part

$cos(\theta_{\Phi}^{cm})$ distribution- Simulated events after reconstruction

Using Simulation (PLUTO+Geant),

Following $\cos(\theta_{\Phi}^{cm})$ are used for the current analysis

Cosine intervals: [-1.0,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1]

• We see that the angular distribution is generated isotropically and strongly distorted after reconstruction

As observed from Simulation, we are restricting this analysis to only negative part of distribution

Differential angular distribution of Φ meson for different Cos (θ_{Φ}^{cm})

Invariant mass [K+K-] under different cosine range: Method

Reconstructed Φ meson obtained for -0.8 < cosθ <-0.6
A very clear signal is obtained with number of Φ produced ~40k

Invariant mass [K+K-] under different cosine range: Method

• Reconstructed Φ meson obtained for -0.8 < cos θ <-0.6 • A very clear signal is obtained with number of Φ produced ~40k

This is repeated for other $\cos\theta$ intervals and simulation

$cos(\theta_{\Phi}^{cm})$ distribution- after bkg sub. + Normalised by events

Efficiency * Acceptance using PLUTO+ Geant

Efficiency*acceptance vs $cos(\theta_{\Phi}^{cm})$ distribution

Number of reconstructed Φ are obtained by the method described in slide -58

Only negative part is used for correction further

Differential Cross-section Vs $cos(\theta_{\Phi}^{cm})$ distribution

Summary

and production angular distribution

Next Step

- Network,...)
- Analysis of kaon angular distribution in reference frame

Outlook

- angular distribution of kaons) information on production mechanism (OZI rule)
- Complementary to HADES data for $\phi \longrightarrow e^+e^-$ measured simultaneously

• Very preliminary analysis of φ production in pp reaction at 4.5 GeV via K+K- decay (HADES data): signal extraction

• Large pionic background PID selection needs to be improved (add Inner TOF energy loss information, use Neural

• Large ϕ yield \longrightarrow very good perspective for extraction of cross section, angular distribution and polarization (via

Thank you for your kind attention

PLUTO+Geant Particle identification: Step-2: Projection of Mass for diff. momentum range K⁺

Projection of mass spectra within momentum range entum-range: 250.00 < p < 400.00 pp@4.5 GeV Fitting-range: 350.00 - 600.00 ----- PLUTO + Gen (pp->o[K⁺K⁻]) 500ł Mean(K⁺): 494.00 — Gaussian for K⁺ Sigma(K*: 16.80 400 300ŀ 2001 100 600 650 700 Mass * charge MeV/c² 450 500 550 300 350 400

500

600

400

100

200

300

800

Mass * charge MeV/c²

900

700

PLUTO+Geant Particle identification: Step-2: Projection of Mass for diff. momentum range

Particle identification: Step-2: Projection of Mass for diff. momentum range K⁺

580

420 440 460 480 500 520 540 560 580 Mass * charge MeV/c²

Particle identification: Step-2: Projection of Mass for diff. momentum range

DATA Invariant mass [K+K-] under different cosine range (dE/dx cut)

-1 < cos(θ) < -0.75

$-0.50 < \cos(\theta) < -0.25$
Invariant mass [K+K-] under different cosine range (dE/dx cut)

$-0.25 < \cos(\theta) < 0$

Invariant mass [K+K-] under different cosine range (dE/dx cut)

$-1 < \cos(\theta) < -0.8$

SImulation

$-0.8 < \cos(\theta) < -0.6$

Invariant mass [K+K-] under different cosine range (dE/dx cut)

$-0.4 < \cos(\theta) < -0.2$

Affect of cuts on selection of K+: Data vs Simulation

- In simulation, with cuts, we have almost no primary pions, only a low yield of secondary pions \bullet

Cuts remove approx. the same proportion of pions in sim and data, just you have many more pions in data.

z-vertex vs Missing mass

Missing mass (MeV)