Quantum-classical motion of charged particles in interaction with scalar fields

Shahnaz Farhat

Constructor University Campus Ring 1, 28759 Bremen, Germany
16th conference of the GDR DynQua "Quantum Dynamics"
CY Cergy Paris Université

$1^{\text {er }}$ février 2024

Purposes

n Bohr's correspondence principle :

Quantum dynamic $\underset{\hbar \rightarrow 0}{\longrightarrow}$ Classical dynamic Nelson model Particle-field equation

We study the transition by Wigner measure approach.

Purposes

1 Bohr's correspondence principle :
$\underset{\text { Quantum dynamic }}{\underset{\hbar \rightarrow 0}{\longrightarrow}}$ Classical dynamic
We study the transition by Wigner measure approach.
■ To exhibit the global well-posedness for the particle-field equation.

The classical system

The classical system

Consider n fixed particles in \mathbb{R}^{d} with $d \in \mathbb{N}^{*}$, interacting with scalar meson field. The particle-field system reads for all $j \in\{1, \cdots, n\}$

$$
\begin{align*}
& \partial_{t} p_{j}=-\nabla_{q_{j}} V(q)-\int_{\mathbb{R}^{d}} 2 \pi i k \frac{\chi(k)}{\sqrt{\omega(k)}}\left[\alpha(k) e^{2 \pi i k \cdot q_{j}}-\overline{\alpha(k)} e^{-2 \pi i k \cdot q_{j}}\right] d k \\
& \partial_{t} q_{j}=\nabla f_{j}\left(p_{j}\right) \tag{PFE}\\
& i \partial_{t} \alpha=\omega(k) \alpha(k)+\sum_{j=1}^{n} \frac{\chi(k)}{\sqrt{\omega(k)}} e^{-2 \pi i k \cdot q_{j}}
\end{align*}
$$

The classical system

Consider n fixed particles in \mathbb{R}^{d} with $d \in \mathbb{N}^{*}$, interacting with scalar meson field. The particle-field system reads for all $j \in\{1, \cdots, n\}$

$$
\begin{align*}
& \partial_{t} p_{j}=-\nabla_{q_{j}} V(q)-\int_{\mathbb{R}^{d}} 2 \pi i k \frac{\chi(k)}{\sqrt{\omega(k)}}\left[\alpha(k) e^{2 \pi i k \cdot q_{j}}-\overline{\alpha(k)} e^{-2 \pi i k \cdot q_{j}}\right] d k ; \\
& \partial_{t} q_{j}=\nabla f_{j}\left(p_{j}\right) ; \tag{PFE}\\
& i \partial_{t} \alpha=\omega(k) \alpha(k)+\sum_{j=1}^{n} \frac{\chi(k)}{\sqrt{\omega(k)}} e^{-2 \pi i k \cdot q_{j}}
\end{align*}
$$

- q_{j}, p_{j} are positions-momenta and M_{j} are the masses.
$-\alpha: \mathbb{R}^{d} \rightarrow \mathbb{C}$ describes the field, $\chi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is the form factor.
- $V: \mathbb{R}^{d n} \rightarrow \mathbb{R}$ is the potential.
- $f_{j}\left(p_{j}\right)= \begin{cases}\sqrt{p_{j}^{2}+M_{j}^{2}} & \text { (relativistic) } \\ p_{j}^{2} / 2 M_{j} & \text { (non-relativistic) }\end{cases}$
- $\omega(k)=\sqrt{k^{2}+m_{f}^{2}} \geq m_{f}>0$ is the dispersion relation;

References

- χ is compactly supported:
[1] A. Komech, H. Kunze, and M. Spohn. Effective Dynamics for a Mechanical Particle Coupled to a Wave Field, 1999.
[3] A. Komech, H. Spohn, and M. Kunze. Long-time asymptotics for a classical particle interacting with a scalar wave field, 1997.
- Low restrictions on χ
[4] Z. Ammari, M. Falconi, and F. Hiroshima. Towards a derivation of classical electrodynamics of charges and fields from qed. 2022.

