

European Research Council Established by the European Commission

NLO Quarkonium Production in the FKS Subtraction Scheme

Groupement de Recherche QCD 2024

Lukas Simon

Laboratoire de Physique Théorique et Hautes Énergies Sorbonne Université et CNRS

based on arXiv:2402.19221 in collaboration with Ajjath A. H. and H.-S. Shao

May 29, 2024

Quarkonium Production

$$\mathrm{d}\sigma(AB \to H + X) = \sum_{n} \left(\sum_{a,b,X} \int \mathrm{d}x_a \mathrm{d}x_b \ f_{a/A}(x_a) f_{b/B}(x_b) \ \mathrm{d}\hat{\sigma}(ab \to Q\bar{Q}'[n] + X) \right) \left\langle \mathcal{O}_n^H \right\rangle$$

$$d\sigma(AB \to H + X) = \sum_{n} \left(\sum_{a,b,X} \int dx_a dx_b \ f_{a/A}(x_a) f_{b/B}(x_b) \underbrace{d\hat{\sigma}(ab \to Q\bar{Q}'[n] + X)}_{\text{partonic}} \right) \left\langle \mathcal{O}_n^H \right\rangle$$

Partonic cross section

- ▶ short distance production of a $Q\bar{Q}'$ pair in a colour representation C, with spin S and orbital angular momentum state L
- ▶ spectroscopic notation of Fock states: $n = {}^{2S+1}L_J^{[C]}$

$$d\sigma(AB \to H + X) = \sum_{n} \left(\sum_{a,b,X} \int dx_a dx_b \underbrace{f_{a/A}(x_a) f_{b/B}(x_b)}_{\mathsf{PDF}} \underbrace{\frac{d\hat{\sigma}(ab \to Q\bar{Q}'[n] + X)}{\mathsf{partonic}}}_{\mathsf{cross section}} \right) \langle \mathcal{O}_n^H \rangle$$

Parton Distribution Function (PDF)

parton distribution functions of partons a and b in the initial hadrons A and B

Partonic cross section

- ▶ short distance production of a $Q\bar{Q}'$ pair in a colour representation C, with spin S and orbital angular momentum state L
- ▶ spectroscopic notation of Fock states: $n = {}^{2S+1}L_J^{[C]}$

$$d\sigma(AB \to H + X) = \sum_{n} \left(\sum_{a,b,X} \int dx_a dx_b \underbrace{f_{a/A}(x_a) f_{b/B}(x_b)}_{\mathsf{PDF}} \underbrace{\frac{d\hat{\sigma}(ab \to Q\bar{Q}'[n] + X)}{\mathsf{partonic}}}_{\mathsf{Cross section}} \right) \left(\langle \mathcal{O}_n^H \rangle \right)$$

Parton Distribution Function (PDF)

parton distribution functions of partons a and b in the initial hadrons A and B

Partonic cross section

- ▶ short distance production of a $Q\bar{Q}'$ pair in a colour representation C, with spin S and orbital angular momentum state L
- ▶ spectroscopic notation of Fock states: $n = {}^{2S+1}L_J^{[C]}$

Long Distance Matrix Element (LDME)

 hadronisation of the heavy quark pair into the physical quarkonium state H

Infrared Singularities

Infrared singularities

$$|\mathcal{M}_J|^2 = \left| \underbrace{\stackrel{p_g}{\longrightarrow} \stackrel{p_g}{\longrightarrow} \stackrel{p_g}{\longrightarrow} \stackrel{p_g}{\longrightarrow} \right|^2 \sim \frac{1}{(p_q - p_g)^2} = \frac{1}{E_q E_g \left(1 - \beta_q \cos \theta_{qg}\right)}$$

with

$$\beta_q = \frac{|\vec{p}_q|}{E_q} \xrightarrow{m_q \to 0} 1$$

$$\int |\mathcal{M}_J|^2 F_J \mathrm{d}\Pi^{(4)} \sim \int_0^{E^{\max}} \mathrm{d}E_g \int_{-1}^1 \mathrm{d}\cos\theta_{qg} \frac{1}{E_q E_g \left(1 - \beta_q \cos\theta_{qg}\right)} \to \infty \begin{cases} \text{for } E_g \to 0 \\ \text{for } \theta_{qg} \to 0 \\ \wedge \beta_q \to 1 \end{cases}$$

1.

