Gibbs measures for Hamiltonian PDEs: KMS property and completeness

Zied Ammari

IRMAR University of Rennes

DYNQUA-CERGY-2024

Introduction

Gibbs measures is a concept, originated from statistical physics, taking different forms in various topics:

- ▶ Probability
 - (Gaussian) Random fields
 - Stochastic PDEs
 - Stochastic quantization
- Dynamical System
 - Anosov diffeomorphisms
 - SRB (Sinai-Ruelle-Bowen) measures
 - Ergodic propreties
- Mathematical Physics
 - Quantum field theory
 - Lattice (gases) systems
 - Open systems

Outline

Gibbs measures

Finite dimension

Gaussian measures: infinite dimension Statistical propreties

Initial value problems

Statistical Liouville equation Completeness Applications

Hamiltonian systems: finite dimension

• $E \equiv \mathbb{R}^{2n}$ a finite dimensional phase-space.

▶ $h: E \to \mathbb{R}$ a \mathscr{C}^1 -Hamiltonian function.

> J: skew-symmetric matrix with
$$J^2 = -Id_{2n}$$
.

A Hamiltonian dynamical system is defined through the vector field $X : E \to E$,

$$X(u) = J\nabla h(u) \equiv -i\partial_{\bar{z}}h(u), \qquad \forall u \in E,$$
(1)

and the field equation:

$$\dot{u}(t) = X(u(t)). \tag{2}$$

• Complemented with an initial condition $u(t_0) = u_0 \in E$ at a fixed initial time t_0 .

- Peano Theorem provides existence of local solutions for the equation (2).
- Completeness of the vector field X is in general not guaranteed.

Gibbs measures: finite dimension

Assume that

$$z_{\beta} := \int_{E} e^{-\beta h(u)} dL < +\infty, \qquad (3)$$

for some $\beta > 0$ and with dL the Lebesgue measure on E.

Definition (Gibbs measure)

The Gibbs measure of the Hamiltonian system (1)-(2), at inverse temperature $\beta > 0$, is the Borel probability measure given by

$$\mu_{\beta} = \frac{e^{-\beta h(\cdot)} dL}{\int_{E} e^{-\beta h(u)} dL} \equiv \frac{1}{z_{\beta}} e^{-\beta h(\cdot)} dL.$$
(4)

Gibbs measures: finite dimension

Theorem (Invariance)

If the Hamiltonian vector field X is complete then by the Liouville theorem the Gibbs measure μ_{β} is invariant with respect to the Hamiltonian flow. i.e.: if ϕ_t denotes the global Hamiltonian flow then for all $t \in \mathbb{R}$,

$$(\phi_t)_{\sharp}\mu_{\beta}=\mu_{\beta}.$$

Equivalently, for all B Borel sets of E,

 $\mu_{\beta}\left((\phi_t)^{-1}(B)\right) = \mu_{\beta}\left(B\right).$

However, Gibbs measures are more than invariant measures.

They satisfy more properties reflecting their statistical stability:

- Entropy condition.
- Classical Kubo-Martin-Schwinger (KMS) condition.

Gibbs measures: finite dimension

Theorem (Invariance)

If the Hamiltonian vector field X is complete then by the Liouville theorem the Gibbs measure μ_{β} is invariant with respect to the Hamiltonian flow. i.e.: if ϕ_t denotes the global Hamiltonian flow then for all $t \in \mathbb{R}$,

$$(\phi_t)_{\sharp}\mu_{\beta} = \mu_{\beta}.$$

Equivalently, for all B Borel sets of E,

$$\mu_{\beta}\left((\phi_t)^{-1}(B)\right) = \mu_{\beta}\left(B\right).$$

- However, Gibbs measures are more than invariant measures.
- They satisfy more properties reflecting their statistical stability:
 - Entropy condition.
 - Classical Kubo-Martin-Schwinger (KMS) condition.

Outline

Gibbs measures

Finite dimension Gaussian measures: infinite dimension Statistical propreties

Initial value problems

Statistical Liouville equation Completeness Applications

Gaussian measures: Linear Hamiltonian system

Consider a positive operator $A: D(A) \subseteq H \rightarrow H$ such that,

$$\exists c > 0, \quad A \ge c \mathbb{1} . \tag{5}$$

A Hamiltonian dynamical system is given by the quadratic Hamiltonian function,

$$h_0: D(A^{1/2}) \to \mathbb{R}, \qquad h_0(u) = \frac{1}{2} \langle u, Au \rangle.$$
 (6)

In this case, the vector field is a linear operator $X_0: D(A)
ightarrow H$,

$$X_0(u) = -iAu$$

and the linear field equation governing the dynamics of the system is:

$$\dot{u}(t) = X_0(u(t)) = -iAu(t).$$
 (7)

Gaussian measures: Compactness condition

We suppose that the operator A admits a compact resolvent.

