Open charm production asymmetries

with LHCb in its fixed-target configuration

Gabriel Ricart gabriel.ricart@cea.fr

<u>cea</u> irfu

Assemblée Générale GdR QCD – May 28th 2024

Charmonium as probe of deconfinement

- Search for signatures of deconfinement forms a key research area in heavy-ion physics.
- Heavy charmonia are model systems to study color charge interaction at T=0 (vacuum) and finite temperature (in medium).
- Charmonium suppression historically proposed as a probe of deconfinement in heavy-ion collisions.

Formation of charmonium from unbound heavy-quarks (recombination) is another sign of deconfinement.

irfu

Total cc cross section as baseline for charmonia modification

- Charm is conserved in QGP.
- Total cc cross section emerges as a natural normalisation for charmonia modification.
- Large contributions from several mesons and baryons.
- Extensive measurements needed to deduce the sum, leading to the measurement of charm fragmentation fractions.

 $f\left(c
ightarrow H
ight) =\sigma(H)/\sigma(c)$

Charm fragmentation fractions from e+eannihilation and lepton-nucleon DIS.

irfu

Charm fragmentation universality

- Simplest assumption, fragmentation universal:
 - No energy dependence
 - No colliding system dependence (e⁺e⁻, pp, ep, ...)
 - No production process dependence (photoproduction, DIS, ...)
- Then, total cc cross section at the LHC can be extrapolated from a single charm hadron measurement, typically D⁰.

irfu

Charm fragmentation non-universality

- Significant enhancement of charm baryon contribution to the cc cross-section compared to e⁺e⁻ and ep data.
- Additional contribution from charm baryons not measured until now.
- To be confirmed by other experiments.
- Need measurement of all ground state open charm hadrons.

irfu

List of open charm ground states

Mesons

- D⁰ (cu)
 - Straightforward hadronic 2 body decay (~4%).
 - ο cτ ~ 120 μm
- D⁺ (cd̄)
 - Hadronic 3 body decay (~9%).
 - о ст ~ 310 µm
- D_s⁺ (cs)
 - Hadronic 3 body decay (~5%).
 - о ст ~ 150 µm

Baryons

- Λ_{c}^{+} (udc)
 - Hadronic 3 body decay in pK π (~6%).
 - ο **ст ~ 60 μm**
 - ∃_c+ (usc)
 - Decay via long lived strange baryons, Cabibbo-favored.
 - Hadronic 3 body decay in pKπ, Cabibbo-suppressed (~.5% with 50% uncertainty).
 - о ст ~ 130 µm
- Ξ_c^0 (dsc)
 - Decay via long lived strange baryons.
 - Hadronic 4 body decay (~.5%)
 - ο cτ ~ 50 μm
- Ω_c⁰ (ssc)
 - No absolute branching fraction has been measured yet.
 - ο cτ ~ 100 μm

irfu

Exploring charm production with fixed-target LHC.

Recombination at fixed-target LHC energies

- Opportunity to test deconfinement at:
 - Lower initial energy density
 - Lower charm quark density
- Recombination of cc into charmonia expected to be lower than at LHC energies.

irfu

Fixed target LHCb

 $\sqrt{s_{NN}} = 69 \text{ GeV}$

 Nucleon-nucleon center of mass boost of 4.29:

$$y^* = y_{lab} - 4.29$$

- LHCb forward acceptance becomes backward (-2.29 < y* < 0) with fixed-target configuration.
- Allows to probe the valence region of the target nucleon using charm.

irfu

Fixed-target kinematics

irfu

Fixed-target kinematics

 \mathbf{r} $Q^2 = 10 \text{ GeV}^2$ Fixed target LHC C.C 0.2 S.S a i rind 10⁻³ 10⁻² **10**⁻¹ **10⁻⁴** 1 Х

