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The basic problem in nonrelativistic quantum chemistry

Given a fixed distribution of nuclei, with charge density ν and total charge
Z =

∫

R3 ν ≥ 0, find the ground state of a system of N electrons in the
external Coulomb field

ϕ = − 1

|x | ∗ ν .

For N = 1 the state of an electron is a wave function ψ ∈ L2(R3,C)
satisfying

∫

R3 |ψ|2 = 1. The ground state solves

min∫
R3 |ψ|

2=1
(ψ, (−∆

2
+ ϕ)ψ)

L2

The minimizer is an eigenstate of −∆
2 + ϕ with eigenvalue

λ1 = minσ(−∆

2
+ ϕ) .
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The nonrelativistic N-body problem

For N ≥ 2 the state of the system of electrons is a function
Ψ ∈ L2(({+,−} × R

3)N ,C), normalized in L2 and satisfying

Ψ(· · · , σj , xj , · · · , σi , xi , · · · ) = −Ψ(· · · , σi , xi , · · · , σj , xj , · · · ) .

In other words, Ψ ∈ ∧N L2(R3,C2). The ground state solves

min
||Ψ||2=1

〈Ψ,HΨ〉

where

H :=

N
∑

i=1

(

−∆xi

2
+ ϕ(xi )

)

+
∑

1≤i<j≤N

1

|xi − xj |

This exact N-body problem is numerically intractable for N large.
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The Hartree-Fock approximation

One restricts the quadratic form Ψ 7→ 〈Ψ,HΨ〉 to the class of the
functions Ψ which are a simple (Slater) determinant:

Ψ =
√
N! ψ1 ∧ · · · ∧ ψN =

1√
N!

det(ψi (xj ))

where (ψ1, ..., ψN ) is an orthonormal system of L2(R3,C2),
∫

R3 ϕ
∗
i ϕj = δij .

Since the set of all the Ψ’s having this form is not a vector subspace of
∧N

L2(R3,C2), one then obtains an energy functional EHF which is
nonlinear in terms of ψ1, ..., ψN .

The Hartree-Fock ground state is a minimizer of EHF . Since one has
imposed restrictions of the form of Ψ, the ground state energy is
overestimated.
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The Hartree-Fock functional

EHF only depends on γ(x , y) =
∑N

k=1 ψk(x)ψ
∗
k(y), the integral kernel of

the projector γ on Span{ψ1, · · · , ψN}. Denoting ργ(x) := γ(x , x) one finds

EHF (γ) = tr((−∆+ ϕ)γ) +
1

2

∫∫

R3×R3

ργ(x)ργ(y)− |γ(x , y)|2
|x − y | dx dy

The ground state minimizes EHF (γ) in the class of operators γ satisfying
the convex constraints γ = γ∗, γ2 ≤ γ, tr(γ) ≤ N (Lieb ’81). For N ≤ Z

the ground state exists, saturates the constraints and solves

γ = 1(−∞,µ](Hγ)

where Hγ = −∆

2
+ϕ +

1

|x | ∗ργ−
γ(x , y)

|x − y | is the mean-field Hamiltonian.

µ is a Lagrange multiplier such that Hγ has exactly N eigenvalues below µ.
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Relativistic quantum chemistry

When Z ≥ 26 (Iron) the energies of the core electrons enter in the
relativistic regime. As a consequence, models based on the nonrelativistic
kinetic operator −∆ may lead to wrong predictions. For example,
nonrelativistic models predict that:

-Gold is white.

-Lead is as hard as Diamond.

-Mercury is solid at room temperature.

Relativistic models give the correct predictions, but their use is much more
delicate. They are based on the Dirac operator, which is not bounded
below.
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The Dirac operator

Energy of a free electron (p ←→ −i∇)
non relativistic relativistic

classical mechanics E = p2/(2m) E 2 = c2p2 +m2c4

quantum mechanics H = −∆/(2m) D2 = −c2∆+m2c4

Free Dirac operator (’28):

D0 = −ic
3

∑

k=1

αk∂k + βmc2 = −icα · ∇+ βmc2

α = (α1, α2, α3) and β are 4× 4 self-adjoint matrices satisfying
αiαj + αjαi = 2δij , αiβ + βαi = 0.

D0 is defined on L2(R3,C4) with domain H1(R3,C4) and
(D0)2 = −c2∆+m2c4.

It is unbounded from below :

σ(D0) = (−∞;−mc2] ∪ [mc2; +∞).
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Dirac’s interpretation of the negative spectrum

Dirac (1934): “We make the assumption that, in the world as we know it,

nearly all the states of negative energy for the electrons are occupied, with

just one electron in each state, and that a uniform filling of all the

negative-energy states is completely unobservable to us.”

→ Vacuum = Dirac sea = infinitely many virtual electrons occupying
the negative energies.

Consequence: real electrons can only occupy positive energy states.
Moreover, the Dirac sea hypothesis can be tested experimentally:

The virtual electrons can feel an external field and will react
accordingly → Vacuum Polarization.