There exists an orthonormal basis in H of eigenvectors {e_j}_{j∈ℕ} of A with their eigenvalues {λ_j}_{j∈ℕ} such that for all j ∈ ℕ,

$$Ae_j = \lambda_j e_j . \tag{8}$$

Furthermore, assume the following assumption: $\exists s \geq 0$,

$$\sum_{j=1}^{\infty} \frac{1}{\lambda_j^{1+s}} < +\infty$$
(9)

We note that $\{e_j, ie_j\}_{j \in \mathbb{N}}$ is an O.N.B of $H_{\mathbb{R}}$.

Gaussian measures: Weighted Sobolev spaces

Weighted Sobolev spaces w.r.t the operator A are constructed as follows: For any $r \in \mathbb{R}$, define the inner product:

$$\forall x, y \in \mathcal{D}(A^{\frac{r}{2}}), \qquad \langle x, y \rangle_{H^r} := \langle A^{r/2}x, A^{r/2}y \rangle.$$

▶ H^{s} denotes the Hilbert space $(\mathcal{D}(A^{s/2}), \langle \cdot, \cdot \rangle_{H^{s}})$ with $s \ge 0$.

- ▶ H^{-s} denotes the completion of the pre-Hilbert space $(\mathcal{D}(A^{-s/2}), \langle \cdot, \cdot \rangle_{H^{-s}})$.
- Hilbert rigging: One has the canonical continuous and dense embedding,

$$H^{s}\subseteq H\subseteq H^{-s}$$
 .

Note that H^{-s} identifies with the dual space of H^{s} relatively to the inner product of H.

Gaussian measures: infinite dimension

The free Gibbs measure written formally as

$$u_{\beta,\mathbf{0}}\equiv rac{e^{-eta h_{\mathbf{0}}(\cdot)}\,du}{\int e^{-eta h_{\mathbf{0}}(u)}\,du}\,,$$

is rigorously defined as a Gaussian measure on the Hilbert space H^{-s} .

Definition

 \triangleright The mean-vector of $\mu \in \mathcal{P}(H^{-s})$ is the vector $m \in H^{-s}$ such that:

$$\langle f, m \rangle_{H^{-s}_{\mathbb{R}}} = \int_{H^{-s}} \langle f, u \rangle_{H^{-s}_{\mathbb{R}}} d\mu, \quad \forall f \in H^{-s}.$$

If m = 0, one says that μ is a centered measure. \triangleright The covariance operator of $\mu \in \mathcal{P}(H^{-s})$ is a linear operator $Q : H_{\mathbb{R}}^{-s} \to H_{\mathbb{R}}^{-s}$ such that:

$$\langle f, Qg \rangle_{H^{-s}_{\mathbb{R}}} = \int_{H^{-s}} \langle f, u - m \rangle_{H^{-s}_{\mathbb{R}}} \langle u - m, g \rangle_{H^{-s}_{\mathbb{R}}} d\mu, \quad \forall f, g \in H^{-s}.$$

 $\triangleright \ \mu \in \mathcal{P}(H^{-s}) \text{ is Gaussian if } B \mapsto \mu(\{y \in H^{-s} : \langle x, y \rangle_{H^{-s}_{\varpi}} \in B\}) \text{ are Gaussian measures on } \mathbb{R}.$

Gaussian measures: infinite dimension

The following result is well-known.

Theorem

There exists a unique centred Gaussian measure on H^{-s} , denoted $\mu_{\beta,0}$, such that its covariance operator is $\beta^{-1}A^{-(1+s)}$, i.e.: for all $f, g \in H^{-s}$

$$\frac{1}{\beta} \langle f, \mathcal{A}^{-(1+s)}g \rangle_{\mathcal{H}^{-s}_{\mathbb{R}}} = \int_{\mathcal{H}^{-s}} \langle f, u \rangle_{\mathcal{H}^{-s}_{\mathbb{R}}} \langle u, g \rangle_{\mathcal{H}^{-s}_{\mathbb{R}}} d\mu_{\beta,0}, \qquad (10)$$

Moreover, the characteristic function of $\mu_{eta,0}$ is given for any $m{v}\in H^{-s}$ by

$$\int_{H^{-s}} e^{i \langle v, u \rangle_{H_{\mathbb{R}}^{-s}}} d\mu_{\beta,0}(u) = e^{-\frac{1}{2\beta} \langle v, A^{-(1+s)}v \rangle_{H_{\mathbb{R}}^{-s}}}.$$
 (11)

i.e: Centred Gaussian measures are Gibbs measures over infinite dimensional spaces.

