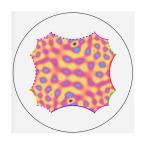
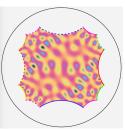
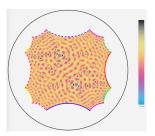
Delocalization of the Laplace eigenmodes on Anosov surfaces

Stéphane Nonnenmacher (Orsay) + Semyon Dyatlov (MIT) + Long Jin (Tsinghua)

> Journées GDR DYNQUA Cergy, 31 janvier - 2 février 2024



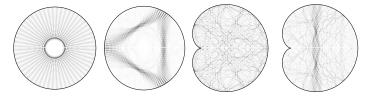




Physical motivation: waves on planar domains

Drum: acoustic waves on a compact domain $\Omega \subset \mathbb{R}^2$. Dirichlet Laplacian $\Delta = \Delta_{\Omega} \leadsto$ discrete set of stationary modes $(u_j(x))_{j \in \mathbb{N}}$ with wavelengths h_j (\equiv inverse frequencies):

$$-h_j^2 \Delta u_j = u_j, \quad u_j \mid_{\partial\Omega} = 0, \quad \|u_j\|_{L^2(\Omega)} = 1 \quad \text{(Helmholtz eq.)}$$



Plots ©Arnd Bäcker: deformations of the disk \sim cardioid Main question: How are the u_j distributed over Ω ?

Focus on the high frequency regime $\iff h_j \ll 1$.

- distribution at the macroscopic scale $\ell \sim 1$
- fluctuations at the microscopic scale ($h_i \lesssim \ell \ll 1$)

High frequency / semiclassical regime

General strategy: to get informations about the eigenmodes,

$$-h_j^2\Delta u_j=u_j,$$

study the long time evolution:

half-wave equation
$$i\partial_t u(t) = \sqrt{-\Delta} u(t), \quad u(0) \in L^2(\Omega),$$

solved by the half-wave propagator
$$u(t) = U^t u(0)$$
, $U^t = e^{-it\sqrt{-\Delta}}$.

In the semiclassical regime $h_j \rightarrow 0$, this wave dynamics is connected with the ray dynamics

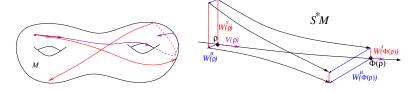
$$\Phi^t: (x,\xi) \in S^*\Omega \mapsto \Phi^t(x,\xi) \in S^*\Omega \quad \text{(unit momentum shell)}$$

Quantum chaos: focus on situations where the ray dynamics Φ^t is chaotic.

Geometric Quantum chaos: manifolds of negative curvature

Geometric drum: smooth compact Riemannian surface (M, g) $(\partial M = \emptyset)$

- Wave dynamics : Laplace-Beltrami operator Δ_g on $L^2(M,g)$, propagator $U^t = \exp(-it\sqrt{-\Delta_g})$.
- − Ray dynamics = geodesic flow Φ^t : $S^*M \to S^*M$.



Negative curvature ⇒ the geodesic flow is hyperbolic (Anosov).

$$\forall \rho = (x, \xi) \in S^*M, \quad T_{\rho}(S^*M) = \mathbb{R}V(\rho) \oplus E^{u}(\rho) \oplus E^{s}(\rho)$$
$$\forall t \geq 0, \quad \|d\Phi^{t}_{|E^{s}(\rho)}\| \leq Ce^{-\lambda t}, \quad \|d\Phi^{-t}_{|E^{u}(\rho)}\| \leq Ce^{-\lambda t}$$

 $E^{s}(\rho)$ tangent to the stable manifold $W^{s}(\rho)$.

[Hopf, Anosov]: Φ^t is ergodic and mixing w.r.t. the Liouville measure μ_L on S^*M : strong chaos.