References

- χ is compactly supported:
[1] A. Komech, H. Kunze, and M. Spohn. Effective Dynamics for a Mechanical Particle Coupled to a Wave Field, 1999.
[3] A. Komech, H. Spohn, and M. Kunze. Long-time asymptotics for a classical particle interacting with a scalar wave field, 1997.
- Low restrictions on χ :
[4] Z. Ammari, M. Falconi, and F. Hiroshima. Towards a derivation of classical electrodynamics of charges and fields from qed. 2022.

The classical system

Consider n fixed particles in \mathbb{R}^{d} with $d \in \mathbb{N}^{*}$, interacting with scalar meson field. The particle-field system reads for all $j \in\{1, \cdots, n\}$

$$
\begin{align*}
& \partial_{t} p_{j}=-\nabla_{q_{j}} V(q)-\int_{\mathbb{R}^{d}} 2 \pi i k \frac{\chi(k)}{\sqrt{\omega(k)}}\left[\alpha(k) e^{2 \pi i k \cdot q_{j}}-\overline{\alpha(k)} e^{-2 \pi i k \cdot q_{j}}\right] d k ; \\
& \partial_{t} q_{j}=\nabla f_{j}\left(p_{j}\right) ; \tag{PFE}\\
& i \partial_{t} \alpha=\omega(k) \alpha(k)+\sum_{j=1}^{n} \frac{\chi(k)}{\sqrt{\omega(k)}} e^{-2 \pi i k \cdot q_{j}}
\end{align*}
$$

- q_{j}, p_{j} are positions-momenta and M_{j} are the masses.
- $V: \mathbb{R}^{d n} \rightarrow \mathbb{R}$ is the potential.
- $\alpha: \mathbb{R}^{d} \rightarrow \mathbb{C}$ describes the field, $\chi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is the form factor.
- $f_{j}\left(p_{j}\right)= \begin{cases}\sqrt{p_{j}^{2}+M_{j}^{2}} & \text { (relativistic) } \\ p_{j}^{2} / 2 M_{j} & \text { (non-relativistic) }\end{cases}$
- $\omega(k)=\sqrt{k^{2}+m_{f}^{2}} \geq m_{f}>0$ is the dispersion relation;

The associated Hamiltonian is defined as follows

$$
\begin{aligned}
H(p, q, \alpha) & =\sum_{j=1}^{n} f_{j}\left(p_{j}\right)+V\left(q_{1}, \cdots, q_{n}\right)+\int_{\mathbb{R}^{d}} \overline{\alpha(k)} \omega(k) \alpha(k) d k \\
& +\sum_{j=1}^{n} \int_{\mathbb{R}^{d}} \frac{\chi(k)}{\sqrt{\omega(k)}}\left[\alpha(k) e^{2 \pi i k \cdot q_{j}}+\overline{\alpha(k)} e^{-2 \pi i k \cdot q_{j}}\right] d k .
\end{aligned}
$$

The solution $u=(p, q, \alpha)$ belongs to the classical phase-space :

$$
X^{\sigma}:=\mathbb{R}_{p}^{d n} \times \mathbb{R}_{q}^{d n} \times \mathcal{G}^{\sigma},
$$

where \mathcal{G}^{σ} is the weighted L^{2} Lebesgue space endowed with the norm :

$$
\|\alpha\|_{\mathcal{G}^{\sigma}}^{2}=\left\langle\alpha, \omega(\cdot)^{2 \sigma} \alpha\right\rangle_{L^{2}}=\left\|\omega^{\sigma} \alpha\right\|_{L^{2}}^{2} .
$$