Gibbs measures: infinite dimension

Nonlinear Hamiltonian system:

- Linear operator A satisfying the compactness condition in (5) and (8).
- ▶ Nonlinear functional $h^{I}: H^{-s} \to \mathbb{R}$ satisfying for some $\beta > 0$:

$$\forall p \in [1,\infty) \qquad e^{-\beta h'(\cdot)} \in L^p(\mu_{\beta,0}) \qquad \text{and} \qquad h' \in \mathbb{D}^{1,p}(\mu_{\beta,0}) \tag{12}$$

$$Gross-Sobolev spaces$$

The Hamiltonian function:

$$h(u) = \frac{1}{2} \langle u, Au \rangle + h'(u) = h_0(u) + h'(u).$$
 (13)

The vector field of the system is

$$X(u) = -iAu - i\nabla h'(u) = X_0(u) + X'(u), \qquad (14)$$

defines a (non-autonomous) field equation in the interaction representation:

$$\dot{u}(t) = e^{itA} X'(e^{-itA}u(t)).$$

Gibbs measures: Cylindrical smooth functions

Definition

Let $\{f_j\}_{j\in\mathbb{N}}$ O.N.B of $H_{\mathbb{R}}$. Consider for $n\in\mathbb{N}$ the mapping $\pi_n: H^{-s} \to \mathbb{R}^{2n}$,

$$\pi_n(x) = (\langle x, f_1 \rangle_{H_{\mathbb{R}}}, \dots, \langle x, f_{2n} \rangle_{H_{\mathbb{R}}}).$$
(15)

Define $\mathscr{C}^{\infty}_{c,cyl}(H^{-s})$ as the set of all functions $F: H^{-s} \to \mathbb{R}$ such that

$$F = \varphi \circ \pi_n \tag{16}$$

for some $n \in \mathbb{N}$ and $\varphi \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{2n})$.

The gradient of F at the point $u \in H^{-s}$ is

$$\nabla F(u) = \sum_{j=1}^{2n} \partial_j \varphi(\pi_n(u)) f_j, \qquad (17)$$

where $\partial_j \varphi$ are the partial derivatives with respect the 2n coordinates of φ .

Gibbs measures: Gross-Sobolev spaces

Lemma (Malliavin derivative)

The following linear operator is closable:

$$7: \mathscr{C}^{\infty}_{c,cyl}(H^{-s}) \subset L^{p}(\mu_{\beta,0}) \longrightarrow L^{p}(\mu_{\beta,0}; H^{-s}),$$
$$F = \varphi \circ \pi_{n} \longmapsto \nabla F = \sum_{j=1}^{2n} \partial_{j} \varphi(\pi_{n}(\cdot)) f_{j}$$

The Malliavin derivative is the closure of such linear operator (still denoted by ∇).

Definition (Gross-Sobolev spaces)

The Gross-Sobolev space $\mathbb{D}^{1,p}(\mu_{\beta,0})$ is the closure domain of the Malliavin derivative ∇ with respect to the norm:

$$\|F\|_{\mathbb{D}^{1,p}(\mu_{\beta,0})}^{p} := \|F\|_{L^{p}(\mu_{\beta,0})}^{p} + \|\nabla F\|_{L^{p}(\mu_{\beta,0};H^{-s})}^{p} .$$
(18)

Gibbs measures: infinite dimension

Nonlinear Hamiltonian system:

- Linear operator A satisfying the compactness condition.
- ▶ Nonlinear energy functional $h^{I}: H^{-s} \to \mathbb{R}$ satisfying for some $\beta > 0$:

$$\forall p \in [1,\infty) \qquad e^{-\beta h'(\cdot)} \in L^p(\mu_{\beta,0}) \qquad \text{and} \qquad h' \in \mathbb{D}^{1,p}(\mu_{\beta,0}). \tag{19}$$

The vector field of the system is

$$X(u) = -iAu - i\nabla h'(u) = X_0(u) + X'(u).$$
(20)

Definition (Gibbs measure)

The Gibbs measure of the dynamical system (20), at inverse temperature $\beta > 0$, is:

$$\mu_{\beta} = \frac{e^{-\beta h'(\cdot)} d\mu_{\beta,0}}{\int_{H^{-s}} e^{-\beta h'(u)} d\mu_{\beta,0}} \equiv \frac{1}{z_{\beta}} e^{-\beta h'(\cdot)} d\mu_{\beta,0} .$$
(21)

Question: Invariance of the Gibbs measures by the Hamiltonian flow?