If a photon of high energy is absorbed by a virtual electron, an
electron-positron pair can be created.
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The Dirac-Fock model (Swirles, 1935)

Replacing the Schrödinger operator −∆/2 by the free Dirac operator D0

in the Hartree-Fock equations, one gets the Dirac-Fock equations which
are widely used in Relativistic Quantum Chemistry:







γ = χ[0,µ] (Dγ)

Dγ = D0 + α (ργ − ν) ∗
1

| · | − α
γ(x , y)

|x − y |
(1)

with µ ∈ (0, 1) such that Dγ has exactly N eigenvalues between 0 and µ.

Units: ~ = m = c = 1, α = e2 (fine structure cst).
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The Dirac-Fock energy functional

The Dirac-Fock projector γ is a critical point, under the constraints
γ = γ∗, γ2 = γ, tr(γ) = N , of the Dirac-Fock energy functional

EDF(γ) = tr(D0γ)− α
∫∫

ν(x)ργ(y)

|x − y | dx dy

+
α

2

∫∫

ργ(x)ργ(y)

|x − y | dx dy − α

2

∫∫ |γ(x , y)|2
|x − y | dx dy ,

This energy is not bounded below. Any of its critical points has an infinite
Morse index. The definition and computation of the ground state become
problematic.
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The case N = 1

For N = 1 , γ is a projector of rank one, so we can equivalently work with
a normalized wave function ψ in its range. The DF equation reduces to
the linear eigenvalue problem

(

D0 − α ν ∗ 1

| · |
)

ψ = λψ

and the ground state ψ1 corresponds to the choice

λ1 = min
(

[0,∞) ∩ σ(D0 − αν ∗ 1

| · |)
)

.

However the standard characterization of the ground state as minimizer of
the Rayleigh quotient cannot be used, since D0 is not bounded below. A
consequence, in numerical computations, is the existence of “spurious
states”, i.e. eigenvalues of the discretized problem that do not approximate
eigenvalues of the exact problem, even when the discretization is refined.
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Talman’s principle ’86

If ν is a positive measure of total mass Z with αZ < 1 then the ground
state energy is

λ1 = inf
ϕ∈C∞

c (R3,C 2)\{0}
sup

ψ=(ϕχ )
χ∈C∞

c (R3,C2)

(ψ, (H − αν ∗ 1
|·|)ψ)

(ψ,ψ)

Rigorous proof by Griesemer-Lewis-Siedentop ’99 for small densities ν, by
Dolbeault-Esteban-S. ’00 for αZ ≤

√
3/2, by Esteban-Lewin-S. 19’ and

Schimmer-Solovej-Tokus 19’ when αZ ≤ 1.
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Solutions of DF (Esteban-S. ’99, Paturel ’00)

Assume that N and Z =
∫

R3 ν are two positive integers satisfying
αZ < 2

π/2+2/π and N ≤ Z . Then, there exists an infinite sequence (γj )
j≥0

of critical points of the Dirac-Fock functional EDF on the manifold of
projectors of rank N.

Each projector γj is solution of the Euler-Lagrange equation

[γ,Dγ ] = 0

and satisfies the inequality γj ≤ χ(0,1)(Dγj ). In other words, γj is the

projector on a space V j of dimension N spanned by N eigenvectors of Dγj
with eigenvalues between 0 and 1.

Moreover, for α small enough, γ1 = χ[0,µ](Dγ1) for a suitable µ ∈ (0, 1).
Its energy level is

EDF(γ
1) = min

γ=γ∗=γ2, tr(γ)=N,

γ χ(−∞,0)(Dγ )=0

EDF(γ)
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Closed-shell ground state of DF (Huber-Siedentop ’07)

Assume that N = 2, 8, 10, · · · , Z =
∫

R3 ν ≥ N and α < α0(N,Z ) . Then,
there exists a solution (γ, µ) of the self-consistent equation

γ = 1[0,µ](Dγ) , tr(γ̄) = N

of smallest energy among the solutions of this equation.

Method: fixed-point, in the spirit of the Roothaan algorithm.

Limitations: closed shells, α0(N,Z ) is very small (less than 3.10−3 in the
most favorable case N = 2 , 60 < Z < 80; much smaller for other values of
Z and N).
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Ground state of the relaxed DF energy (S., CMP 2023)

Assume that N and Z =
∫

R3 ν are two positive integers satisfying N ≤ Z

and

παN < 2(1− 2α(N + Z ))
1
2 (1− αZ )1/2

(

1− 2α(N + Z )− π

4
αN

)
1
2
. (2)

Then, there exists an operator γ̄ solving the minimization problem

EDF(γ̄) = min
γ=γ∗,tr(γ)≤N

0 ≤ γ ≤ 1(0,+∞)(Dγ )

EDF(γ)− tr(γ) .

