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Ground-state energy problem

Quantum many-body problem:

� N fermions/bosons in Rd ⇝ Anti/symmetric wavefunction Ψ ∈ L2(RdN)

� w(x−y) symmetric two-body interaction potential — e.g. ws(x) = |x |−s for s > 0
� V : Rd → R external potential

HV (N) :=−
N

∑
i=1

∆xi +
N

∑
i=1

V (xi )+ ∑
1≤i<j≤N

w(xi −xj)

Ground-state energy problem:

EN(V ) := inf
{
⟨Ψ,HN(V )Ψ⟩L2 : Ψ ∈ L2(RdN) with ∥Ψ∥L2 = 1

}
Ó Very high-dimensional problem when N ≫ 1 : infeasible !
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Density Functional Theory

� Wavefunction Ψ ∈ L2(RdN) has one-particle density ρΨ ∈ L1(Rd)

ρΨ(x) := N
∫
Rd(N−1)

|Ψ|2(x ,x2, . . . ,xN)dx2 . . . ,dxN

� Two-step minimisation : split infimum into two infima

EN(V ) = inf
∥Ψ∥L2=1

{· · ·}= inf
ρ≥0∫

Rd ρ=N+...

inf
∥Ψ∥L2=1

ρΨ=ρ

{· · ·}= inf
ρ≥0∫

Rd ρ=N+...

{
Fh̄(ρ)+

∫
Rd

Vρ

}

where Fh̄(ρ) is Levy–Lieb functional:

Fh̄(ρ) = inf
∥Ψ∥L2=1

ρΨ=ρ

{
h̄2

2

∫
RdN

|∇Ψ|2+
∫
RdN

∑
1≤i<j≤N

w(xi −xj)|Ψ|2
}

⌣ Variational problem on L1(Rd) : does not depend on N !
Universal Functionals in Density Functional Theory, Lewin, Lieb & Seiringer ’19
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Approximate functionals for Fh̄(ρ)

Ó Unknown Fh̄(ρ) : use approximate functionals !

Kohn-Sham (KS) : Leading order = kinetic energy [Kohn–Sham, ’84]

Fh̄(ρ) = inf
∥Ψ∥L2=1

ρΨ=ρ

{
h̄2

2

∫
(Rd )N

|∇Ψ|2
}

+ corr. terms for interactions.

= non-interacting systems of bosons/fermions

Strictly–Correlated Electrons (SCE) : Leading order = interactions [Seidl, Perdew & Levy ’99]

Fh̄(ρ) = inf
∥Ψ∥L2=1

ρΨ=ρ

{∫
(Rd )N

∑
1≤i<j≤N

w(xi −xj)|Ψ|2
}

+ corr. terms for kinetic energy

= only interactions, no kinetic energy = classical problem

Density functionals based on the mathematical structure of the Strong-interaction limit of DFT, Vuckovic et al. ’23

The Strong-Interaction Limit of Density Functional Theory, Friesecke, Gori-Giorgi & Gerolin ’23
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Strictly–Correlated Electrons [See e.g. Seidl & Gori–Giorgi’s research group]

� Exact approximation in strong-correlation regime h̄→ 0
[Cotar, Friesecke & Klüppelberg ’13 & ’18, Bindini & De Pascale ’17, Lewin ’18]

� In practice, used in corrections terms for Kohn–Sham (KS–SCE)

Mott insulator [Marie et al. PRR ’22] :
REAL-SPACE MOTT-ANDERSON ELECTRON … PHYSICAL REVIEW RESEARCH 4, 043192 (2022)

FIG. 1. Exact, KS SCE, KS LDA, and KS EXX ground-state electronic densities for two electrons in a box without external potential for
various effective interaction strength L.

negative for L ! 20. The maximum of the derivative (L = 2.7)
marks the onset of the Mott-like transition and can be used to
define a critical Mott interaction strength. Alternatively, one
could define this Lc as the value of L at which the entropy
reach the 2 ln(2) value, which gives Lc = 8.5. Note that the
definition of Lc is somewhat arbitrary in this case but this
concept will be useful later to study the influence of disorder
on interaction-induced transition.

