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The dilute Bose gas

Consider N interacting, non-relativistic bosons in a box A := [—L/2, L/2]3.
Let NeN, p:= N/|A| = N/L3.
The Hamiltonian of the system is, on the symmetric (bosonic) space @V L?(A),

N
Hy = Z —A; + Z v(xi — Xj),
i—1 i<j

and 0 < v is radially symmetric with compact support.
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The dilute Bose gas

Consider N interacting, non-relativistic bosons in a box A := [—L/2, L/2]3.
Let NeN, p:= N/|A| = N/L3.
The Hamiltonian of the system is, on the symmetric (bosonic) space @V L?(A),

N
HN = Z —Ai + Z V(Xi - Xj)7
i=1

i<j
and 0 < v is radially symmetric with compact support.
The ground state energy of the system is

Eo(N, ) := inf Spec Hy.

@ UNIVERSITY OF COPENHAGEN

° Sgren Fournais



The dilute Bose gas

Consider N interacting, non-relativistic bosons in a box A := [—L/2, L/2]3.
Let NeN, p:= N/|A| = N/L3.
The Hamiltonian of the system is, on the symmetric (bosonic) space @V L?(A),

N
HN = Z —Ai + Z V(Xi - Xj)7
i=1

i<j
and 0 < v is radially symmetric with compact support.
The ground state energy of the system is

Eo(N, A) := inf Spec Hy.
The energy density in the thermodynamic limit is

e(p) = lim  E(N,N)/L3.
(p) Lo A, o(N,N)/
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The scattering length

Scattering equation
1
(—A+ Ev(x))(l —w(x)) =0, with w — 0, as |x| — oo.

Scattering length

2= lim |xlw(x) = 8%/\/(1—&;) < %/v: 8%9(0).

|x|—o00

With g = v(1 —w) the scattering equation can be reformulated as

1 . g(k
—Aw = 58 ie. w(k)= %
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The two-term formula

We study e(p) in the dilute limit pa®> — 0. The following formula is expected to be
true

e(p) = 4mp2a(l + W(péﬁ)l/z) +p2ao((pa®)'?).
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The two-term formula

We study e(p) in the dilute limit pa® — 0. The following formula is expected to be
true

e(p) = 4mpa(l+ W(péﬁ)m) +pPao((pa®)t?).

o Lenz (1929), Bogoliubov (1947), Lee-Huang-Yang (1957).

o Rigorous proof of leading term Dyson (1957, upper), Lieb-Yngvason (1998).

@ Upper bounds giving second order term: Erd8s-Schlein-Yau (2008), Yau-Yin
(2009).

@ Study of the limit for v becoming 'soft’ as p — 0: Lieb-Solovej, Giuliani-Seiringer
(2008), Brietzke-Solovej (2018).

@ Bogoliubov theory for confined Bose gases (Gross-Pitaevskii limit) Boccato,
Brennecke, Cenatiempo, Schlein, Basti, Olgiati, Seiringer, Morris, Nam, Hainzl,
Triay, Deuchert,....
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The Lee-Huang-Yang formula

Theorem (SF, Solovej 2019&21)
Given a potential v # 0, non-negative, radial, with compact support there exist
C,n > 0 (depending on v) such that for all p sufficiently small,

128

3y1y 2 3\i4n
15ﬁ(pa )2) — Cp=a(pa®)="".

e(p) > 4mp2a(l+
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The Lee-Huang-Yang formula

Theorem (SF, Solovej 2019&21)

Given a potential v # 0, non-negative, radial, with compact support there exist
C,n > 0 (depending on v) such that for all p sufficiently small,

128
157

Combined with the upper bound from Yau-Yin this proves the Lee-Huang-Yang
formula for the ground state energy.
Neumann approach by Boccato-Seiringer and Hainzl-Nam-Triay.

e(p) > 4mp2a(l + (pa®)?) — Cp2a(pa®)s™.,
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The Bogoliubov Approach

In second quantization, i.e. with ay, ai standard creation/annihilation operators,

[k, ab] = 0k p, we have

H= E kzakak + 5 Z V(p — s)alalapag = Ko + -+ Kq = Ko + K1 + Ka.
| it

Replace ap and 30 by v/N. This is based on the assumption of (complete) BEC. Then,

Z0)

> (aJ{(aT_k + aka_k).

1 ~
Ko = 5Npv(0), K1=0, Kz= > (K + pv(k))aka + p
k0

The quadratic operator K> can be diagonalized explicitly. This gives an energy formula
of the correct structure but with 3¥(0) instead of the smaller 4ra.