This minimizer satisfies the Euler-Lagrange equation

γ̄ = 1[0,µ)(Dγ̄) + q with 0 ≤ q ≤ 1{µ}(Dγ̄) and tr(γ̄) = N . (3)

Examples with α = 1/137: for N = 2, one can take 2 ≤ Z ≤ 63; for
N = Z one can take Z ≤ 22.
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Proof I: a retraction

Assume that N and Z =
∫

R3 ν are two positive integers satisfying (2) and
N ≤ Z . Let

G(N) := {γ = γ∗ : 0 ≤ γ ≤ 1; tr(γ) ≤ N ; |D0|γ ∈ σ1}
For γ ∈ G(N), let P+

γ := 1(0,+∞)(Dγ) . Let

G+(N) := {γ ∈ G(N) : γ ≤ P+
γ } .

Then there is a neighborhood U of G+(N) in G(N) such that, if γ0 ∈ U

then the sequence defined by γn+1 = P+
γnγnP

+
γn converges geometrically to

an operator θ(γ) ∈ G+(N). Moreover, if γ0 ∈ G+(N) then θ(γ0) = γ0.
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Proof II: Euler-Lagrange equation

Let γ be a minimizer of (EDF − tr) on G+(N). Assume that γ does not
satisfy the Euler-Lagrange equation (5). Let γ′ be an aufbau projector on
the N first positive eigenvalues of Dγ . Let γ̃ := θ

(

(1− s0)γ + s0γ
′
)

where

s0 = ArgMin{(EDF − tr)
[

θ
(

(1− s)γ + sγ′
)]

, s ∈ [0, 1]}.

Then γ̃ ∈ G+(N), (EDF − tr)(γ̃) < (EDF − tr)(γ) . This is a contradiction.
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A relativistic ODA algorithm (work in progress)

This proof can be transformed into a relativistic version of the ODA
algorithm of Cances-Lebris.

Given γ(k) in G+(N), let g (k) be an aufbau projector on the N first positive
eigenvalues of Dγ(k) . Let γ

(k+1) := θ
(

(1− s(k))γ(k) + s(k)g (k)
)

where

s(k) = ArgMin{(EDF − tr)
[

θ
(

(1− s)γ(k) + sg (k)
)]

, s ∈ [0, 1]}.

Then γ(k+1) ∈ G+(N), (EDF − tr)(γ(k+1)) ≤ (EDF − tr)(γ(k)) and

|D0|1/2(γ(k+1) − γ(k))→ 0 in the Hilbert-Schmidt norm.

As a consequence, there is a connected set S of solutions of the DF
equations such that the distance of γ(k) to S converges to zero as k →∞.

(Université Paris-Dauphine PSL) The ground state of the Dirac-Fock model GDR DynQua, January 2024 18 / 22



The Dirac-Fock ground state for crystals (Catto, Meng,

Paturel, S.)

Consider the case of a cubic crystal with elementary cell is Qℓ = (− ℓ
2 ,

ℓ
2 ]

3

and a single point-like nucleus per unit cell, located at the centre of the
cell.

The electrons are treated quantum mechanically through a periodic
density matrix Γ =

∫ ⊕
Q∗
ℓ
γξ dξ where each operator γξ acts on the space of

Bloch functions

L2ξ := {ψ ∈ L2loc (R
3,C4) : ψ(x + lm) = e iξψ(x) , ∀m ∈ Z

3}

and satisfies
γξ = γ∗ξ , 0 ≤ γξ ≤ 1 , tr γξ ≤ q .
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The periodic Dirac–Fock functional

For Γ in a suitable functional space one defines an energy of the form

EDF
per (Γ) =

∫

Q∗
ℓ

trL2
ξ
[Dξγξ] dξ − αz

∫

Qℓ

Gℓ(x)ργ(x) dx

+
α

2

∫∫

Qℓ×Qℓ

ργ(x)Gℓ(x − y)ργ(y) dxdy (4)

− α

2

∫∫

Q∗
ℓ
×Q∗

ℓ

dξdξ′
∫∫

Qℓ×Qℓ

tr4 [γξ(x , y)γξ′(y , x)]W
∞
ℓ (ξ − ξ′, x − y) dxdy .
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Existence of a ground state for relativistic crystals

Assume that q and z satisfy a certain condition that holds, in particular,
for ℓ ≥ 200 and α = 1/137, q = z ≤ 18.

Then, there exists an operator Γ̄ solving the minimization problem

EDF
per (Γ̄) = min

Γ=Γ∗,tr(γξ)≤q (for a.e. ξ)

0 ≤ γξ ≤ 1(0,+∞)(DΓ,ξ) (for a.e. ξ)

EDF(Γ)− tr(Γ) .

This minimizer satisfies the Euler-Lagrange equations

γ̄ξ = 1[0,µ)(DΓ̄,ξ) + qξ with 0 ≤ qξ ≤ 1{µ}(DΓ̄,ξ) , tr(γ̄ξ) = q . (5)

Here, DΓ,ξ is the mean-field operator generated by the periodic nuclear
density and the electronic density matrix Γ in the Block waves subspace
L2ξ .
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THANK YOU!
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