The bottom panel shows the corresponding position-space
information entropy. This entropy is increasing for small val-
ues of L before decreasing when L goes to infinity as expected
because the electrons are localized in this limit. This max-
imum of the entropy can be understood by looking at the
second panel of Fig. 1 (L = 2.5) where one can see that the

FIG. 2. Single-particle occupation entropy (top panel) and
position-space information entropy (bottom panel) of the ground-
state of two electrons in a box without external potential for various
effective interaction strength L. The dashed lines are the derivative
of the interpolated solid lines.

density is enlarged when compared to the leftmost panel.
Indeed, the density is deformed due to this stronger repul-
sion between the electrons, yet, the interaction is not strong
enough to localize them on each side of the box. Therefore the
position-space information entropy goes through a maximum
of delocalization at intermediate L before decreasing towards
localization. The position of this maximum can be used as
a definition of Lc for this indicator. This gives a value of Lc
equal to 5.8 which is in qualitative agreement with what has
been observed using the single-particle occupation entropy.

The densities obtained with three different KS approxi-
mations (SCE, LDA, and EXX) are also plotted in Fig. 1.
In the weak interaction regime, every approximation gives
fairly good results in terms of the density. Note that even if
the SCE density is correct for small L, the associated SCE
total energy is a poor approximation to the exact value in
this high-density limit [37]. When the interaction strength is
increased, LDA and EXX fail to reproduce the localization of
the electrons. At L = 100, their densities are almost totally
delocalized. LDA looks slightly better than EXX, because it
can produce two small localized bumps, but this is likely a
boundary effect (for example, the two bumps in LDA disap-
pear in an harmonic confinement, while still present in the
exact and SCE case [37,38]). On the other hand, SCE is able
to localize the electrons on each side of the box, getting at least
qualitatively right results. However, SCE still does not localize
the electrons enough, as can be seen on the two rightmost
panels of Fig. 1. The SCE functional finds the minimum of the
interaction energy for a given density [see Eq. (10)], hence this
energy is underestimated with respect to the exact one, which
leads to this slight underlocalization in the large L limit.

That this localization of electrons happens for larger in-
teraction strengths in SCE than in the exact case can also
be observed by looking at the corresponding position-space
information entropies. Indeed, according to Fig. 2 the value
for Lc in the SCE case is 21.5. We do not report the entropy
for the two other approximate KS methods as they fail to
localize the electrons therefore the associated entropies are
not meaningful. Thus, in this case, the Shannon entropy is a
qualitatively good indicator that can be used for KS approxi-
mations.

043192-5

functional derivative (8) as a function of r displays strong
variations pushing electrons towards localization. In other
words, Eqs. (7) and (8) transfer the effects of strong
correlation into a physically meaningful, effective local
potential, expressed as the functional derivative of a rig-
orous KS density functional.

While KS SCE does not use explicitly the Hartree func-
tional, the correct electrostatics is still captured, since
VSCE
ee ½!" is the classical electrostatic minimum in the given

density !. Moreover, the potential ~vSCE½!"ðrÞ stems from a
wave function (the SCE one [32,39]) and is therefore
completely self-interaction free. Similarly, we expect
~vSCE½!"ðrÞ to have a derivative discontinuity that will be
analyzed elsewhere [41].

Self-consistent KS SCE calculations in Q1D.—As a pilot
test of the approximation of Eq. (6), we consider N elec-
trons in a thin quantum wire with Hamiltonian

Ĥ ¼ & 1

2

XN

i¼1

@2

@x2i
þ

XN&1

i¼1

XN

j¼iþ1

wbðjxi & xjjÞ þ
XN

i¼1

vextðxiÞ;