Outline

Gibbs measures

Finite dimension Gaussian measures: infinite dimension Statistical propreties

Initial value problems

Statistical Liouville equation Completeness Applications

Statistical propreties: Entropy condition

The Gibbs measure μ_{eta} is characterized through the following entropy functional.

Theorem (Gibbs variational principle)

Define the relative entropy for all $\mu, \nu \in \mathcal{P}(H^{-s})$ such that $\nu \ll \mu$ as:

$$\mathcal{E}(
u|\mu) := \int_{H^{-s}} rac{d
u}{d\mu} \, \log\!\left(rac{d
u}{d\mu}
ight) d\mu \, .$$

Then the Gibbs measure μ_{β} is the unique minimizer of the free energy functional:

$$E_{\mu_{\beta,0}}(\nu) = \mathcal{E}(\nu|\mu_{\beta,0}) + \beta \int_{\mathcal{H}^{-s}} h' d\nu = \mathcal{E}(\nu|\mu_{\beta}) - \log(z_{\beta}), \qquad (22)$$

where z_{β} is given by (21).

One knows that $\mathcal{E}(\nu|\mu_{\beta})$ is non-negative with $\mathcal{E}(\nu|\mu_{\beta}) = 0$ if and only if $\nu = \mu_{\beta}$.

Statistical propreties: Poisson structure

Consider:

▶ The algebra of smooth bounded cylindrical functions $\mathscr{C}_{b,cvl}^{\infty}(H^{-s})$.

▶
$$F, G \in \mathscr{C}^{\infty}_{b,cyl}(H^{-s})$$
 such that: $\forall u \in H^{-s}$

$$F(u) = \varphi \circ \pi_n(u), \qquad \qquad G(u) = \psi \circ \pi_m(u), \qquad (23)$$

with $\varphi \in \mathscr{C}^{\infty}_{b}(\mathbb{R}^{2n})$ and $\psi \in \mathscr{C}^{\infty}_{b}(\mathbb{R}^{2m})$ for some $n, m \in \mathbb{N}$.

Definition

Then, for all such $F, G \in \mathscr{C}^{\infty}_{b,cvl}(H^{-s})$, the Poisson bracket is:

$$\{F,G\}(u) := \sum_{j=1}^{\min(n,m)} \partial_j^{(1)} \varphi(\pi_n(u)) \ \partial_j^{(2)} \psi(\pi_m(u)) - \partial_j^{(1)} \psi(\pi_m(u)) \ \partial_j^{(2)} \varphi(\pi_n(u)) \ . \tag{24}$$

Statistical propreties: KMS condition

The classical Kubo-Martin-Schwinger (KMS) condition, introduced by Gallavotti and Verboven, characterizes the Gibbs measures.

Definition (Classical KMS states)

A measure $\mu \in \mathcal{P}(H^{-s})$ is a classical KMS state, at inverse temperature β , for the Hamiltonian system (26)-(27) if and only if for all $F, G \in \mathscr{C}^{\infty}_{c,cyl}(H^{-s})$,

$$\int_{H^{-s}} \{F, G\}(u) \, d\mu = \beta \int_{H^{-s}} \langle \nabla F(u), X(u) \rangle \, G(u) \, d\mu \,, \tag{25}$$

with the Poisson bracket $\{\cdot, \cdot\}$ defined in (24).

Here the Hamiltonian function is

$$h(u) = \frac{1}{2} \langle u, Au \rangle + h'(u) = h_0(u) + h'(u), \qquad (26)$$

and the vector field of the system is

$$X(u) = -iAu - i\nabla h'(u) = X_0(u) + X'(u).$$
(27)

Statistical propreties: KMS condition

The classical Kubo-Martin-Schwinger (KMS) condition, introduced by Gallavotti and Verboven, characterizes the Gibbs measures.