Infrared singularities:

- ▶ soft singularity $(E_g \rightarrow 0)$
- collinear singularity ($\theta_{qg} \rightarrow 0 \land \beta_q \rightarrow 1$)
- ▶ soft-collinear singularity ($E_g \rightarrow 0$ and $\theta_{qg} \rightarrow 0 \land \beta_q \rightarrow 1$)

$$\lim_{d\to 4} \int |\mathcal{M}_J|^2 F_J \mathrm{d}\Pi^{(d)} \to \infty$$

$$\lim_{d \to 4} \int |\mathcal{M}_J|^2 F_J \mathrm{d}\Pi^{(d)} \to \infty$$

Subtraction function

find a suitable subtraction function S which

- reproduces the matrix element in the unresolved limit
- is simple to integrate over the unresolved phase space

$$\lim_{\text{IR poles}} S = \lim_{\text{IR poles}} |\mathcal{M}_J|^2 F_J$$

$$\lim_{d \to 4} \int |\mathcal{M}_J|^2 F_J \mathrm{d}\Pi^{(d)} \to \infty$$

Subtraction function

find a suitable subtraction function S which

- reproduces the matrix element in the unresolved limit
- is simple to integrate over the unresolved phase space

$$\lim_{\text{IR poles}} S = \lim_{\text{IR poles}} |\mathcal{M}_J|^2 F_J$$

$$\lim_{d \to 4} \int |\mathcal{M}_J|^2 F_J \mathrm{d}\Pi^{(d)} = \underbrace{\int \left(|\mathcal{M}_J|^2 F_J - S \right) \mathrm{d}\Pi^{(4)}}_{\text{free of divergences}} + \underbrace{\lim_{d \to 4} \int S \, \mathrm{d}\Pi^{(d)}}_{\text{analytic solution}}$$

Infrared-safe cross section at NLO

The NLO cross section can be split in three parts

contains IR poles from phase-space integration

Subtraction method makes IR poles explicit:

- poles cancel among the four parts
- analytic formula for finite remainder
- phase-space integration can be performed numerically

Frixione-Kunszt-Signer

$$\mathrm{d}\sigma(r) = \,\mathrm{d}\sigma(r)$$

Frixione-Kunszt-Signer

- 1. regulate soft singularities: $S_4 = \lim_{E_4 \to 0} S_4$
 - soft gluon can be emitted from both initial state gluons and from the QQ pair

Frixione-Kunszt-Signer

$$d\sigma(r) = (1 - S_4) (1 - (C_{41} + C_{42})) d\sigma(r) + S_4 d\sigma(r) + S_4 d\sigma(r)$$

- 1. regulate soft singularities: $S_4 = \lim_{E_4 \to 0} S_4$
 - soft gluon can be emitted from both initial state gluons and from the QQⁱ pair
- 2. regulate collinear singularities: $C_{4i} = \lim_{\theta_{i_4} \to 0}$
 - collinear gluon can be emitted from both initial state gluons, but not from the QQ' pair

Frixione-Kunszt-Signer

$$d\sigma(r) = (1 - S_4) (1 - (C_{41} + C_{42})) d\sigma(r) + S_4 d\sigma(r) + S_4 d\sigma(r)$$

- 1. regulate soft singularities: $S_4 = \lim_{E_4 \to 0} S_4$
 - soft gluon can be emitted from both initial state gluons and from the QQⁱ pair
- 2. regulate collinear singularities: $C_{4i} = \lim_{\theta_{i4} \to 0}$
 - collinear gluon can be emitted from both initial state gluons, but not from the QQ' pair

FKS for quarkonium production

- new soft subtraction terms w.r.t. production of elementary particles
- collinear subtraction terms are unchanged