Quantum ergodicity

Theorem (Quantum Ergodicity)

[Schnirelman'73, Zelditch'87, Colin de Verdière'85...] Assume Φ^t is ergodic on S^*M . Then there exists a subsequence $\mathbb{S} \subset \mathbb{N}$ of density 1 such that, for any open set $V \subset M$,

$$\lim_{s\ni j\to\infty}\int 1 |u_j(x)| u_j(x)|^2 dv_g(x) = \frac{\operatorname{Vol}_g(V)}{\operatorname{Vol}_g(M)}.$$

Observables $a(x, \xi) \in C_c^{\infty}(T^*M) \mapsto \operatorname{Op}_h(a) = a(x, hD_x)$ allow to test the localization both in position and momentum (h-Fourier).

ightharpoonup Quantum Ergodicity can be lifted to phase space: $\forall a \in C_c^{\infty}(T^*M)$,

$$\lim_{\mathfrak{S}\ni j\to\infty}\langle u_j, \operatorname{Op}_{h_j}(a)u_j\rangle_{L^2} = \int_{S^*M} a(x,\xi)\,d\mu_L(x,\xi),$$

 μ_L the normalized Liouville measure on S^*M .

Quantum Unique Ergodicity conjecture [Rudnick-Sarnak'94]: all eigenmodes u_i becomes equidistributed when $j \to \infty$ ($S = \mathbb{N}$).

Constraining the localization of eigenmodes

If (exceptional) non-QUE eigenstates exist, how localized can they be?

One can always extract $\mathcal{E} \subset \mathbb{N}$, such that $(u_j)_{j \in \mathcal{E}}$ admits asymptotic localization properties:

$$\forall a \in \mathit{C}^{\infty}_{c}(\mathit{T}^{*}\mathit{M}), \qquad \lim_{\varepsilon \ni j \to \infty} \langle \mathit{u}_{j}, \mathsf{Op}_{\mathit{h}_{j}}(a) \mathit{u}_{j} \rangle_{\mathit{L}^{2}} = \int_{\mathit{S}^{*}\mathit{M}} \mathit{a}(x, \xi) \, \mathit{d} \, \mu_{\mathit{sc}}(x, \xi) \, .$$

- μ_{sc} the semiclassical measure associated with $(u_j)_{j\in\mathcal{E}}$. Probability measure on S^*M , invariant through Φ^t .
- \exists many invariant measures (ex: δ_{γ} on closed geodesics, measures supported on fractal invariant sets). Which ones can appear as μ_{sc} ?
- [ANANTHARAMAN'06,ANANTHARAMAN-KOCH-N., RIVIÈRE'10]: Lower bounds on the support of μ_{sc} and the Kolmogorov-Sinai entropy $H_{KS}(\mu_{sc})$.

Ex:
$$(M, g)$$
 of curvature -1 : $\dim(\operatorname{supp} \mu_{sc}) \geq 2$, $H_{KS}(\mu_{sc}) \geq \frac{1}{2} H_{\max}$.

These bounds forbid $\mu_{SC}=\delta_{\gamma}$, but allow μ_{SC} to be supported on (not too thin) "fractal" flow-invariant subsets of S^*M .

Main result: in 2D, all eigenstates fully delocalize

Theorem ([DYATLOV-JIN'17])

(M,g) compact hyperbolic surface (curvature= -1). Then, for any open set $\emptyset \neq \mathcal{V} \subset S^*M$, there exists $c_{\mathcal{V}} > 0$ s.t. all semiclassical measures satisfy $\mu_{sc}(\mathcal{V}) \geq c_{\mathcal{V}}$.

Corollary

For any open set $\emptyset \neq V \subset M$, $\exists c_V > 0$ such that $\forall j \in \mathbb{N}$, $\|u_j\|_{L^2(V)} \geq c_V$.

Theorem ([DYATLOV-JIN-N.'22])

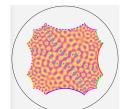
Generalize to (M,g) compact Riemannian surface carrying an Anosov geodesic flow, e.g. surface of variable negative curvature.

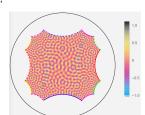
<u>Remark:</u> on any compact (M, g), Carleman estimates $\Rightarrow \|u_j\|_{L^2(V)} \geq e^{-C/h_j}$. Sharp on the round sphere ("equatorial" spherical harmonics).