The associated Hamiltonian is defined as follows

$$
\begin{aligned}
H(p, q, \alpha) & =\sum_{j=1}^{n} f_{j}\left(p_{j}\right)+V\left(q_{1}, \cdots, q_{n}\right)+\underbrace{\int_{\mathbb{R}^{d}} \overline{\alpha(k)} \omega(k) \alpha(k) d k}_{=\|\alpha\|_{\mathcal{G}^{1 / 2}}^{2}} \\
& +\sum_{j=1}^{n} \int_{\mathbb{R}^{d}} \frac{\chi(k)}{\sqrt{\omega(k)}}\left[\alpha(k) e^{2 \pi i k \cdot q_{j}}+\overline{\alpha(k)} e^{-2 \pi i k \cdot q_{j}}\right] d k .
\end{aligned}
$$

The solution $u=(p, q, \alpha)$ belongs to the classical phase-space :

$$
X^{\sigma}:=\mathbb{R}_{p}^{d n} \times \mathbb{R}_{q}^{d n} \times \mathcal{G}^{\sigma}
$$

where \mathcal{G}^{σ} is the weighted L^{2} lebesgue space endowed with the norm :

$$
\|\alpha\|_{\mathcal{G}^{\sigma}}^{2}=\left\langle\alpha, \omega(\cdot)^{2 \sigma} \alpha\right\rangle_{L^{2}}=\left\|\omega^{\sigma} \alpha\right\|_{L^{2}}^{2} .
$$

The energy space is $X^{1 / 2}$. We will give our main results in the space X^{σ} with $\sigma \in\left[\frac{1}{2}, 1\right]$.

The Quantum system

The Quantum system : Nelson Hamiltonian

The Nelson Hamiltonian is defined as follows

$$
\hat{H}=\sum_{j=1}^{n} f_{j}\left(\hat{p}_{j}\right)+V(\hat{q})+d \Gamma(\omega)+\sum_{j=1}^{n}\left(a_{\hbar}+a_{\hbar}^{*}\right)\left(\frac{\chi}{\sqrt{\omega}} e^{-2 \pi k \cdot \hat{q}_{j}}\right)
$$

The Hilbert space of the quantized particle-field system is

$$
\mathcal{H}:=L^{2}\left(\mathbb{R}_{x}^{d n}, \mathbb{C}\right) \otimes \Gamma_{s}\left(L^{2}\left(\mathbb{R}_{k}^{d}, \mathbb{C}\right)\right)
$$

where Γ_{s} is the symmetric Fock space

$$
\Gamma_{s}\left(L^{2}\left(\mathbb{R}_{k}^{d}, \mathbb{C}\right)\right):=\bigoplus_{m=0}^{+\infty} L^{2}\left(\mathbb{R}^{d}, \mathbb{C}\right)^{\otimes_{s} m} \simeq \bigoplus_{m=0}^{+\infty} L_{s}^{2}\left(\mathbb{R}^{d m}, \mathbb{C}\right)
$$

We denote by $\mathcal{F}^{m}:=L_{s}^{2}\left(\mathbb{R}^{d m}, \mathbb{C}\right)$ the symmteric L^{2} space over $\mathbb{R}^{d m}$.
Remark : \hat{H} is a self adjoint operator.

- $\hat{p}_{j}=-i \hbar \nabla_{x_{j}}$ is the momentum operator;
- $\hat{q}_{j}=x_{j}$ is the position operator;
$\Rightarrow d \Gamma(\omega): \mathcal{H} \rightarrow \mathcal{H}$ is the free field Hamiltonian