Definition (Classical KMS states)

A measure $\mu \in \mathcal{P}(H^{-s})$ is a classical KMS state, at inverse temperature β , for the Hamiltonian system (26)-(27) if and only if for all $F, G \in \mathscr{C}^{\infty}_{c,cyl}(H^{-s})$,

$$\int_{H^{-s}} \{F, G\}(u) \, d\mu = \beta \int_{H^{-s}} \langle \nabla F(u), X(u) \rangle \, G(u) \, d\mu \,, \tag{25}$$

with the Poisson bracket $\{\cdot, \cdot\}$ defined in (24).

Here the Hamiltonian function is

$$h(u) = \frac{1}{2} \langle u, Au \rangle + h'(u) = h_0(u) + h'(u), \qquad (26)$$

and the vector field of the system is

$$X(u) = -iAu - i\nabla h'(u) = X_0(u) + X'(u).$$
(27)

Statistical propreties: KMS condition Assume for all $p \in [1, \infty)$:

$$e^{-\beta h'(\cdot)} \in L^p(\mu_{\beta,0})$$
 and $h' \in \mathbb{D}^{1,p}(\mu_{\beta,0}).$ (28)

Theorem (KMS principle (V. Sohinger-ZA))

Let $\mu \in \mathcal{P}(H^{-s})$ such that $\mu \ll \mu_{eta, \mathsf{0}}$ and suppose that

$$rac{d\mu}{d\mu_{eta, \mathsf{0}}} \in \mathbb{D}^{1,2}(\mu_{eta, \mathsf{0}})\,.$$

Then μ is a classical KMS state of the Hamiltonian system (26)-(27) if and only if μ is equal to the Gibbs measure, i.e.:

$$\mu_{\beta} = \frac{\mathrm{e}^{-\beta h'} \,\mu_{\beta,0}}{\int_{H^{-s}} \mathrm{e}^{-\beta h'(u)} d\mu_{\beta,0}} = \mu \,.$$

Outline

Gibbs measures

Finite dimension Gaussian measures: infinite dimension Statistical propreties

Initial value problems

Statistical Liouville equation

Completeness Applications

Initial value problem

Let $(B, || \cdot ||)$ be a real separable dual Banach space: There exists $(E, || \cdot ||_E)$ a real Banach space such that B is the topological dual of E and $(B, || \cdot ||)$ is separable.

Goal

Our main purpose is to prove the almost sure existence of global solutions to the initial value problem

$$egin{aligned} \dot{\gamma}(t) &= \mathsf{v}(t,\gamma(t)), \ \gamma(0) &= \mathsf{x}\in B, \end{aligned}$$

(29)

when $v : \mathbb{R} \times B \to B$ is a Borel vector field.

Ingredients:

A stationary probability measure satisfying a statistical Liouville equation.

Integrability assumption on the vector field v.

Initial value problem

Let $(B, || \cdot ||)$ be a real separable dual Banach space: There exists $(E, || \cdot ||_E)$ a real Banach space such that B is the topological dual of E and $(B, || \cdot ||)$ is separable.

Goal

Our main purpose is to prove the almost sure existence of global solutions to the initial value problem

$$\dot{\gamma}(t) = v(t, \gamma(t)),$$

 $\gamma(0) = x \in B,$
(29)

when $v : \mathbb{R} \times B \to B$ is a Borel vector field.

Ingredients:

► A stationary probability measure satisfying a statistical Liouville equation.

Integrability assumption on the vector field v.

Definition (Fundamental strongly total biorthogonal system)

We say that the families $\{e_k\}_{k\in\mathbb{N}}$ and $\{e_k^*\}_{k\in\mathbb{N}}$ in E, E^* respectively form a *fundamental strongly total biorthogonal system* if the following properties hold.

▶
$$\text{Span}\{e_k, k \in \mathbb{N}\}$$
 is dense in *E* (fundamental),

▶
$$\text{Span}\{e_k^*, k \in \mathbb{N}\}$$
 is dense in $B = E^*$ (strongly total),

►
$$\langle e_{k'}^*, e_k \rangle = \delta_{k',k}, \forall k, k' \in \mathbb{N}$$
 (biorthogonal).

Note that such an object exists in our framework.

Cylindrical test functions

This allows us to define a convenient class of cylindrical test functions.

