<u>cea</u> irfu

More

EIC Tracking with Micromegas Detector Design Optimization

 $\bullet \bullet \bullet$

Dylan Neff CEA/IRFU/DPhN Saclay

5/28/2023

GDR QCD 2024

Outline

- Optimizing detector design
 - Measuring Resolution
 - Problem with 2023 beam test
- Plans for 2023 beam test
- Cosmic muons
- Summary & Outlook

Outline

- Optimizing detector design
 - Measuring Resolution
 - Problem with 2023 beam test
- Plans for 2023 beam test
- Cosmic muons
- Summary & Outlook

Goal: Select EIC Detector Design

- What is the optimal detector design for EIC?
- Design pattern parameters
 - Readout strips
 - Resistive layer
- Metrics to optimize
 - Tracking resolution
 - Detector efficiency/homogeneity
 - Charge sharing between layers

Goal: Select EIC Detector Design

- What is the optimal detector design for EIC?
- Design pattern parameters
 - Readout strips
 - Resistive layer
- Metrics to optimize
 - Tracking resolution -
 - Detector efficiency/homogeneity
 - Charge sharing between layers

Focus here

A track passes through (hits) a detector

DetectorTrackTrue Hit

Detector
Track
True Hit
Measured Hit

A track passes through (hits) a detector

The detector measures position of hit Not necessarily in the true hit position

Detector
Track
True Hit
Measured Hit

A track passes through (hits) a detector

The detector measures position of hit Not necessarily in the true hit position Residual: Difference between true and measured hit position

A track passes through (hits) a detector

The detector measures position of hit Not necessarily in the true hit position Residual: Difference between true and measured hit position Detector
Track
True Hit
Measured Hit

Residual distribution can tell us resolution of detector: → precision of tracking

"Banco" MAPS Tracking Detector

- Silicon MAPS detector
- High spatial resolution

Allows us to reconstruct cosmic muon tracks with high precision \rightarrow Use this to characterize the resolution of our test detectors

Problem with 2023 Test Beam $\sigma^2 = \sigma^2_{ m detector} + \sigma^2_{ m tracking}$

Multiple scattering of 880 MeV electrons was dominant contribution to residuals for most detectors!

Dylan Neff

Problem with 2023 Test Beam $\sigma^2 = \sigma^2_{ m detector} + \sigma^2_{ m tracking}$

Multiple scattering of 880 MeV electrons was dominant contribution to residuals for most detectors!

5/28/2023

Outline

- Optimizing detector design
 - Measuring Resolution
 - Problem with 2023 beam test
- Plans for 2023 beam test
- Cosmic muons
- Summary & Outlook

- Detector Resolution vs Distance 2023 Test Beam 400 350 300 Resolution (µm) 250 200 150 100 50 0 -10 30 20 50 60 0 40 Distance from Beam Exit (cm)
- Simulate multiple scattering and finite resolution of tracking detectors
 - Poor man's Geant4

scattering

- Detector Resolution vs Distance 2023 Test Beam 400 350 300 Resolution (µm) 250 200 150 100 50 0 -10 30 20 50 60 0 40 Distance from Beam Exit (cm)
- Simulate multiple scattering and finite resolution of tracking detectors
 - Poor man's Geant4

- Simulate multiple scattering and finite resolution of tracking detectors

 Poor man's Geant4
- Qualitatively reproduces Samy's Geant4 simulation along with beam test results
 - Careful geometry may make matching better

scattering

- Simulate multiple scattering and finite resolution of tracking detectors

 Poor man's Geant4
- Turn off scattering.
 Resulting resolution much lower (better)

Detector Resolution vs Distance

- Simulate multiple scattering and finite resolution of tracking detectors
 - Poor man's Geant4
- Turn off scattering.
 Resulting resolution much lower (better)
 - Most of the issue in this configuration is scattering

scattering

Detector Resolution vs Distance 600 500 400 Resolution (µm) 300 200 100 2024 Test Beam Single Arm Arm 1 2024 Test Beam Single Arm Arm 2 0 10 20 30 40 50 0 Distance from Beam Exit (cm)

 $\sigma^2 = \sigma^2_{ ext{detector}} + \sigma^2_{ ext{tracking}}$

- Want a better configuration for 2024
- One option is to use only a single arm for tracking → 4 detectors at once with good resolution

- One option is to use only a single arm for tracking → 4 detectors at once with good resolution
- Slightly worse resolution than first detector in 2023

 $\sigma^2 = \sigma^2_{ ext{detector}} + \sigma^2_{ ext{tracking}}$

Dylan Neff

- Want a better configuration for 2024
- One option is to use only a single arm for tracking → 4 detectors at once with good resolution
- Most of resolution in this configuration attributable to resolution of tracking detector