- a_{\hbar} and a_{\hbar}^{*} are the generalized \hbar scaled annihilation-creation operators are defined as follows
for every $\psi=\left\{\psi^{m}\right\}_{m \geq 0} \in \mathcal{H}$ and $F(k):=\sum_{j=1}^{n} \frac{\chi(k)}{\sqrt{\omega(k)}} e^{-2 \pi i k \cdot \hat{q}_{j}}$
$\left[a_{\hbar}(F) \psi(x)\right]^{m}\left(K_{m}\right)=\sqrt{\hbar(m+1)} \int_{\mathbb{R}^{d}} \overline{F(k)} \psi^{m+1}\left(x ; K_{m}, k\right) d k ;$
$\left.\left[a_{h}^{*}(F) \psi(x)\right]^{m}\left(K_{m}\right)=\frac{\sqrt{\hbar}}{\sqrt{m}} \sum_{j=1}^{m} F\left(k_{j}\right) \psi^{m-1}\left(x_{i}, k_{1}, \hat{K}_{j},\right]_{m}\right)^{\prime}$
- $\hat{p}_{j}=-i \hbar \nabla_{x_{j}}$ is the momentum operator;
- $\hat{q}_{j}=x_{j}$ is the position operator;
- $d \Gamma(\omega): \mathcal{H} \rightarrow \mathcal{H}$ is the free field Hamiltonian

$$
\left.d \Gamma(\omega)\right|_{\mathcal{F}^{m}}=\hbar \sum_{j=1}^{m} \omega\left(k_{j}\right) ;
$$

$>a_{\hbar}$ and a_{\hbar}^{*} are the generalized \hbar scaled annihilation-creation operators are defined as follows
for every $\psi=\left\{\psi^{m}\right\}_{m \geq 0} \in \mathcal{H}$ and $F(k):=\sum_{j=1}^{n} \frac{\chi(k)}{\sqrt{\omega(k)}} e^{-2 \pi i k \cdot q_{j}}$ $\left[a_{\hbar}(F) \psi(x)\right]^{m}\left(K_{m}\right)=\sqrt{\hbar(m+1)} \int_{\mathbb{R}^{d}} \overline{F(k)} \psi^{m+1}\left(x ; K_{m}, k\right) d k ;$ $\left[a_{h}^{*}(F) \psi^{\prime}(x)\right]^{m}\left(K_{m}\right)=\frac{\sqrt{\hbar}}{\sqrt{m}} \sum_{j=1}^{m} F\left(K_{j}\right) \psi^{m-1}(x ; k$

- $\hat{p}_{j}=-i \hbar \nabla_{x_{j}}$ is the momentum operator;
- $\hat{q}_{j}=x_{j}$ is the position operator;
- $d \Gamma(\omega): \mathcal{H} \rightarrow \mathcal{H}$ is the free field Hamiltonian

$$
\left.d \Gamma(\omega)\right|_{\mathcal{F}^{m}}=\hbar \sum_{j=1}^{m} \omega\left(k_{j}\right) ;
$$

$>a_{\hbar}$ and a_{\hbar}^{*} are the generalized \hbar scaled annihilation-creation operators are defined as follows
for every $\psi=\left\{\psi^{m}\right\}_{m \geq 0} \in \mathcal{H}$ and $F(k):=\sum_{j=1}^{n} \frac{\chi(k)}{\sqrt{\omega(k)}} e^{-2 \pi i k \cdot q_{j}}$ $\left[a_{\hbar}(F) \psi(x)\right]^{m}\left(K_{m}\right)=\sqrt{\hbar(m+1)} \int_{\mathbb{R}^{d}} \overline{F(k)} \psi^{m+1}\left(x ; K_{m}, k\right) d k ;$ $\left[a_{h}^{*}(F) \psi^{\prime}(x)\right]^{m}\left(K_{m}\right)=\frac{\sqrt{\hbar}}{\sqrt{m}} \sum_{j=1}^{m} F\left(K_{j}\right) \psi^{m-1}(x ; k$

- $\hat{p}_{j}=-i \hbar \nabla_{x_{j}}$ is the momentum operator;
- $\hat{q}_{j}=x_{j}$ is the position operator;
- $d \Gamma(\omega): \mathcal{H} \rightarrow \mathcal{H}$ is the free field Hamiltonian

$$
\left.d \Gamma(\omega)\right|_{\mathcal{F}^{m}}=\hbar \sum_{j=1}^{m} \omega\left(k_{j}\right) ;
$$

