Using dileptons to estimate the initial temperature of QCD matter^{1,2}

Greg Jackson

Subatech, CNRS/Nantes U./IMT-Atlantique

- AG du GDR QCD • Tours • May 2024 -

 $^{^1\,\}text{based}$ on collaboration w/ J. Churchill, L. Du, C. Gale and S. Jeon $^2\,\text{supported}$ by the ANR under grant No. 22-CE31-0018

Electromagnetic probes

Invariant mass spectrum of dileptons pairs, e.g. from $q\bar{q} \rightarrow \gamma^* \rightarrow e^+ e^-$

Au + Au $\sqrt{s_{NN}}$ = 200 GeV (MinBias)

Intermediate Mass Range (IMR) = $1 \dots 3$ GeV

[STAR collaboration (2024)]

 $\begin{array}{ll} \tau\sim 0.2 \ {\rm fm/c} & {\rm production \ of \ light \ quarks \ \& \ gluons} \\ 1-2 \ {\rm fm/c} & {\rm thermalisation \ rapid \ (?)} \\ 2-10 \ {\rm fm/c} & {\rm quark-gluon \ plasma} \\ 10-20 \ {\rm fm/c} & {\rm hadron \ gas} \\ & \tau\rightarrow\infty & {\rm dilute, \ no \ further \ interactions} \end{array}$

 $\begin{aligned} & \tau \sim 0.2 \ \text{fm/c} & \text{production of light quarks \& gluons} \\ & 1-2 \ \text{fm/c} & \text{thermalisation rapid (?)} \\ & 2-10 \ \text{fm/c} & \textbf{quark-gluon plasma} \\ & 10-20 \ \text{fm/c} & \text{hadron gas} \\ & \tau \to \infty & \text{dilute, no further interactions} \end{aligned}$

beginning
 middle
 end

Beginning: (initial conditions)

Pedestrian approach:

sample nucleons with, Monte Carlo (Glauber)

public code: T_RENTO [Moreland, Bernhard, Bass (2014)]

For the connoisseur: IP-Glasma / KLN / EKRT / ... (classical YM action in 2D, sat. scale Q_s ... valid at high-E)

[Eskola, Kajantie, Ruuskanen, Tuominen (1999)] [Schenke, Tribedy, Venugopalan (2012)]

Middle: (hydrodynamical simulation)

from IC: get energy density e(x, y, ...) at τ_0 ... then discretize & evolve in spacetime:

VISH2+1 = VIScous Hydrodynamics in (2+1) dim. [Song, Heinz (2008)] (using SHASTA = SHarp And Smooth Transport Algorithm)

MUSIC = MUS(cl) for Ion Collisons[Schenke, Jeon, Gale (2010)](MUSCL = Monotonic Upstream-centered Schemes for Conservation Laws)

[Kurkela, et al. (2019)]

End: ("particlization")

convert $T^{\mu\nu}(X)$ and $J^{\mu}(X)$ into hadrons [Huov (in a way that conserves E and p)

[Huovinen, Petersen (2012)] [Cooper, Frye (1974)]

freeze-out:
$$E \frac{\mathrm{d}N}{\mathrm{d}^3 p} = \int_{\Sigma} \mathrm{d}\sigma_{\mu} P^{\mu} f_{\mathrm{B/F}} \left(\frac{P \cdot u(X)}{T(X)} \right)$$

(for MUSIC, this is done with iS3D:

https://github.com/derekeverett/iS3D

... then hadronic transport, e.g.:

UrQMD = Ultra-relativistic Quantum Molecular Dynamics

[Bleicher, et al. (1999)]

SMASH = Simulating Many Accelerated Strongly interacting Hadrons [Weil, et al. (2016)]

[McLerran, Toimela (1995)] [Gale, Kapusta (1991)]

Emission rate per unit volume, $\Gamma_{\ell\bar{\ell}}$, of an equilibrated QGP

$$\frac{d\Gamma_{\ell\bar{\ell}}}{d\omega d^3 \mathbf{k}} = \frac{\alpha_{\rm em}^2 \sum_{f=1}^{n_f} Q_f^2}{3\pi^3 M^2 \left(e^{\omega/T} - 1\right)} \times B\left(\frac{m_\ell^2}{M^2}\right) \times \rho_{\rm v}(\omega, k)$$