Definition (Cylindrical test functions)

A function $F: B = E^* \to \mathbb{R}$ belongs to $\mathscr{C}^{\infty}_{c,cyl}(B)$ (resp. $\mathscr{S}_{cyl}(B)$ or $\mathscr{C}^{\infty}_{b,cyl}(B)$) if there exists $n \in \mathbb{N}$ and $\varphi \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{n})$ (resp. $\mathscr{S}(\mathbb{R}^{n})$ or $\mathscr{C}^{\infty}_{b}(\mathbb{R}^{n})$) such that

$$F(u) = \varphi(\langle u, e_1 \rangle, \dots, \langle u, e_n \rangle), \quad \forall u \in B = E^*.$$
(30)

Here, $\mathscr{S}(\mathbb{R}^n)$ denotes the Schwartz space and we have the inclusions

 $\mathscr{C}^{\infty}_{c,cyl}(B)\subset \mathscr{S}_{cyl}(B)\subset \mathscr{C}^{\infty}_{b,cyl}(B)$.

In particular, we have

$$\nabla F(u) = \sum_{k=1}^{n} \partial_k \varphi(\langle u, e_1 \rangle, \dots \langle u, e_n \rangle) e_k \in E.$$
(31)

Statistical Liouville equation

Let $\mathscr{P}(B)$ denote the space of Borel probability measures on $(B, ||\cdot||)$.

Definition (Narrow continuity)

We say a curve $(\mu_t)_{t\in\mathbb{R}}$ in $\mathscr{P}(B)$ is narrowly continuous if for any bounded continuous real-valued function $F \in \mathscr{C}_b(B,\mathbb{R})$, the map $t \in \mathbb{R} \mapsto \int_B F(u) \mu_t(du)$ is continuous. \Box

Definition (Statistical Liouville equation)

A narrowly continuous curve $(\mu_t)_{t \in \mathbb{R}}$ in $\mathscr{P}(B)$ satisfies the statistical Liouville equation with respect to the Borel vector field $v : \mathbb{R} \times B \to B$ if:

$$\frac{d}{dt}\int_{B}F(u)\,\mu_{t}(du)=\int_{B}\langle v(t,u),\nabla F(u)\rangle\,\mu_{t}(du),\quad\forall F\in\mathscr{C}^{\infty}_{c,cyl}(B),\qquad(32)$$

in the sense of distributions on \mathbb{R} .

Outline

Gibbs measures

Finite dimension Gaussian measures: infinite dimension Statistical propreties

Initial value problems

Statistical Liouville equation Completeness Applications

General principle: completeness

Theorem (S. Farhat-V. Sohinger-ZA)

Let B be a separable dual Banach space and $v : \mathbb{R} \times B \to B$ a Borel vector field. Assume that there exists $(\mu_t)_{t \in \mathbb{R}}$ a narrowly continuous curve in $\mathscr{P}(B)$ such that:

We have:

$$t \in \mathbb{R} \mapsto \int_{B} \|v(t, u)\| \, \mu_t(du) \in L^1_{loc}(\mathbb{R}, dt), \tag{33}$$

• and $(\mu_t)_{t\in\mathbb{R}}$ satisfies the statistical Liouville equation (32). Then there exists a universally measurable subset \mathscr{G} of B of total measure $\mu_0(\mathscr{G}) = 1$ such that for any $x \in \mathscr{G}$ there exists a global mild solution to the initial value problem (29).

Proof:

Construction of a path measure concentrated on global solutions.

Use of the measurable projection theorem.

General principle: completeness

Theorem (S. Farhat-V. Sohinger-ZA)

Let B be a separable dual Banach space and $v : \mathbb{R} \times B \to B$ a Borel vector field. Assume that there exists $(\mu_t)_{t \in \mathbb{R}}$ a narrowly continuous curve in $\mathscr{P}(B)$ such that:

We have:

$$t \in \mathbb{R} \mapsto \int_{B} \|v(t, u)\| \, \mu_t(du) \in L^1_{loc}(\mathbb{R}, dt), \tag{33}$$

• and $(\mu_t)_{t\in\mathbb{R}}$ satisfies the statistical Liouville equation (32). Then there exists a universally measurable subset \mathscr{G} of B of total measure $\mu_0(\mathscr{G}) = 1$ such that for any $x \in \mathscr{G}$ there exists a global mild solution to the initial value problem (29).

<u>Proof</u>:

Construction of a path measure concentrated on global solutions.

Use of the measurable projection theorem.

We borrow an example from the work of A. Cruzeiro.