Soft Gluon Emission

Soft limit of the amplitude

Soft limit of the amplitude

Soft limit of the squared amplitude

Soft limit of the squared amplitude

$$\begin{split} \lim_{i_{i} \to 0} \mathcal{M}_{\{[1],0,1,1\}}(r) &= g_{s}^{2} \Biggl\{ \sum_{\substack{k,l=n_{I} \\ k,l\neq k \leq l}}^{n_{L}^{(R)}+n_{H}} \frac{k_{k} \cdot k_{l}}{k_{k} \cdot k_{k} k_{l} \cdot k_{i}} \mathcal{M}_{kl}(r^{\tilde{\chi}}) \\ &+ \sum_{\substack{k=n_{I} \\ k\neq i}}^{n_{L}^{(R)}+n_{H}} \Biggl[\frac{k_{k,\mu}}{k_{k} \cdot k_{i} K \cdot k_{i}} - \frac{K \cdot k_{k} k_{i,\mu}}{k_{k} \cdot k_{i} (K \cdot k_{i})^{2}} \Biggr] \mathcal{M}_{k[18]}^{\mu}(r^{\tilde{\chi}}, r_{1}^{\tilde{\chi}}) \\ &- \frac{2\epsilon - 2}{(K \cdot k_{i})^{2}} C_{\text{eff}}(Q\bar{Q}_{[18]}') \mathcal{M}(r_{1}^{\tilde{\chi}}) \Biggr\} \end{split}$$

Subtracted squared matrix element

$$\mathcal{M}_{\{[1],0,1,1\}}(r) - \sum_{i \in g} \lim_{k_i \to 0} \mathcal{M}_{\{[1],0,1,1\}}(r)$$

- free of soft singularities
- (numerical) integration in d = 4 dimensions possible

Integrated soft counterterms

$$\lim_{d \to 4} \int |\mathcal{M}_J|^2 F_J \mathrm{d}\Pi^{(d)} = \underbrace{\int \left(|\mathcal{M}_J|^2 F_J - S \right) \mathrm{d}\Pi^{(4)}}_{\text{free of divergences}} + \underbrace{\lim_{d \to 4} \int S \, \mathrm{d}\Pi^{(d)}}_{\text{analytic solution}}$$

Integrated soft counterterms

Reminder: subtraction schemes

$$\lim_{d \to 4} \int |\mathcal{M}_J|^2 F_J \mathrm{d}\Pi^{(d)} = \underbrace{\int \left(|\mathcal{M}_J|^2 F_J - S \right) \mathrm{d}\Pi^{(4)}}_{\text{free of divergences}} + \underbrace{\lim_{d \to 4} \int S \, \mathrm{d}\Pi^{(d)}}_{\text{analytic solution}}$$

Analytic solution:

$$\begin{split} d\hat{\sigma}^{(S)}(r) &= \frac{\alpha_s}{2\pi} \phi_{n-1}(r^{\tilde{\chi}}) \frac{J_{L}^{n_L^{(B)}}}{\mathcal{N}(r^{\tilde{\chi}})} \mathcal{G}(r^{\tilde{\chi}}) \Bigg[\sum_{k=n_I}^{n_L^{(B)} + n_H} \sum_{l=k}^{N} \bar{\mathcal{E}}(\{1,1\},\{k_k,k_l\}) \mathcal{M}_{kl}(r^{\tilde{\chi}}) \\ &+ \sum_{k=n_I}^{n_L^{(B)} + n_H} \Bigl(\bar{\mathcal{E}}(\{1,1\},\{k_k,K\}) \frac{k_{k,\mu}}{K \cdot k_k} - \bar{\mathcal{E}}_{\mu}(\{1,2\},\{k_k,K\}) \Bigr) \mathcal{M}_{k[18]}^{\mu}(r^{\tilde{\chi}},r^{\tilde{\chi}}_1) \\ &+ \left(\frac{1}{2N_c} \frac{8}{m_Q m_{Q'}} \left(\frac{1}{\bar{\epsilon}} + \log \frac{\mu^2}{\mu_{\text{NRQCD}}^2} \right) - \frac{2\epsilon - 2}{K^2} \bar{\mathcal{E}}(\{1,1\},\{K,K\}) C_{\text{eff}}(Q\bar{Q}'_{[18]}) \Biggr) \mathcal{M}(r^{\tilde{\chi}}_1) \Bigg] \end{split}$$

where the eikonal integrals

$$\bar{\mathcal{E}}^{\alpha_1\dots\alpha_{n_1-1}\beta_1\dots\beta_{n_2-1}}(\{n_1,n_2\},\{k_k,k_l\}) = 8\pi^2 \mu^{2\epsilon} k_k \cdot k_l \int \frac{d^{3-2\epsilon} \mathbf{k}_i}{(2\pi)^{3-2\epsilon} 2k_i^0} \frac{k_i^{\alpha_1}\dots k_i^{\alpha_{n_1-1}} k_i^{\beta_1}\dots k_i^{\beta_{n_2-1}}}{(k_k \cdot k_i)^{n_1} (k_l \cdot k_i)^{n_2}} \theta(\xi_{\mathrm{cut}} - \xi_i) = 1$$

can be solved analytically.