Here, the lower bounds c_V , c_V are uniform w.r.t. h_j !

Eigenmodes of a hyperbolic surface

(© Alex Strohmaier)





Quantum partition of unity $\frac{1}{2} = \frac{1}{4} = \frac{1}{4} = \frac{1}{4}$

Notations: set $h = h_j$, $u_h = u_j$, satisfies $(-h^2 \Delta - 1)u_h = 0$.

Our goal: for $\mathcal{V} \subset S^*M$ take $a_1 \in C_c^{\infty}(T^*M)$, $a_1 \approx \mathbb{1}_{\mathcal{V}}$, and show that

$$\exists C_{a_1} > 0$$
, for all eigenstates u_h ,

$$\|u_h\|\leq C_{a_1}\|\operatorname{Op}_h(a_1)u_h\|$$

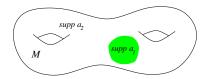
Strategy (inspired by [Anantharaman'06]):

complete a₁ to form a smooth partition of unity near S* M:

$$a_1 + a_2 = 1$$
 near S^*M , $a_2 \approx \mathbb{1}_{S^*M\setminus \mathcal{V}}$.

• \sim Quantum partition of unity: $A_1 + A_2 \equiv Id$ near S^*M :

$$A_1u_h + A_2u_h = u_h + \mathcal{O}(h^{\infty})_{L^2}$$
, where $A_i \stackrel{\text{def}}{=} \mathsf{Op}_h(a_i)$.



Evolve this quantum partition through the wave propagator:

$$A_1(t) + A_2(t) \equiv Id$$
 near S^*M , where $A_i(t) \stackrel{\text{def}}{=} U^{-t}A_iU^t$.

Evolving the quantum partition

Quantum-classical correspondence (Egorov theorem):

$$A_i(t) = U^{-t}A_iU^t = \operatorname{Op}_h(a_i \circ \Phi^t) + \mathfrak{O}_{a_i,t}(h),$$

holds as long as $a_i \circ \Phi^t$ oscillates on scales $\gg h^{1/2}$ (admissible symbol).

• *Compose* these evolved partitions for times $t=0,1,2,\cdots,n$. Write the resulting sum in terms of words $\mathbf{w}=w_0w_1\cdots w_{n-1},\ w_j\in\{1,2\}$

$$\sum_{|\mathbf{w}|=n} A_{\mathbf{w}} \equiv Id \quad \text{near } S^*M, \quad \text{with} \quad A_{\mathbf{w}} = A_{w_{n-1}}(n-1)\cdots A_{w_1}(1)A_{w_0}.$$

• Egorov Thm + semiclassical calculus $(Op_h(a) Op_h(b) \approx Op_h(a \times b))$:

$$A_{\mathbf{w}} = A_{w_{n-1}}(n-1) \cdots A_{w_1}(1) A_{w_0} \approx \operatorname{Op}_h(a_{\mathbf{w}}), \quad \text{fo}$$

 $a_{\mathbf{w}} = a_{w_{n-1}} \circ \Phi^{n-1} \times \cdots \times a_{w_1} \circ \Phi^1 \times a_{w_0},$

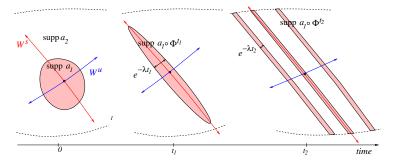
provided all $a_{w_j}(j)$ are admissible.

 $\{a_{\mathbf{w}} : |\mathbf{w}| = n\}$ (smooth) partition *refined* by the flow Φ^t $\{A_{\mathbf{w}} : |\mathbf{w}| = n\}$ *refined* quantum partition (near S^*M)

Pushing the dynamics to large times (curv.= -1)

Until what times j do $a_{w_j} \circ \Phi^j$ remain admissible (oscillate on scales $\gg h^{1/2}$)?