Example

Consider the time-independent \mathscr{C}^{∞} -vector field $v: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$v(u) = (q^2, (2q - q^3)e^{p^2/2}\int_p^{+\infty} e^{-s^2/2}ds), \qquad u = (q, p) \in \mathbb{R}^2.$$
 (34)

The standard centered Gaussian measure on R² satisfies the statistical Liouville equation (32) with the above vector field v.

The initial value problem with this v leads to the ODE

$$\dot{q}(t)=q(t)^2\,,$$

which has for each initial condition q(0) ≠ 0 a unique non global solution.
The vector field v does not satisfy the integrability condition (33).
Hence, the integrability condition (33) can be interpreted as an almost sure non-blow up criterion.

We borrow an example from the work of A. Cruzeiro.

Example

Consider the time-independent \mathscr{C}^{∞} -vector field $v: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$v(u) = (q^2, (2q - q^3)e^{p^2/2}\int_p^{+\infty} e^{-s^2/2}ds), \qquad u = (q, p) \in \mathbb{R}^2.$$
 (34)

► The standard centered Gaussian measure on R² satisfies the statistical Liouville equation (32) with the above vector field v.

The initial value problem with this v leads to the ODE

$$\dot{q}(t)=q(t)^2\,,$$

which has for each initial condition q(0) ≠ 0 a unique non global solution.
The vector field v does not satisfy the integrability condition (33).
Hence, the integrability condition (33) can be interpreted as an almost sure non-blow up criterion.

We borrow an example from the work of A. Cruzeiro.

Example

Consider the time-independent \mathscr{C}^{∞} -vector field $v: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$v(u) = (q^2, (2q - q^3)e^{p^2/2}\int_p^{+\infty} e^{-s^2/2}ds), \qquad u = (q, p) \in \mathbb{R}^2.$$
 (34)

- ► The standard centered Gaussian measure on R² satisfies the statistical Liouville equation (32) with the above vector field v.
- The initial value problem with this v leads to the ODE

$$\dot{q}(t)=q(t)^2\,,$$

which has for each initial condition q(0) ≠ 0 a unique non global solution.
The vector field v does not satisfy the integrability condition (33).
Hence, the integrability condition (33) can be interpreted as an almost sure non-blow up criterion.

We borrow an example from the work of A. Cruzeiro.

Example

Consider the time-independent \mathscr{C}^{∞} -vector field $v: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$v(u) = (q^2, (2q - q^3)e^{p^2/2}\int_p^{+\infty} e^{-s^2/2}ds), \qquad u = (q, p) \in \mathbb{R}^2.$$
 (34)

- ► The standard centered Gaussian measure on R² satisfies the statistical Liouville equation (32) with the above vector field v.
- The initial value problem with this v leads to the ODE

$$\dot{q}(t)=q(t)^2\,,$$

which has for each initial condition $q(0) \neq 0$ a unique non global solution.

The vector field v does not satisfy the integrability condition (33).
 Hence, the integrability condition (33) can be interpreted as an almost

We borrow an example from the work of A. Cruzeiro.

Example

Consider the time-independent \mathscr{C}^{∞} -vector field $v: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$v(u) = (q^2, (2q - q^3)e^{p^2/2}\int_p^{+\infty} e^{-s^2/2}ds), \qquad u = (q, p) \in \mathbb{R}^2.$$
 (34)

- ► The standard centered Gaussian measure on R² satisfies the statistical Liouville equation (32) with the above vector field v.
- The initial value problem with this v leads to the ODE

$$\dot{q}(t)=q(t)^2\,,$$

which has for each initial condition $q(0) \neq 0$ a unique non global solution.

- The vector field v does not satisfy the integrability condition (33).
- Hence, the integrability condition (33) can be interpreted as an almost sure non-blow up criterion.

Application: NLS equation

Consider the spatial domain \mathbb{T}^d for d = 1, 2.

Nonlinear Schrödinger equation (NLS).

$$\begin{cases} \frac{\equiv A}{i\partial_t u_t(x)} = (-\Delta + \mathbb{1}) u_t(x) + |u_t(x)|^2 u_t(x) \\ u_0(x) = \varphi(x) \in H^{-s} \equiv H^{-s}(\mathbb{T}^d). \end{cases}$$

Hamiltonian function:

$$h(u) = \frac{1}{2} \int_{\mathbb{T}^d} \bar{u}(x)(1 - \Delta)u(x) \, dx + \frac{1}{4} \int_{\mathbb{T}^d} |u(x)|^4 \, dx.$$

The vector field:

$$X(u) = -iAu - i\nabla h^{\prime}(u)$$

Application: NLS equation

For d = 1 take s = 0.