 \blacktriangleright singularities appear explicitly as poles in ϵ

Cross Sections

Inclusive NLO cross sections

Validation of $2 \rightarrow 1$ processes

 inclusive cross sections of FKS approach (fully numerical) can be compared to HELAC-Onia [shao, 2016] (analytic phase-space integration)

¹⁰/11

- fully differential NLO results require knowledge about soft gluon emission from quarkonia
 - S-wave quarkonia behave like "massive gluons"
 - P-wave quarkonia lead to more complex structures

- fully differential NLO results require knowledge about soft gluon emission from quarkonia
 - S-wave quarkonia behave like "massive gluons"
 - P-wave quarkonia lead to more complex structures
- local FKS subtraction term and the corresponding integrated counterterm were computed
 - eikonal limits are check numerically
 - ε-poles of integrated counterterms cancel analytically against virtual corrections

- fully differential NLO results require knowledge about soft gluon emission from quarkonia
 - S-wave quarkonia behave like "massive gluons"
 - P-wave quarkonia lead to more complex structures
- local FKS subtraction term and the corresponding integrated counterterm were computed
 - eikonal limits are check numerically
 - ε-poles of integrated counterterms cancel analytically against virtual corrections
- inclusive cross sections of FKS approach coincide with known results

MadGraph5

We aim to launch a version of MadGraph5_aMC@NLO[Alwall et al. 2014] that allows for automated computations of cross section which include bound states:

 LO cross sections for processes with an arbitrary number of quarkonia (S-wave and P-wave) and additional elementary particles Example:

$$pp \to J/\psi + \eta_c + c\bar{c}g$$

Syntax:

```
MG_aMC>generate p p > J/psi etac c c\sim g
```

or in an alternarive notation

MG_aMC>generate p p > c.c~(1|3S11) c.c~(1|1S01) c c~ g

- 2. NLO cross sections with one quarkonium plus elementary particles
- 3. extension of FKS approach to multiple quarkonia final states

Backup

$$a(k_1)b(k_2) \rightarrow Q(k_3)\overline{Q}'(k_4) + \dots$$

$$\mathcal{A}(r) = \bar{u}_{\lambda_Q}(k_3)\Gamma(r)v_{\lambda_{\bar{Q}'}}(k_4)$$

$$a(k_{1})b(k_{2}) \rightarrow Q(k_{3})\overline{Q}'(k_{4}) + \dots$$

$$\boxed{\mathcal{A}(r) = \overline{u}_{\lambda_{Q}}(k_{3})\Gamma(r)v_{\lambda_{Q'}}(k_{4})}{\text{colour projection}}$$

$$\boxed{\mathcal{A}_{\{[C]\}}(r) = \sum_{c_{3},c_{4}} \mathbb{P}_{C}\mathcal{A}(r)}$$

$$\mathbb{P}_{C=1} = \frac{\delta^{c_{3}c_{4}}}{\sqrt{N_{c}}}$$

$$\mathbb{P}_{C=8} = \sqrt{2}T^{c_{3}}_{c_{4}c_{3}}$$

$$a(k_{1})b(k_{2}) \rightarrow Q(k_{3})\overline{Q}'(k_{4}) + \dots$$

$$\boxed{\mathcal{A}(r) = \overline{u}_{\lambda_{Q}}(k_{3})\Gamma(r)v_{\lambda_{Q'}}(k_{4})}{\mathbf{colour projection}}$$

$$\boxed{\mathcal{A}_{\{[C]\}}(r) = \sum_{c_{3},c_{4}} \mathbb{P}_{C}\mathcal{A}(r)}{\mathbf{spin projection}}$$