• Hyperbolicity of $\Phi^t \Longrightarrow a_j \circ \Phi^t$ elongated along W^s , contracted along W^u , at the rate $\sim \exp(\pm \lambda t)$ ($\lambda = \text{Lyapunov exponent}$).



• Ehrenfest time $T_E \stackrel{\text{def}}{=} \frac{|\log h|}{\lambda}$, time for the dynamics to connect scales 1 to h. $\rightarrow a_{w_i} \circ \Phi^j$, and hence a_w , are admissible provided $n < \frac{1}{2}T_E$.

"Good" words

Our goal
$$\|u_h\| = \|\sum_{|\mathbf{w}|=n} A_{\mathbf{w}} u_h\| \le C_{a_1} \|A_1 u_h\|$$
 for some $n > 0$.

- One identifies a large family of good words:
- Given $\alpha \in (0,1)$, we say that the *n*-word \mathbf{w} is α -good if $\#\{\mathbf{w}_j = 1\} \ge \alpha n$. Dynamical interpretation: if $(x,\xi) \in \operatorname{supp} a_{\mathbf{w}}$, then the discrete orbit $(\Phi^j(\rho))_{0 \le j < n}$ visits $\operatorname{supp} a_1$ at least αn times.
- Claim: for $n \le T_E/4$, α -good words are controlled by $A_1 u_h$:

$$\Big\| \sum_{\substack{|\boldsymbol{w}|=n\\\boldsymbol{w} \text{ }\alpha-\text{good}}} A_{\boldsymbol{w}} u_h \Big\| \leq \frac{C_c}{\alpha} \|A_1 u_h\| + \mathfrak{O}(h^{\gamma}).$$

Proof: Egorov thm + semiclassical calculus + easy tricks.

• This construction can be extended to times $n > T_E/2$ (symbols a_w are then nonadmissible). We will use it for $n \approx 2T_E$.

The remaining words are called " α -bad".

How to control "bad" words?

There remains to estimate the contribution of $\sum_{\mathbf{w}} A_{\mathbf{w}} u_h$.

• combinatorics: if $\alpha > 0$ chosen small, there will be few α -bad words

$$\#\{|\boldsymbol{w}|=n\approx 2T_E,\ \boldsymbol{w}\ \alpha-\mathsf{bad}\}\leq \boldsymbol{h}^{-\varepsilon}\quad \text{out of }\ 2^n\sim \boldsymbol{h}^{-2\log 2/\lambda}\ \textit{n}\text{-words}$$

all individual operators A_w of length n ≈ 2T_E are small:

Proposition

There exists $\beta > 0$ and $h_0 > 0$ such that, $\forall h < h_0$,

for any word of length
$$|\mathbf{w}| \approx 2T_E$$
, $||A_{\mathbf{w}}|| \leq \mathbf{h}^{\beta}$.

From there, easy to conclude the proof of the Theorem:

$$1 = \|u_h\| = \left\| \sum_{|\mathbf{w}| = \lfloor 2T_E \rfloor} A_{\mathbf{w}} u_h \right\| \le \left\| \sum_{\mathbf{w} \ \alpha - \mathsf{good}} A_{\mathbf{w}} u_h \right\| + \left\| \sum_{\mathbf{w} \ \alpha - \mathsf{bad}} A_{\mathbf{w}} u_h \right\|$$
$$\le \left(\frac{C}{\alpha} \|A_1 u_h\| + \mathcal{O}(h^{\gamma}) \right) + h^{-\varepsilon} h^{\beta}$$
$$\mathsf{choose} \ \alpha \ \mathsf{s.t.} \ \varepsilon < \beta \implies \|u_h\| \le \frac{2C}{\alpha} \|A_1 u_h\| \quad \mathsf{if} \ h < h_0.$$

Why do we need to take the time $n > T_E$?

Our goal: for all n-words \mathbf{w} , $\|\mathbf{A}_{\mathbf{w}}\|_{L^2 \to L^2} \le h^{\beta}$.

