



# Scintillating Materials and SiPM Readout for an Electromagnetic Calorimeter at the EIC

Pilleux Noémie - IJCLab, Paris Saclay University, France

Assemblée Générale 2024 du GDR QCD - 29th May 2024

# The Electron Ion Collider and the ePIC detector

Electron-Ion Collider (EIC) at Brookhaven National Lab in the 2030s

- Polarized electron and proton beams.
- Ions from deuterium to heavy nuclei.
- 29-140 GeV e+p center-of-mass energies.
- High luminosity 10<sup>33</sup>–10<sup>34</sup> cm<sup>-2</sup>.s<sup>-1</sup>





Broad scientific program bringing together medium energy hadronic and high-energy heavy ion communities

- Properties and structure of nucleons?
- Gluon saturation?
- Confinement?
- Nuclear environment?

The ePIC detector:

- Calorimetry
- Tracking
- PID (TOF, RICH,...)



# The Electron Endcap Electromagnetic Calorimeter

Nearly all processes require detection of the scattered e<sup>-</sup> at the EIC.

Physics goals set the requirements for the Electron-Endcap Electromagnetic Calorimeter (EEMC).

- Momentum and energy reconstruction.
- Particle ID.
- $\pi$  / e- separation.
- Detection of neutral particles.
- Separation of 2  $\gamma$  in  $\pi_0$ decay ...

| η                                         | -4 to -2 | -2 to -1 | -1 to 1 | 1 to 4 |
|-------------------------------------------|----------|----------|---------|--------|
| $\sigma_E/E \cdot \sqrt{E/1 \text{ GeV}}$ | 2%       | 7%       | 10-12%  | 10-12% |

- Excellent energy resolution
- Large dynamic range : ~5 MeV to ~15 GeV



#### **Environment constraints:**

- Limited space : compact detector
- Radiation hardness: 30 Gy/year
- Intense magnetic field

### The EEMC

#### 3000 PbWO4 crystals readout by Silicon Photomultipliers (SiPMs).





#### Scintillating material requirements:

- High energy resolution: high light yield, high transmittance.
- Limited space: short radiation length X0.
- Radiation hard.

#### Readout + electronics:

- Intense magnetic fields: SiPMs.
- Need to collect light on the surface of the crystal : matrix of SiPMs.
- Large dynamic range.

# Scintillating Material

# Choice of a scintillating material

Best candidate to meet the requirements: PbWO4 crystals.

- X0 = 8.9 mm
- Can detect energies as low as 20 MeV photons
- Tested to be radiation hard

Alternative: SciGlass, a new cheaper material.

- Cost effective
- X0 = 22 28 mm
- Tests of a few samples: 200 mm long, 20x20 mm<sup>2</sup>







# Transmittance Measurement



### Radiation Hardness



Transmittance measurement to assess the creation of light-absorbing centers with radiation damage.

Samples received a dose of 30Gy (1 year at the EIC) in 30 minutes.

- Both PWO and SciGlass resist well to radiation damage.
- Curing PWO crystals to recover from radiation damage is well-mastered.
- Most SciGlass samples were not damaged, and almost entirely recovered at room temperature, in the dark.
- Further tests were made with high doses, tests of annealing procedures showing excellent capabilities under radiation.

# Light Yield



# SiPM Readout

### SiPMs

#### PN junction for photodetection





Avalanche photodiode (APD):

External voltage → avalanche phenomenon → higher signal

• GAPD (Geiger mode):

Increasing  $V \rightarrow e^-/h^+$  multiply faster than they can be extracted  $\rightarrow$  digital photodetector

SiPM: a matrix of GAPDs!

All pixels are read in parallel  $\rightarrow$  analog detector signal number of fired pixels " " incident number of  $\gamma$ 

Main challenge for the SiPM readout is the dynamic range.

- Minimal detectable energy? Intrinsic noise in the SiPMs
- Non linearities at high energies?

| Surface [mm <sup>2</sup> ] | Pixel size [µm] | Number of pixels |
|----------------------------|-----------------|------------------|
| 36                         | 10              | 359011           |
| 36                         | 15              | 159565           |
| 9                          | 10              | 89984            |
| 9                          | 15              | 39984            |

### Dark Noise Measurement

Limitation for low energy measurements: Dark Noise.

Reading output current for SiPMs in the dark



Comparing it to expected signal.

PWO's LY: 17 pe/MeV over the crystal surface



# Linearity Measurement

Limitation for high energies: non linearities

For a high number of incident photons, there is a probability that more than one enters the same pixel



"
$$N_{detected} = N_{pixel} \left(1 - e^{-\frac{incident}{N_{pixel}}}\right)$$
"



# Summary, Outlooks

- Scattered electrons at the EIC will be detected in the EEMC with very good energy resolution and over a wide dynamic range.
- The EEMC will be comprised by bars of PWO crystals readout by SiPMs to measure scattered electrons at the EIC.
- PWO meets the requirements for energy resolution and radiation hardness.
- SciGlass was tested as an alternative, its development is ongoing and hold promises for future electromagnetic calorimeters.
- Testing of SiPMs validated this solution for the light readout of the EEMC.
- Choice between the different models is a compromise to be made between low and high energies capabilities.
- Tests with matrices of SiPMs are ongoing and will set the requirements for the electronics to be developed and the structure of the detector.
- Ongoing work at IJCLab and LLR/Omega: development of a specific ASIIC for the readout, mechanical structure of the EEMC.

# Gain Measurement





# Radiation Hardness

- Further tests were made with high doses (180 Gy).
- Tests of annealing procedures.



# Linearity Measurement

Limitation for high energies: non linearities

For a high number of incident photons, there is a probability that more than one enters the same pixel

"
$$N_{detected} = N_{pixel} \left(1 - e^{-\frac{incident}{N_{pixel}}}\right)$$
"