- Quark charge-fractions: Q_f (in units of the electron charge)
- Kinematic factor: $B(x) \equiv (1+2x)\Theta(1-4x)\sqrt{1-4x}$
- Spectral function $ho_{
 m V}\equiv
 ho_{\mu}^{\ \mu}$

$$\rho_{\mu\nu}(\omega, k) = \operatorname{Im}\left[\Pi^{\operatorname{ret}}_{\mu\nu}(\omega + i0^+, k)\right]$$

QCD corrections

Project 2-loop result onto 'basis' of master diagrams and evaluate:

$$\mathcal{F}_{P,Q}^{(a)} = \mathcal{F}_{P,Q}^{(a)} P^{2a} Q^{2b} (K - P - Q)^{2c} (K - P)^{2d} (K - Q)^{2e}$$

[1910.07552] 10/19

$$\Pi^{\mu\nu} = \left[\sum_{l=0}^{\infty} g_{s}^{2l} \Pi_{(l)}^{\mu\nu}\right] + O(e^{2}); \qquad \alpha_{s} = \frac{g_{s}^{2}}{4\pi}$$

$$= \sqrt{2} + \sqrt{\frac{1}{2}} + \sqrt{2} +$$

[**1910.07552**] 10/19

LO: [Arnold, Moore, Yaffe (2001)],

11/19

'ladder diagrams' for $M^2 \ll T^2 \rightarrow \text{ LPM effect} + \textit{Hard Thermal Loops}$

$$\rho_{\mu\nu}(\omega, \mathbf{k}) = \operatorname{Im} \left[\mu \sim \begin{array}{c} & & \\ & &$$

Combine LPM effect with strict 2-loop truncation,

[Ghisoiu, Laine (2014)]

NB: Spectral fncs. can be checked with Euclidean corr. computable on the lattice: $G(\tau) = \int_0^\infty d\omega \,\rho(\omega) \,\mathcal{K}(\omega,\tau)$ $\Rightarrow \text{ see [GJ, Laine (2019)]}$ and [Ali, et al. (2024)]

 $\left(
ight.
ho_{
m v}$ determined for $\omega > k$ in [Laine (2013)] $\,$, and $\omega < k$ in [GJ (2019)] $\,$ $\,$

- dileptons are a good thermometer!
- ... but a poor "baryometer"

* in these, and subsequent, plots: $lpha_s=0.3$

*see also: [Burnier, Gastaldi (2015)] (LHC energies)

15/19

for large $M \gg T$ and $\mu_{\scriptscriptstyle\rm B}$:

$$\frac{\mathrm{d}\Gamma_{\ell\bar\ell}}{\mathrm{d}M} \propto (MT_{\mathrm{eff}})^{3/2} \exp\left(-M/T_{\mathrm{eff}}\right)$$

 \Rightarrow determine $\,T_{\rm eff}$ from the 'inverse slope' of the spectrum

What physics does this effective temperature represent?

in simulations we can access the full history, so the method can be tested!

note: $\rho_{\rm v}(\omega,k)$ evaluated at $\omega=K'_{\mu}u^{\mu},\,k=\sqrt{(K'_{\mu}u^{\mu})^2-M^2}$

Callibrating the thermometer

- MC-Glauber initial conditions (at finite $\mu_{\scriptscriptstyle\rm B})$
- Hydro with MUSIC (including viscous corrections)
- Equation of state: NEOS-B (neglects strangeness and μ_e)
- \bullet Hydro stops at $\mathit{e}_{\mathrm{fo}}=0.26~\mathrm{GeV}/\mathrm{fm}^3$
- Freeze-out (iS3D) and hadronic scatterings w/ UrQMD

code public: https://github.com/LipeiDu/DileptonEmission

Callibrating the thermometer

- MC-Glauber initial conditions (at finite $\mu_{\scriptscriptstyle\rm B})$
- Hydro with MUSIC (including viscous corrections)
- Equation of state: NEOS-B (neglects strangeness and μ_e)
- \bullet Hydro stops at $\mathit{e}_{\mathrm{fo}}=0.26~\mathrm{GeV}/\mathrm{fm}^3$
- Freeze-out (iS3D) and hadronic scatterings w/ UrQMD

code public: https://github.com/LipeiDu/DileptonEmission

 $T_{\rm eff}$ represents the *initial* temperature!