 \ominus if $n \leq T_E$: conjugating by $U^{n/2}$, we find

$$U^{n/2}A_{\mathbf{w}}U^{-n/2} = \underbrace{A_{w_{n-1}}(n/2-1)\cdots A_{w_{n/2}}(0)}_{A_{\mathbf{w}^+}^+}\underbrace{A_{w_{n/2-1}}^{-1}(-1)\cdots A_{w_0}(-n/2)}_{A_{\mathbf{w}^-}^-}$$

 A_{\bullet}^+ , resp. A_{\bullet}^- describe refined partitions in the future, resp. in the past, of lengths $|\mathbf{w}^-| = |\mathbf{w}^+| = n/2 \le T_E/2$, hence admissible

$$\implies A_{\mathbf{w}^{+}}^{+}A_{\mathbf{w}^{-}}^{-} \approx \operatorname{Op}_{h}(a_{\mathbf{w}^{+}}^{+})\operatorname{Op}_{h}(a_{\mathbf{w}^{-}}^{-}) \approx \operatorname{Op}_{h}(a_{\mathbf{w}^{+}}^{+}a_{\mathbf{w}^{-}}^{-})$$
$$\longrightarrow \|A_{\mathbf{w}^{+}}^{+}A_{\mathbf{w}^{-}}^{-}\| \approx \|a_{\mathbf{w}^{+}}^{+}a_{\mathbf{w}^{-}}^{-}\|_{L^{\infty}} \lesssim 1.$$

 \implies to obtain the bound h^{β} , the symbols $a_{\mathbf{w}^{+}}^{+}$, $a_{\mathbf{w}^{-}}^{-}$ cannot be admissible, hence we need $n = |\mathbf{w}| > T_{E}$.

Fractal Uncertainty Principle

To show $\|A_{\mathbf{w}^+}^+A_{\mathbf{w}^-}^-\|_{L^2\to L^2}\leq h^\beta$ we use a "black box" result from 1D harmonic analysis.

Theorem ([Dyatlov-Zahl'16,Bourgain-Dyatlov'18])

Let X, $Y \subset [0,1]$ be **fractal** sets, and for $h \in (0,1)$ call X(h), Y(h) their h-neighbourhoods.

Then $\exists \beta = \beta(X, Y) > 0$ s.t., for any $0 < h < h_0$,

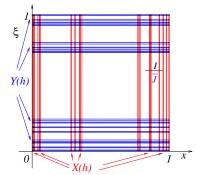
$$\|\mathbf{1}_{X(h)}(x)\,\mathbf{1}_{Y(h)}(hD_x)\|_{L^2\to L^2}\leq h^{\beta}.$$

A function $u \in L^2(\mathbb{R})$ cannot be essentially localized on X(h), if its h-Fourier transform is essentially localized on Y(h).

A fractal set X is ν -porous for some $\nu \in (0,1)$:

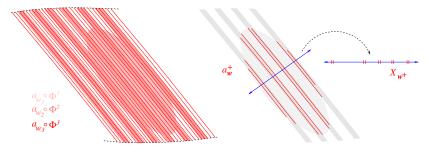
For any interval $I \subset [0, 1]$, $\exists J \subset I$, s.t. $|J| \ge \nu |I|$ and $J \cap X = \emptyset$.

This is not a volume effect: holds if $|X(h)| \times |Y(h)| \gg h$



The support of $a_{\mathbf{w}}^+$ is fractal

Remember the foliation of S^*M by stable, resp. unstable leaves.



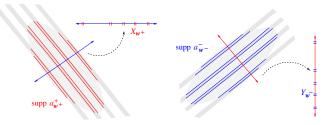
When $m \gg 1$, $a_1 \circ \Phi^m$ is supported on "stable stripes" of widths $\sim e^{-\lambda m}$, separated by stripes of widths $\sim e^{-\lambda m}$.

 \Longrightarrow the support of $a_{\mathbf{w}^+}^+ = \prod_{m=0}^{n/2-1} a_{\mathbf{w}_m^+} \circ \Phi^m$ is porous transversely to W^s , on the scales $1 \searrow e^{-\lambda n/2}$.