11

Fixed-target kinematics

12

Qualitative explanation

- Charge production asymmetry expected when a charm quark hadronizes with a valence quark of the target nucleon.
 - As valence region of the target nucleon is dominated by u and d quarks, expect a negative asymmetry increasing at backward rapidity.
- Additional fragmentation fraction non universality.
- Need to measure rapidity dependance of all mesons and baryons.

irfu

Cea

D⁰ production asymmetry

- Open charm charge asymmetry observed in fixed-target *p*Ne at LHCb.
- Needs confirmation with other open charm hadrons and colliding systems.

irfu

Decay chains currently studied in pNe collisions

 $D^+_{
m s}
ightarrow K^+ K^- \pi^+$

 $D^{*+}
ightarrow \left(D^0
ightarrow K^- \pi^+
ight) \pi^+$

 $\Lambda_c^+ o p K^- \pi^+$

and charge conjugates

Dataset

- *p*Ne data taken with SMOG in 2017.
- 2.5 TeV proton beam.
- √s_{NN} = 68.5 GeV
- Luminosity : $L_{pNe} = 21.7 \pm 1.4 \text{ nb}^{-1}$

	y* range	p _t range		
D^{\pm}		[0.6, 8] GeV		
D_{s}^{\pm}	[_220_0]	[1.1, 8] GeV		
D*±	[-2.29, 0]	[0, 8] GeV		
Λ_{c}^{\pm}				

- Ongoing analysis for cross-section and asymmetry measurements.
- Limited low p_T reach for D^+ and D_s^+ due to cuts in software trigger.
- Lesson learned for the future, with high statistics coming this year!

Monte Carlo reweighting

- Before efficiency computations, Monte-Carlo reweighting is needed.
- Binned 4 x 1D (transverse momentum, rapidity, longitudinal PV position, multiplicity) reweighting performed.

irfu

Monte Carlo reweighting

- Before efficiency computations, Monte-Carlo reweighting is needed.
- Binned 4 x 1D (transverse momentum, rapidity, longitudinal PV position, multiplicity) reweighting performed.
- High impact of reweighting on efficiency values.
- Independent reweighting and efficiency computing between charge conjugates.

irfu

D_s[±] production asymmetry

- No strong hint of asymmetry, as expected.
- No strange valence quarks.
- More data needed to formally exclude asymmetry.
- Missing systematic uncertainty from reweighting.

D_s[±] production asymmetry

Eur.Phys.J.C69:379-397,2010 xf(x,Q²) 1 \mathbf{r} $Q^2 = 10 \text{ GeV}^2$ g/10 Fixed target LHC 0.8 0.6 0.4 C.C 0.2 S.S 1.1.1.1111 10⁻³ **10**⁻⁴ 10⁻² **10**⁻¹ 1 Х

- Negative asymmetry increasing at backward rapidity.
- Compatible trend with D⁰ asymmetry and hadronization with a quark from the target valence region.
- However, more data is needed to confirm this trend.

- Negative asymmetry increasing at backward rapidity.
- Compatible trend with D⁰ asymmetry and hadronization with a quark from the target valence region.
- However, more data is needed to confirm this trend.

Conclusion

- Total charm production arises as the natural normalisation for charmonium modification in QGP studies.
- Charm fragmentation universality questioned.
- Need measurement of all ground state open charm hadrons.
- At fixed target energy, hint of further charm hadronization universality breaking by hadronization with target valence quarks.
- Ongoing analysis with charged open charm mesons and baryons, with promising preliminary results.
- Rich SMOG2 charm program will allow to explore hadronization in numerous colliding systems.

Charm production at fixed-target LHCb

- Knock-off of a charm quark from the target nucleon.
- Expected to enhance the D-meson cross-section at backward rapidity.
- However effect remains small, at the percent level.

Physics Letters B 835 (2022)

irfu

Charm production at fixed-target LHCb

- Backward D-meson production models are still not completely understood.
- Fixed-target LHCb allows to directly probe this kinematic region.
- Leading contribution from "standard" QCD gluon-gluon fusion process.