- a_{\hbar} and a_{\hbar}^{*} are the generalized \hbar scaled annihilation-creation operators are defined as follows :

$$
\begin{aligned}
& \text { for every } \psi=\left\{\psi^{m}\right\}_{m \geq 0} \in \mathcal{H} \text { and } F(k):=\sum_{j=1}^{n} \frac{\chi(k)}{\sqrt{\omega(k)}} e^{-2 \pi i k \cdot \hat{a}_{j}} \\
& \qquad \begin{aligned}
{\left[a_{\hbar}(F) \psi(x)\right]^{m}\left(K_{m}\right) } & =\sqrt{\hbar(m+1)} \int_{\mathbb{R}^{d}} \overline{F(k)} \psi^{m+1}\left(x ; K_{m}, k\right) d k ; \\
{\left[a_{\hbar}^{*}(F) \psi(x)\right]^{m}\left(K_{m}\right) } & =\frac{\sqrt{\hbar}}{\sqrt{m}} \sum_{j=1}^{m} F\left(k_{j}\right) \psi^{m-1}\left(x ; k_{1}, \cdot, \hat{k}_{j}, \cdot, k_{m}\right)
\end{aligned}
\end{aligned}
$$

Assumptions and main results

Assumptions

- On V and χ :

```
\(V \in C_{b}^{2}\left(\mathbb{R}^{d n} ; \mathbb{R}\right)\)
\(\omega(\cdot)^{\frac{3}{2}-\sigma} \chi(\cdot) \in L^{2}\left(\mathbb{R}^{d} ; \mathbb{R}\right)\),
```

- Let $\left(\varrho_{\hbar}\right)_{\hbar \in(0,1)}$ be a family of density matrices on \mathcal{H} of the particle-field quantum system. We assume that :

$$
\begin{array}{ll}
\exists C_{0}>0, & \forall \hbar \in(0,1), \\
\exists C_{1}>0, & \operatorname{Tr}\left[\varrho_{\hbar} d \Gamma\left(\omega^{2 \sigma}\right)\right] \leq C_{0}, \tag{1}\\
0,1), & \operatorname{Tr}\left[\varrho_{\hbar}\left(\hat{q}^{2}+\hat{p}^{2}\right)\right] \leq C_{1} .
\end{array}
$$

Question : Propagation of estimates $\left(Q_{0}\right)$ and $\left(Q_{1}\right)$ uniformly in times?

Assumptions

- On V and χ :

$$
\begin{align*}
& V \in \mathcal{C}_{b}^{2}\left(\mathbb{R}^{d n} ; \mathbb{R}\right) \tag{0}\\
& \omega(\cdot)^{\frac{3}{2}-\sigma} \chi(\cdot) \in L^{2}\left(\mathbb{R}^{d} ; \mathbb{R}\right), \quad \sigma \in\left[\frac{1}{2}, 1\right] \tag{1}
\end{align*}
$$

- Let $\left(\varrho_{\hbar}\right)_{\hbar \in(0,1)}$ be a family of density matrices on \mathcal{H} of the particle-field quantum system. We assume that :

$$
\begin{aligned}
& \exists C_{0}>0, \quad \forall \hbar \in(0,1), \quad \operatorname{Tr}\left[\varrho_{\hbar} d \Gamma\left(\omega^{2 \sigma}\right)\right] \leq C_{0}, \\
& \exists C_{1}>0, \quad \forall \hbar \in(0,1), \quad \operatorname{Tr}\left[\varrho_{\hbar}\left(\hat{q}^{2}+\hat{p}^{2}\right)\right] \leq C_{1} .
\end{aligned}
$$

Assumptions

- On V and χ :

$$
\begin{align*}
& V \in \mathcal{C}_{b}^{2}\left(\mathbb{R}^{d n} ; \mathbb{R}\right) \tag{0}\\
& \omega(\cdot)^{\frac{3}{2}-\sigma} \chi(\cdot) \in L^{2}\left(\mathbb{R}^{d} ; \mathbb{R}\right), \tag{1}
\end{align*} \quad \sigma \in\left[\frac{1}{2}, 1\right] .
$$