Ex: for $|\mathbf{w}^+| \approx T_E$, the set $X_{\mathbf{w}^+} \subset \mathbb{R}$ is porous on scales $1 \searrow h$.

• Similarly: porosity of supp $a_{w^-}^-$ transversely to W^u .

Future and past fractal symbols



Symbols $a_{\mathbf{w}^+}^+$ and $a_{\mathbf{w}^-}^-$, associated with words \mathbf{w}^\pm of length $n/2 \sim T_E$. supp $a_{\mathbf{w}^+}^+$ is fractal transversely to W^s , on scales $1 \searrow h$. supp $a_{\mathbf{w}^-}^+$ is fractal transversely to W^u , on scales $1 \searrow h$.

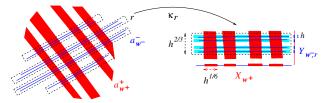
- X_{w^+} , Y_{w^-} are porous sets on scales $1 \searrow h$, like the sets X(h), Y(h) in the FUP. We want to relate the product $A_{w^+}^+ A_{w^-}^-$ with the product $\mathbb{1}_{X_{w^+}}(x)\mathbb{1}_{Y_{w^-}}(hD_x)$ appearing in the FUP
- Can we *straighten* the stable/unstable foliations through a symplectomorphism κ , so that they become vertical / horizontal?

Variable curvature: straightening $C^{2-\varepsilon}$ foliations

- \ominus in general the foliations W^s , W^u are only $C^{2-\epsilon}$ regular
- ⇒ impossible to straighten them by a smooth symplectomorphism.

Treat past and future differently: $|\mathbf{w}^+| \approx T_E/6$, $|\mathbf{w}^-| \approx T_E$

- $A_{\mathbf{w}^+}^+ \approx \operatorname{Op}_h(a_{\mathbf{w}^+}^+)$ (admissible), supp $a_{\mathbf{w}^+}^+$ porous on scales $1 \searrow h^{1/6}$.
- $A_{\mathbf{w}^-}^-$ not admissible, but **is microlocalized** on supp $a_{\mathbf{w}^-}^-$ down to scale h.



- split supp a_{w-}^- into "unstable clusters" of thickness $\sim h^{2/3}$.
- each cluster r is (almost) straightened by κ_r , quantized by an FIO \mathfrak{U}_{κ_r}
- $\Rightarrow \mathfrak{U}_{\kappa_r}A^+_{\mathbf{w}^+}A^-_{\mathbf{w}^-,r}\mathfrak{U}^*_{\kappa_r} \text{ controlled by } \mathbf{1}_{X_{\mathbf{w}^+}}(x)\mathbf{1}_{Y_{\mathbf{w}^-,r}}(h\mathcal{D}_x) \overset{\mathit{FUP}}{\leadsto} \|A^+_{\mathbf{w}^+}A^-_{\mathbf{w}^-,r}\| \leq h^{\beta}.$
- clusters almost orthogonal to e.o. $\stackrel{Cotlar-Stein}{\leadsto} \|A_{\mathbf{w}^+}^+ A_{\mathbf{w}^-}^-\| \le h^{\beta}$

Conclusions

- Our results are restricted to surfaces. Some higher-dimensional versions
 of the FUP exist [HAN-SCHLAG'18, COHEN'22,'23, BACKUS-LENG-TAO'23],
 but there are counterexamples.
- Quantitative estimates on the constant c_V can be obtained (require estimates of β [JIN-ZHANG'17]), very small.
- Can we apply the method to surfaces with boundary? To chaotic Euclidean domains?
- ∃ counterexamples to QUE (μ_{sc} ≠ μ_L) for quantized Anosov maps, e.g. for the "quantum cat map" on T² [FAURE-N-DEBIÈVRE'03].
 - Full delocalization can also be proved in this setup [Schwartz'21], and (under conditions) for higher dimensional "cat maps" [DYATLOV-JEZEQUEL'21].

Thank you for your attention