(9)

where the effective Q1D interaction is obtained by inte-
grating the Coulomb repulsion on the lateral degrees of
freedom [42],

wbðxÞ ¼
ffiffiffiffi
"

p

2b
exp

"
x2

4b2

#
erfc

"
x

2b

#
: (10)

The parameter b fixes the thickness of the wire, and erfc (x)
is the complementary error function. The interaction wbðxÞ
has a Coulombic tail, wbðx ! 1Þ ¼ 1=x, and is finite at
the origin, where it has a cusp.
The co-motion functions fiðxÞ for N electrons can be

constructed from the density !ðxÞ [29,34,35],

fiðxÞ ¼
(
N&1

e ½NeðxÞ þ i& 1" x ( aNþ1&i

N&1
e ½NeðxÞ þ i& 1& N" x > aNþ1&i;

(11)

where the function NeðxÞ is

NeðxÞ ¼
Z x

&1
!ðx0Þdx0 (12)

and ak ¼ N&1
e ðkÞ. Equation (7) becomes in this case

~v0
SCE½!"ðxÞ ¼

XN

i¼2

w0
b½jx& fiðxÞj"sgn½x& fiðxÞ": (13)

We then solve self-consistently the restricted KS equations
in the KS potential vKSðxÞ ¼ vextðxÞ þ ~vSCE½!"ðxÞ, where
~vSCE½!"ðxÞ is obtained by integrating Eq. (13) with the
boundary condition ~vSCE½!"ðjxj ! 1Þ ¼ 0.
Here, we aim at showing that this KS SCE approach

captures essential features of strong correlation out
of reach for standard restricted KS calculations. A
simple but very representative example is provided by
Abedinpour et al. [8], who considered the external
harmonic confinement vextðxÞ ¼ 1

2!
2x2 and performed
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FIG. 1 (color online). Self-consistent densities for N ¼ 2 elec-
trons in Q1D [Hamiltonian of Eqs. (9) and (10) with b ¼ 0:1 and
vextðxÞ ¼ 1

2!
2x2], in units of the effective confinement length

L ¼ 2!&1=2 (here and in the following figures). The exact
results are compared with KS LDA and KS SCE approximations.
At large L the KS LDA calculations do not converge, while KS
SCE approaches the exact solution.
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FIG. 2 (color online). Self-consistent exchange-correlation po-
tentials for the same system of Fig. 1. For clarity, the potentials
for L ¼ 29 have been shifted by &4.
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Quantum 1D wire [Malet & Gori–Giorgi PRL ’12] −→



Multimarginal Optimal Transport & SCE [Buttazzo, De Pascale & Gori-Giorgi ’12] & [Cotar,

Friesecke & Klüppelberg ’13]

� Minimizing P ̸= |Ψ|2 to SCE is (generically) a singular measure:

FSCE (ρ) := min
P∈Psym(RdN)

P7→ρ

{∫
RdN

∑
1≤i<j≤N

w(xi −xj)dP(x1, . . . ,xN)

}

 Multimarginal OT problem : N marginals and cost of transportation is interaction energy

[ What is OT ? Given two probability measures µ,ν ∈ P(Rd ) and a function c : Rd ×Rd → R+ such that c(x ,y) is the
cost of transporting an infinitesimal mass from x to y , the Kantorovich formulation of OT reads

OT (µ,ν) := inf
π∈Π(µ,ν)

{∫
Rd×Rd

c(x ,y)dπ(x ,y)

}

where Π(µ,ν) is the set of π ∈ P(Rd ×Rd ) such that the first (resp. second) marginal of π is µ (resp. ν).
Under the weak assumption that c is l.s.c., a minimising π∗ always exists (idem for several marginals)

Optimal transport for applied mathematicans, Santambrogio ’15

Optimal transportation theory with repulsive costs, Di Marino, Gerolin & Nenna ’17 5 / 10



Kantorovich duality & SCE [Buttazo, Champion & De Pascale ’17, Colombo, Di Marino & Stra ’18]

[ Kantorovich duality The OT is equivalent to the following maximisation problem

OT (µ,ν) = sup
φ ,ψ∈C0

{∫
Rd

φ µ +
∫
Rd

ψν +E(φ ,ψ)

}
where E(φ ,ψ) := inf

x ,y
{c(x ,y)−φ(x)−ψ(y)}

Under some assumptions on c (and the marginals), a minimising pair (ψ,φ) exists, so-called Kantorovich potential. If
the marginals are the same µ = ν, one can always suppose that ψ = φ .