$$\boxed{\mathcal{A}_{\{[C],S\}}(r) = \sum_{\lambda_{Q},\lambda_{\bar{Q}'}} \mathbb{P}_{S}\mathcal{A}_{\{[C]\}}(r)}$$

$$\boxed{\mathcal{P}_{S=0} = \frac{\overline{v}_{\lambda_{\bar{Q}'}}(k_{4})\gamma_{5}u_{\lambda_{Q}}(k_{3})}{2\sqrt{2m_{Q}m_{\bar{Q}'}}}}{\frac{\overline{v}_{\lambda_{\bar{Q}'}}(k_{4})\not_{\lambda_{s}}(K)u_{\lambda_{Q}}(k_{3})}{2\sqrt{2m_{Q}m_{\bar{Q}'}}}}$$

$$\mathbb{P}_{S=1} = \frac{\overline{v}_{\lambda_{\bar{Q}'}}(k_{4})\not_{\lambda_{s}}(K)u_{\lambda_{Q}}(k_{3})}{2\sqrt{2m_{Q}m_{\bar{Q}'}}}$$
with
$$K^{\mu} = k_{2}^{\mu} + k_{4}^{\mu}$$

$$\begin{aligned} a(k_{1})b(k_{2}) \rightarrow Q(k_{3})\bar{Q}'(k_{4}) + \dots \\ \hline \mathcal{A}(r) &= \bar{u}_{\lambda_{Q}}(k_{3})\Gamma(r)v_{\lambda_{\bar{Q}'}}(k_{4}) \\ \hline \mathsf{colour projection} \\ \hline \mathcal{A}_{\{[C]\}}(r) &= \sum_{c_{3},c_{4}} \mathbb{P}_{C}\mathcal{A}(r) \\ \hline \mathsf{spin projection} \\ \hline \mathcal{A}_{\{[C],S\}}(r) &= \sum_{\lambda_{Q},\lambda_{\bar{Q}'}} \mathbb{P}_{S}\mathcal{A}_{\{[C]\}}(r) \\ \hline \mathsf{orbital angular momentum projection} \\ \hline \mathcal{A}_{\{[C],S,L\}}(r) &= \left[\left(\varepsilon_{\lambda_{l}}^{\mu,*}(K) \frac{d}{dq^{\mu}} \right)^{L} \mathcal{A}_{\{[C],S\}}(r) \right]_{q=0} \end{aligned}$$

Projection to Fock states

BACKUP

Lukas Simon | LPTHE

Color-octet spin-singlet P-wave

Soft limit of the amplitude

Color-octet spin-singlet P-wave

Soft limit of the amplitude

$$\begin{split} \lim_{k_i \to 0} \mathcal{A}_{\{[8],0,1,1\}}(r) &= \sum_{\substack{j=n_i \\ j \neq i}}^{n_L^{(R)} + n_H} g_s \frac{k_j \cdot \varepsilon_{\lambda_i}^*(k_i)}{k_j \cdot k_i} \vec{Q}(\mathcal{I}) \mathcal{A}_{\{[8],0,1,1\}}(r^{\breve{\chi}}) \\ &+ g_s \frac{K \cdot \varepsilon_{\lambda_i}^*(k_i)}{K \cdot k_i} \vec{Q}(Q \bar{Q'}[{}^1\!P_1^{[8]}]) \mathcal{A}_{\{[8],0,1,1\}}(r^{\breve{\chi}}) \\ &+ g_s \left[\frac{\varepsilon_{\lambda_i}^*(K) \cdot \varepsilon_{\lambda_i}^*(k_i)}{K \cdot k_i} - \frac{K \cdot \varepsilon_{\lambda_i}^*(k_i)k_i \cdot \varepsilon_{\lambda_i}^*(K)}{(K \cdot k_i)^2} \right] \\ &\times \left[\vec{Q}_{\text{eff}}(Q \bar{Q'}_{[81]}) \mathcal{A}_{\{[1],0,0,0\}}(r^{\breve{\chi}}) + \vec{Q}_{\text{eff}}(Q \bar{Q'}_{[88]}) \mathcal{A}_{\{[8],0,0,0\}}(r^{\breve{\chi}}) \right] \end{split}$$