Strategy of proof of rigorous lower bound

o Localize to boxes of size £ > (pa)_%. Localization non-standard since need to
preserve ‘Neumann gap’. To get a priori information localize to smaller boxes of
size < (pa)_%. Here Neumann gap can be used to control errors. Rest of analysis
carried out on large box. Loss of translation invariance - which we will ignore in
the rest of this talk.

o Condensation. Let P projection on constant function, @ orthogonal complement.

HOZZP,', n—l—:ZQi-

A priori bounds control expected values (ng) and (n.). Energy error negligible if
localizing to subspace where n;. < M, where M is of the order of the bound on

(n4).
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2-particle terms/The 4Q term

Clearly 1 = P1P2+ QiP> + P1Q2 + Q1 Qu.



2-particle terms/The 4Q term

Clearly 1 = P1P2+ QiP> + P1Q2 + Q1 Qu.

V(X,' — XJ) = P,'PJ'VPJ'P,' + (Q,’PJ'VPJ'P,' + P,'QJ'VPJ'P,' + h.C.) + ...+ Q,‘QJ'VQJ'Q,'
={QiQ + (PiPj + PiQj + QiP))w} v{Q;Q; + w(P;iP; + P;Q; + QiPj)} + ...



2-particle terms/The 4Q term

Clearly 1 = P1P2+ QiP> + P1Q2 + Q1 Qu.

v(xi — xj) = PiPjvP;P; 4 (QiPjvP;P; + P;QjvP;P; + h.c.) 4+ ... + Q;Q;vQ; Q;
={QiQ + (PiPj + PiQj + QiP))w} v{Q;Q; + w(P;iP; + P;Q; + QiPj)} + ...

So (all sums over i # j): 23" v(x,x) > Qo+ Q1 + Qo + O3,



2-particle terms/The 4Q term

Clearly 1 = P1P2+ QiP> + P1Q2 + Q1 Qu.

v(xi — xj) = PiPjvP;P; 4 (QiPjvP;P; + P;QjvP;P; + h.c.) 4+ ... + Q;Q;vQ; Q;
={QiQ + (PiPj + PiQ + QiP))w} v{Q;Qi + w(P;iP; + PiQ; + QiPj)} + ...

So (all sums over i # j): £ 3 v(x,x) > Qo+ Q1 + Qo + Q}, where
5= Z P;iQjvi(xi, x;) Qi Qi + h.c.
Q= Z P;iQjva(xi, xj) P; Qi + Z P Qjva(xi, x;) Q; P
5 (PPl ) Qs + hc),
Q= Z P; Qiva(xi, xj) Pi P}, Qg 1= %Z P;Pjva(xi, x;) P; P;

and where vi = v(1 —w) =g, vo = v(1 — w?) = g(1 +w).



Strategy of proof Il

o Discarding the positve 4Q term has renormalized the interaction. No "bare” v
appears.

@ Rest of proof in 2nd quantization. For simplicity of presentation, we will assume
periodic boundary conditions. Then 1Q terms disappear. In the real proof, 1Q
terms are present and the cancelation of the 1Q terms has to be done carefully.
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Strategy of proof Il

o Discarding the positve 4Q term has renormalized the interaction. No "bare” v
appears.

@ Rest of proof in 2nd quantization. For simplicity of presentation, we will assume
periodic boundary conditions. Then 1Q terms disappear. In the real proof, 1Q
terms are present and the cancelation of the 1Q terms has to be done carefully.
Standard bosonic creation/annihilation operators ay, a;r(, k € (2me1)73.

lak,aw] =0, [ak, al] = Gk -

@ c-number substitution. Replace all ag, ag by /n.

Expect ng ~ n ~ pl3 = K3(pa3)_%. So 1/np < (pa3)%.

o Localize 3Q-term: A preliminary analysis allows cut-offs in the 3Q-term to

soft-pair interactions only.
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Diagonalizing the operator

Let K be the Hamiltonian on a periodic box, after c-number substitution
1 . 1 —
K= 5p*C8(0) + 5 p*CEw(0) + K% + Q5 + Qs.
Here, with A(k) := k? + pg(k), B(k) := pg(k).