Physics Letters B 835 (2022)

irfu

Multiplicity vs energy

Eur. Phys. J. C 68 (2010) 345-354

- Energy density can roughly be estimated from charged particle density.
- ~3 times lower energy density expected at LHC fixed-target compared to collider mode.

D^0 as proxy for total $c\overline{c}$ cross section

- J/Ψ over D^0 ratio measured in both fixed-target *p*Ne and PbNe.
- PbNe data splitted in several centrality bins and matched to the number of binary nucleon-nucleon collisions (N_{coll}).
- Assume $\sigma_{J/\psi}$ scaling in $\langle N_{coll} \rangle^{\alpha'}$.
- D⁰ used as proxy for total cc̄ cross-section: σ_{D⁰} scaling in <N_{coll}>.
- However, universality breaking of charm fragmentation can affect the usage of D⁰ as a proxy for total cc cross-section.

Eur. Phys. J. C83 (2023) 658

irfu

Triggers, stripping and data quality

- proton-proton collisions at $\sqrt{s} = 5$ TeV in parallel to the *p*Ne data taking.
- Ghost contamination from debunched protons.
- Data quality cuts from LHCb-INT-2020-012.

Global Event Cuts

 $PVz \in [-200; -100] \cup [+100; +150] mm$

 $nPV \ge 1$, PUHits < 5, BCType = 1, PVntracks > 4

D±	Hlt1	Hlt1SMOGSingleTrackDecision_TOS				
	Hlt2	HIt2SMOGDpm2KPiPiDecision_TOS				
	Stripping	StrippingHeavyIonOpenCharmDp2KHHLineDecisi				
D _s [±]	Hlt1	HIt1SMOGSingleTrackDecision_TOS				
	Hlt2	HIt2SMOGDs2KKPiDecision_TOS				
	Stripping	StrippingHeavyIonOpenCharmDs2KKHLineDecision				

irfu

Stripping

Combination cuts				
MAXCHILD(p ₁) > 1 GeV				
MAXCHILD(IP _{X²} PV) > 9				
DOCA < 2 mm				
At least 2 children with $IP_{\chi^2}^{PV} > 4$				
At least 2 children with $p_T > 400 \text{ MeV}$				

Parent cuts

Vertex χ^2 /ndof < 25

Additional cuts

	CI	hildren cuts			Parent cuts	
	Acceptance	Kinematics	PID		D±	IP _{X²} < 15
Κ±	2 < ŋ < 4.5	р _т > 200 MeV	DLL _k > 5		Vertex χ² < 22 DIRA > 0.999	
Π [±]	p > 3 GeV		DLL _K < 0		D _s [±]	т > 0.5 ps

Monte Carlo simulation reweighting

- Binned 4x1D (p_T, y, PVz, multiplicity) reweighting performed.
- Iterative process used:
 - Weights computed in each variable distribution by comparing data to reconstructed Monte Carlo.
 - Efficiency distributions computed with weighted Monte Carlo $(w_{tot} = w_{pT}.w_{y}.w_{PVz}.w_{mult})$. Reweighting is done at the candidate level.
 - New weights computed by comparing efficiency corrected data to non-weighted generated Monte Carlo.
 - New efficiencies computed the same way as before.

Convergence criteria

• Convergence studied by comparing the weights values in each bins for two subsequent iterations :

$$\delta = rac{|w(i)-w(i-1)|}{w(i)}$$

- Convergence criteria: δ negligible compared to statistical uncertainty.
- Blue dotted line: $\sigma_{stat}/10$
- Satisfactory convergence obtained after 5 iterations.

 δ values in D⁻ p_T bins

irfu

Uncertainties for asymmetries

- Uncertainties considered fully correlated between charges, thus cancelling out:
 - Tracking
 - PID
 - Truth matching
 - Luminosity
 - Neon purity
 - Branching ratio
- Leaving the following uncertainties as uncorrelated:
 - Statistical uncertainty
 - Signal extraction
 - Reweighting
 - MC statistics

irfu

CQZ