� Application to SCE : For all density ρ , there exists an external potential vSCE : Rd → R:

vSCE ∈ argmax
v

{
EN(v)−

∫
Rd

vρ

}
, EN(v) := inf

{
∑

1≤i<j≤N

w(xi −xj)+
N

∑
i=1

v(xi )

}

� Effective potential vSCE gives rise to ground-state density ρ :

∑
1≤i<j≤N

w(xi −xj)+
N

∑
i=1

vSCE (xi ) = EN(vSCE ) on the support of minimising P
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Ionisation conjecture for SCE

� Density ρ ∈ L1(Rd) with ρ > 0 almost everywhere
� By definition of OT, we can send one electron to infinity:

If P ∈ Psym(RdN) minimises FSCE (ρ) ⇝ P(xi → ∞)> 0 for any i ∈ {1, . . . ,N}

® How many particles k ≤ N can we freely dissociate at infinity ?
� Reminiscent of ionisation conjecture in quantum physics, conjectured1 to be k = 1:

« An atom with atomic number Z can bind at most Z +1 electrons »

1The Strong-Interaction Limit of Density Functional Theory, Friesecke, Gori-Giorgi & Gerolin ’23
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Ionisation conjecture for SCE (for e.g Coulomb-like interaction w(x−y) = |x−y |−s)

Theorem (Ionisation conj. for SCE) [L, ’22]

For all particle density ρ ∈ L1 with {ρ > 0} unbounded, we have k = 1.
More precisely, if P ∈ Psym(RdN) minimises FSCE (ρ), then it holds that

P(xi → ∞,xj → ∞) = 0, ∀i ̸= j ∈ {1, . . . ,N}.

� Proof relies on c-cyclical monotonicity of optimal transport plans in OT
� Known N = 2 with radial ρ & for all N in d = 1 [Pass, ’13] & [Colombo, De Pascale & Di Marino ’15]

Corollary (Asymptotics of vSCE ) [L, ’22]

For all particle density ρ ∈ L1 with
∫
Rd ρ = N and {ρ > 0} unbounded and connected, the

following asymptotic holds:

vSCE (x)∼−(N−1)w(x)+o(w(x)) x → ∞

� Somehow « exceptional » potential binding one additional electron.
Asymptotic of the Kantorovich Potential for the Optimal Transport with Coulomb Cost, L ’22 8 / 10



Proof when N = 2 for Coulomb interaction w(x−y) = |x−y |−1

� Let P ∈ P(RdN) be a minimiser for FSCE (ρ).
By c-cyclical monotonicity, for any (x1,x2),(y1,y2) ∈ Supp(P):

1
|x1−x2|

+
1

|y1−y2|
≤ 1

|x1−y1|
+

1
|x2−y2|

If it is possible to find y1,y2 → ∞, we would obtain the contradiction 0 < 1
|x1−x2| ≤ 0

� By definition of vSCE as the effective potential which forces the system into ρ :

∇vSCE (x1) =−∇x1 |x1−x2|−1, (x1,x2) ∈ Supp(P)

and letting x1 runs to infinity, we obtain the asymptotic (on ∇vSCE ) since x2 remains in a
compact set.
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Conclusion

� SCE is a DFT method that performs well for strongly-correlated systems

� It amounts to a peculiar multimarginal optimal transport problem

⌣ We can then appeal to tools from OT: existence of vSCE & « ionisation conjecture »

Lots of remaining questions...

� Shape of minimisers P to FSCE (ρ) : Does there exist a map T : Rd ×Rd such that

P(x1, . . . ,xN) = ρ(x1)⊗δT (x1)(x2)⊗·· ·⊗δT (N−1)(x1)
(xN)

is a minimiser for FSCE (ρ) ? Far from being understood...

� Efficient numerical methods to solve the OT problem ?
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