 $\sigma^2 = \sigma^2_{ ext{detector}} + \sigma^2_{ ext{tracking}}$

- Want a better configuration for 2024
- One option is to use only a single arm for tracking → 4 detectors at once with good resolution
- Most of resolution in this configuration attributable to resolution of tracking detector
 - Lowering tracking resolution from default 10 microns to 5 microns helps significantly

 $\sigma^2 = \sigma^2_{ ext{detector}} + \sigma^2_{ ext{tracking}}$

Dylan Neff

scattering

- Want a better configuration for 2024
- One option is to use only a single arm for tracking → 4 detectors at once with good resolution
- Most of resolution in this configuration attributable to resolution of tracking detector
 - Lowering tracking resolution from default 10 microns to 5 microns helps significantly
 - Reaches same value as 2023

 $\sigma^2 = \sigma^2_{ ext{detector}} + \sigma^2_{ ext{tracking}}$

 $\sigma^{\scriptscriptstyle Z}_{
m \, scattering}$

Detector Resolution vs Distance

2024 Test Beam Single Arm 10 μ m Tracking Resolution

2024 Test Beam Single Arm 5 μ m Tracking Resolution

- Want a better configuration for 2024
- One option is to use only a sin for tracking → 4 detectors at with good resolution
- Most of resolution in this configuration attributable to resolution of tracking detector
 - Lowering tracking resolution from default 10 microns to 5 microns helps significantly
 - Reaches same value as 2023

Not sure if we can get 5 micron resolution on tracking detectors. For this and more, we look to our cosmic muon setup

Outline

- Optimizing detector design
 - Measuring Resolution
 - Problem with 2023 beam test
- Plans for 2023 beam test
- Cosmic muons
- Summary & Outlook

Dylan Neff

Dylan Neff

Cosmic Test Bench

5/28/2023

Cosmic Test Bench

Tracks come through at all angles

Angular Distribution of Cosmic Ray Tracks

Cosmic Tracks in Prototype Detectors

Sign of life for cosmic muon setup

Cosmic Configuration Resolution $\sigma^2 = \sigma^2_{ m detector} + \sigma^2_{ m tracking}$

 Using two arms in coincidence we can should be able to get pretty good resolution on the first ~2 detectors

scattering

Cosmic Configuration Resolution $\sigma^2 = \sigma^2_{ ext{detector}} + \sigma^2_{ ext{tracking}}$

- Using two arms in coincidence we can should be able to get pretty good resolution on the first ~2 detectors
- Most of this resolution smearing still due to multiple scattering of 2 GeV muons
 - Need to double check simulation and cross-check with Geant4

<u>scattering</u>

Muon Rates

Low muon rate hitting small tracking detector.

How many events do we need to characterize prototype resolution?

• 10cm: $40\% \rightarrow 1.2k/day$ • 20cm: $20\% \rightarrow 600/day$ • 30cm: $12\% \rightarrow 400/day$ • 40cm: $9\% \rightarrow 300/day$

Detector Rates

Reference detectors 500k/day

- 13x13cm: 30k/day
- 15x1.5cm: 3k/day

Correcting for Scattering and Tracking Resolution

- Need to decide on best detector design for EIC
- 2023 beam test could only characterize one detector
- Plans to characterize other designs
 September 2024 beam test
 - Cosmic muons

- Need to decide on best detector design for EIC
- 2023 beam test could only characterize one detector
- Plans to characterize other designs
 September 2024 beam test
 - Cosmic muons

Thanks for your attention!

Backup

Muon Angular Distribution

Dylan Neff

Muon Distribution

Random hits on top reference detector, bottom hit r distributed by distribution on right

Model the angular distribution and simulate with detector geometry to get decent approximation of expected rate

5/28/2023

Samy's Resolution Study

- Samy calculated the naively expected banco resolution as a function of the distance from the arms and for various arm separations
- Also estimated uncertainty on resolution measurement with 10000 events

Rates

Detector Rates

Reference detectors 500k/day

- 13x13cm: 30k/day
- 15x1.5cm: 3k/day

- 1 detector $: 40\% \rightarrow 1.2k/day$
- 2 detectors: $20\% \rightarrow 600/day$
- 3 detectors: $12\% \rightarrow 400/day$
- 4 detectors: $9\% \rightarrow 300/day$

Muon Angular Distribution

X and Y Angles

Polar Angle?

Samy's Resolution Study

- Samy calculated the naively expected banco resolution as a function of the distance from the arms and for various arm separations
- Also estimated uncertainty on resolution measurement with 1000 events