[Churchill, et al. (2024)]

18/19

Summary

Arxiv: 2211.09575 2311.06675 2311.06951

- thermal dilepton yields at NLO+LPM \Rightarrow predicted from first principles, at finite T and $\mu_{\rm B}$
- extracted 'effective' temperature

 \Rightarrow linear relationship between ${\it T}_{\rm eff}$ and ${\it T}_{\rm in}$

$$\operatorname{Im}\left[\operatorname{\sim} \bigcirc \right] = \frac{NK^{2}}{4\pi} \left\{ \frac{T}{k} \sum_{\nu = \pm \mu} \log \left[\frac{1 + e^{(\nu - \frac{1}{2}(\omega + k))/T}}{1 + e^{(\nu - \frac{1}{2}|\omega - k|)/T}} \right] + \Theta(K^{2}) \right\}$$

$$\frac{\rho_{\mathrm{V}}}{T\omega} \qquad \mu = 0$$
increasing μ
vacuum
$$\mu = 3T$$

$$0$$

$$\lim_{u \to \infty} \left[\operatorname{wacuum} \right]$$

$$\lim_{u \to \infty} \left[\operatorname{wacuum} \right]$$

$$\lim_{u \to \infty} \left[\operatorname{wacuum} \right]$$

Considerations for non-zero $\mu_{\scriptscriptstyle \mathrm{R}}$

- chemical equilibrium $\Rightarrow \mu \equiv \mu_{\rm q} = \frac{1}{3} \mu_{\rm B}$
- Debye mass m_D and the 'asymptotic' quark mass m_∞

$$m_D^2 \equiv g^2 \left[\left(\frac{1}{2} n_f + N \right) \frac{T^2}{3} + n_f \frac{\mu^2}{2\pi^2} \right]$$

$$m_\infty^2 \equiv g^2 \frac{C_F}{4} \left(T^2 + \frac{\mu^2}{\pi^2} \right)$$

large frequency limit:

enhancement \searrow

$$\rho_{\rm V} \simeq \frac{NM^2}{4\pi} + 4g^2 C_F N \left\{ \frac{3M^2}{4(4\pi)^3} + \frac{\pi \left(\omega^2 + \frac{k^2}{3}\right)}{36M^4} \left(T^4 + \frac{6}{\pi^2} T^2 \mu^2 + \frac{3}{\pi^4} \mu^4 \right) \right\}$$

NEW RESULTS: the full effect of $\mu_{\rm B}$ on $\rho(\omega,k)\left|_{\rm resummed}^{\rm NLO}\right.$...

Right: $\rho_{\rm H}/(\omega T) = (2\rho_{\rm T} + \rho_{\rm L})/(\omega T)$

Impact on yield (non-zero $\mu_{\rm B}$)

$$\begin{split} \mathsf{BES} \Rightarrow \mathsf{probe\ baryon\ rich\ region\ work\ w/\ Churchill,\ \mathsf{Du,\ Gale,\ Jeon}} \\ & MUSIC:\ [\mathsf{Schenke,\ Jeon,\ Gale\ (2010)}] \end{split}$$

 \Rightarrow compensation of LO suppression & NLO enhancement! ...

Impact on yield (non-zero $\mu_{\rm B}$)

$$\begin{split} \mathsf{BES} \Rightarrow \mathsf{probe\ baryon\ rich\ region\ work\ w/\ Churchill,\ \mathsf{Du,\ Gale,\ Jeon}} \\ & MUSIC:\ [\mathsf{Schenke,\ Jeon,\ Gale\ (2010)}] \end{split}$$

smooth MC-Glauber initial conditions + baryon diffusion