Local soft subtraction terms

Reminder: subtraction schemes

$$\lim_{d \to 4} \int |\mathcal{M}_J|^2 F_J \mathrm{d}\Pi^{(d)} = \underbrace{\int \left(|\mathcal{M}_J|^2 F_J - S \right) \mathrm{d}\Pi^{(4)}}_{\text{free of divergences}} + \underbrace{\lim_{d \to 4} \int S \, \mathrm{d}\Pi^{(d)}}_{\text{analytic solution}}$$

Lukas Simon | LPTHE

$$\begin{split} I &= \int_0^1 \mathrm{d}x \frac{1}{x^{1+\epsilon}} F(x) \\ &= \int_0^1 \mathrm{d}x \frac{1}{x^{1+\epsilon}} \left[F(x) - F(0) \right] + F(0) \int_0^1 \mathrm{d}x \frac{1}{x^{1+\epsilon}} \end{split}$$

Subtraction function F(0)

$$I = \underbrace{\int_{0}^{1} \mathrm{d}x \frac{1}{x} \left[F(x) - F(0)\right]}_{\text{free of divergences}} - \underbrace{\frac{1}{\epsilon} F(0)}_{\text{analytic solution}} + \mathcal{O}(\epsilon)$$

FKS subtraction

Local soft subtraction function

Step 1: Find suitable subtraction functions.

- S_4 extracts the leading soft singularity
- Eikonal approximation

$$S_4 F_{\rm LM}(1,2 | 4) = 2C_F g_s^2 \frac{p_1 \cdot p_2}{(p_1 \cdot p_4)(p_2 \cdot p_4)} F_{\rm LM}(1,2)$$

Free of soft divergences

$$F_{\rm LM}(1,2|4) - 2C_F g_s^2 \frac{p_1 \cdot p_2}{(p_1 \cdot p_4)(p_2 \cdot p_4)} F_{\rm LM}(1,2)$$

FKS subtraction

Integrated soft subtraction function

$$\langle F_{\rm LM}(1,2|4) \rangle = \langle (1-\mathcal{S}_4)F_{\rm LM}(1,2|4) \rangle$$

$$+ \langle \mathcal{S}_4F_{\rm LM}(1,2|4) \rangle$$

$$\frac{\text{Step 2:}}{\langle \mathcal{S}_4F_{\rm LM}(1,2|4) \rangle} = \int [dg_4]\mathcal{S}_4F_{\rm LM}(1,2|4)$$

$$= \int \frac{d^{d-1}p_4}{(2\pi)^d 2E_4} 2C_F g_s^2 \frac{p_1 \cdot p_2}{(p_1 \cdot p_4)(p_2 \cdot p_4)} F_{\rm LM}(1,2)$$

$$= \mathcal{F}(1,2;\epsilon)F_{\rm LM}(1,2)$$

Analytic solution

• singularities are manifest in $\mathcal{F}(1,2;\epsilon)$

FKS subtraction

Finite remainder

$$\begin{aligned} \langle F_{\rm LM} \left(1, 2 \,|\, 4 \right) \rangle &= \langle (1 - \mathcal{S}_4) (1 - (\mathcal{C}_{41} + \mathcal{C}_{42})) F_{\rm LM} \left(1, 2 \,|\, 4 \right) \rangle \\ &+ \langle (1 - \mathcal{S}_4) (\mathcal{C}_{41} + \mathcal{C}_{42}) F_{\rm LM} \left(1, 2 \,|\, 4 \right) \rangle \\ &+ \langle \mathcal{S}_4 F_{\rm LM} \left(1, 2 \,|\, 4 \right) \rangle \end{aligned}$$

Step 3: Combination of real and virtual contributions.

$$d\sigma^{\rm NLO} = F_{\rm LV}^{\rm fin} (1,2) + \left\langle (1-\mathcal{S}_4)(1-(\mathcal{C}_{41}+\mathcal{C}_{42}))F_{\rm LM}(1,2|4) \right\rangle + \frac{\alpha_s}{2\pi} \int dz \,\mathcal{P}_{qq}(z) \frac{F_{\rm LM}(z\cdot 1,2) + F_{\rm LM}(1,z\cdot 2)}{z} + \frac{\alpha_s}{2\pi} \frac{2\pi^2}{3} C_F F_{\rm LM}(1,2)$$

Finite remainder

can be integrated (numerically) in four dimension