1
KB = 23 (A(k)(a;f(ak +al a )+ Blk)(alal , + aka_y),
k

and (with P, being low momenta < ,/pa, Py high momenta ~ a~1)
Q% = pz (gw(0) + Ec\u(k))a;r(ak ~ 2pgw(0)ny
k

Q3 :=473Vn Z g(k)(alas_kax +alal_,as).

kePy,seP;



Diagonalizing KB (The idealized Bogoliubov calculation)

(a}: + aka—k)(ak + akaT_k) = aZak + a,%aT_ka_k + ax(aka—k + aLaT_k) — ai[a_k, aT_k].



Diagonalizing KB (The idealized Bogoliubov calculation)

(a}: + aka—k)(ak + ozkaT_k) = aZak + a,%aT_ka_k + ax(aka—k + aJ{(aT_k) — ai[a_k, aT_k].

1

KcBee = 5 Z < (k)(akak +a 'a—k)+ B(k)( k + aka_g)
K

=> (Dkb}:bk — (A — [ A} - Bi))
p

where by := aj + akaT_k, K = %(Ak + \/A2 — 15’2) ~ k2, and
Q) = B; (.Ak - \/ )

22

BT ~ pg2—(kk2— = pw(k) (= valid for |k| near a=1).



Diagonalizing KB (The idealized Bogoliubov calculation)

(a}: + aka—k)(ak + ozkaT_k) = aZak + a,%aT_ka_k + ax(aka—k + aLaT_k) — ai[a_k, aJr_k].

KBos = Z ( (akak +al 'a—k)+ B(k)( k + aka_g)

= (Dkb bi = (Ax — /43 — BY))
k
where by —ak-l—aka_k, P % .Ak-i-\/.Az Bz)Nkz
ax = B Ak — /A2 — BY) ~ 2%( ~ p% = pii(k) (= valid for |k| near a=1).

The constant term Z(.Ak — /A2 — B2) joins the constant 3p?¢3g(0) + 3p%(3gw(0)
from KC to give the right energy to LHY precision.



Treating Q3 = £73\/n Y, cp, scp, 8(K)(alas_rar + aZaZ_kas)

as—kdk =

1__1aE 1_a1§_k (bs—kbk - CkaT_kbs—k - Oés—kb;t_sbk + akas—kbzt_st—k — ak[bs—, bik])'



Treating Q3 = £73v/n> ", cp. .cp, 8(k)(alas_rar + aj}(ai_kas)

as—kdk =

T 1_12_k (bs—kbk — abl bs—k — as_bj_ i+ aas—kbj_gbl — aulbs—y, bik])‘

oy Lo

So,

> Dubbi+ Qs m Y Diblbe+ 00 >0 E(k)(albs by + bbL,a)
kePy kePy kEPy,seP;,

Z (bT+€ 3\/—g()z albs_ k)( +£3\/—g Z ,kas/>

kePy s'ep;

£6 Z g(k) Z albs_x Z b, s

kePy seP; s'ePy



Treating Q3 = £73v/n> ", cp. .cp, 8(k)(alas_rar + aZaI_kas)

as—kdk =

T 1_12_k (bs—kbk — abl bs—k — as_bj_ i+ aas—kbj_gbl — aulbs—y, bik])‘

oy Lo

So,

> Dubbi+ Qs m Y Diblbe+ 00 >0 E(k)(albs by + bbL,a)
kePy kePy kEPy,seP;,

Z (bT+€ 3\/—g()z albs_ k)( +£3\/—g Z ,kas/>

kePy s'ep;

£6 Z g(k) Z albs_x Z b/ s

kePy seP; s'eP;,
o~ 2 — .
Notice that ¢—3 D kePy g2(£1 ~ gw(0) and [bs_, bl,_k] ~ Jss. Therefore, this term
takes out Q5*.
Normal ordered 4th order term requires the bound on M.




Comments

o Hard core. We used a bound on [ v to get the bound on M. Need to replace
Vhe by a softer potential with 0 < v < v and a(vpe) — a(v) < \/ﬁ. This
forces [v > (pa3)_%. In this case the window for localizing n, closes. But it
turns out to be possible and sufficient to localize the low-momentum part of ny.

o In the 2D case, the energy becomes - with Y = |log(pa®)|~?! -
2D\ _ g2 _ 1 2y/2
e*"(p) = 4mp Y(l Y|log Y|+ <2F tot log(m) ) Y ) + o(p~Y?),

as pa® — 0. Notice that the leading order term is a factor of the expansion
parameter Y smaller than 47rp2f v even for soft v. Therefore, 2D presents the
same difficulties as the the 3D hardcore case - plus specific 2D complications.
Joint work with Girardot, Junge, Morin, and Oliviera.
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