For d = 2 take s > 0 and change h' by the Wick ordered functional:

$$h'(u) \equiv rac{1}{4} \int_{\mathbb{T}^2} : |u|^4 : \ dx = \lim_{n \to \infty} rac{1}{4} \int_{\mathbb{T}^2} |P_n(u)|^4 dx - rac{1}{2} \left(\int_{\mathbb{T}^2} |P_n(u)|^2 dx
ight)^2 \, .$$

Proposition

Then for all $p \in [1,\infty)$: $e^{-\beta h'(\cdot)} \in L^p(\mu_{\beta,0})$ and $h' \in \mathbb{D}^{1,p}(\mu_{\beta,0})$. (35)

Theorem (Bourgain)

The NLS equation is GWP μ_{β} -almost surely and the Gibbs measure μ_{β} is flow invariant.

GWP: Existence and uniqueness of global solutions in H^{-s} for μ_{eta} -almost all initial data.

Bourgain's method

Strategy:

- Projection over finite modes.
- Finite dimensional Hamiltonian system (locally) WP.
- Convergence of the truncated Gibbs measures towards the Gibbs measure μ_{β} .
- Uniform local well-posedness theory:

$$\|u_0\|_{H^{-s}} \leq K \implies$$
 LWP on $[-T, T], T \sim K^{-\delta}$

combined to the invariance of the truncated Gibbs measures allow to extend truncated local solutions to global solutions over almost total sets.

- Convergence of global truncated solutions towards solutions of NLS over a total set.
- Invariance of the Gibbs measure μ_{β} .

Application of the general principle

Consider the same framework: The Hamiltonian function and vector field are

$$h(u) = \frac{1}{2} \langle u, Au \rangle + G'(u), \qquad X(u) = -iAu - i\nabla G'(u).$$
(36)

Assume:

$$e^{-eta G'(\,\cdot\,)}\in L^2(\mu_{eta,0}) \qquad ext{and} \qquad G'\in \mathbb{D}^{1,2}(\mu_{eta,0})\,.$$

Proposition

Consider the time-dependent push-forward Gibbs measures

$$\nu_t = (e^{itA})_{\sharp} \mu_{\beta}. \tag{37}$$

(38)

Then for all $t \in \mathbb{R}$ and any $F \in \mathscr{C}^{\infty}_{b,cyl}(H^{-s})$,

$$\frac{d}{dt}\int_{H^{-s}}F(u)\,\nu_t(du)=\int_{H^{-s}}\langle v(t,u),\nabla F(u)\rangle\,\nu_t(du).$$

Application of the general principle

Corollary (S. Farhat-V. Sohinger-ZA)

The above initial value problem (36) admits global solutions $\mu_{\beta,0}$ -almost surely.

Other applications:

- Euler equation,
- Modified surface quasi-geostrophic equation,
- Wave or Klein-Gordon equations,
- Hartree equations...

Application of the general principle

Corollary (S. Farhat-V. Sohinger-ZA)

The above initial value problem (36) admits global solutions $\mu_{\beta,0}$ -almost surely.

Other applications:

- ► Euler equation,
- Modified surface quasi-geostrophic equation,
- Wave or Klein-Gordon equations,
- Hartree equations...

Some problems

Further questions:

- Derivation of classical KMS boundary condition from the quantum KMS boundary condition.
- Study of ergodic properties of nonlinear PDEs.

Some old and recent advances

<u>Old results:</u>

- ► Rigorous construction of Gibbs measures: QFT literature in the 1970's. → Nelson, Glimm-Jaffe, Simon, Høgh-Krohn, Guerra ...
- ► Gibbs measures for (de)-focusing NLS: Lebowitz-Rose-Speer (1988).
 → A weighted Gibbs measure is constructed but invariance is conjectured.
- ► GWP and proof of invariance: Bourgain and Zhidkov (1990's). → Almost sure GWP on low-regularity Sobolev spaces.

Recent results:

- ► Application to supercritical wave equation: Burq and Tzvetkov → Improvement of deterministic (dispersive) estimates.
- Transport of Gaussian measures: Genovese, Tzvetkov and Visciglia...
 Absolute continuity of transported Gaussian measures by Hamiltonian flows.
- Further results: Bringmann, Cacciafesta-De Suzzoni, Kenig-Mendelson, Nahmod-Oh-Rey-Bellet-Staffilani, Oh-Thomann...