- Let $\left(\varrho_{\hbar}\right)_{\hbar \in(0,1)}$ be a family of density matrices on \mathcal{H} of the particle-field quantum system. We assume that :

Assumptions

- On V and χ :

$$
\begin{align*}
& V \in \mathcal{C}_{b}^{2}\left(\mathbb{R}^{d n} ; \mathbb{R}\right) \tag{0}\\
& \omega(\cdot)^{\frac{3}{2}-\sigma} \chi(\cdot) \in L^{2}\left(\mathbb{R}^{d} ; \mathbb{R}\right), \quad \sigma \in\left[\frac{1}{2}, 1\right] \tag{1}
\end{align*}
$$

- Let $\left(\varrho_{\hbar}\right)_{\hbar \in(0,1)}$ be a family of density matrices on \mathcal{H} of the particle-field quantum system. We assume that :

$$
\begin{array}{ll}
\exists C_{0}>0, & \forall \hbar \in(0,1), \\
\exists C_{1}>0, & \operatorname{Tr}\left[\varrho_{\hbar} d \Gamma\left(\omega^{2 \sigma}\right)\right] \leq C_{0}, \tag{1}\\
0,1), & \operatorname{Tr}\left[\varrho_{\hbar}\left(\hat{q}^{2}+\hat{p}^{2}\right)\right] \leq C_{1} .
\end{array}
$$

Question : Propagation of estimates $\left(Q_{0}\right)$ and $\left(Q_{1}\right)$ uniformly in times?

Global well-posedness of (PFE)

Theorem [S. Farhat, 2023]

Let $\sigma \in\left[\frac{1}{2}, 1\right]$ and assume $\left(C_{0}\right)$ and $\left(C_{1}\right)$ hold true.
Then, for any initial data $u_{0} \in X^{\sigma}$, there exists a unique global strong solution $u(\cdot) \in \mathcal{C}\left(\mathbb{R}, X^{\sigma}\right) \cap \mathcal{C}^{1}\left(\mathbb{R}, X^{\sigma-1}\right)$ of the particle-field equation (PFE). Moreover, the generalized global flow

$$
\begin{aligned}
\Phi_{t}: X^{\sigma} & \longrightarrow X^{\sigma} \\
U_{0} & \longmapsto u(t)
\end{aligned}
$$

is Borel measurable.

- The proof of the above result still require some classical properties : for example uniqueness of solutions to the particle-field equation and sa on. \Rightarrow Assumptions $\left(C_{0}\right)$ and $\left(C_{1}\right)$ amount to these properties.

Global well-posedness of (PFE)

Theorem [S. Farhat, 2023]

Let $\sigma \in\left[\frac{1}{2}, 1\right]$ and assume $\left(C_{0}\right)$ and $\left(C_{1}\right)$ hold true.
Then, for any initial data $u_{0} \in X^{\sigma}$, there exists a unique global strong solution $u(\cdot) \in \mathcal{C}\left(\mathbb{R}, X^{\sigma}\right) \cap \mathcal{C}^{1}\left(\mathbb{R}, X^{\sigma-1}\right)$ of the particle-field equation (PFE). Moreover, the generalized global flow

$$
\begin{aligned}
\Phi_{t}: X^{\sigma} & \longrightarrow X^{\sigma} \\
u_{0} & \longmapsto u(t) .
\end{aligned}
$$

is Borel measurable.

- The proof of the above result still require some classical properties : for example uniqueness of solutions to the particle-field equation and so on.
\Rightarrow Assumptions $\left(C_{0}\right)$ and $\left(C_{1}\right)$ amount to these properties.

Global well-posedness of (PFE)

Theorem [S. Farhat, 2023]

Let $\sigma \in\left[\frac{1}{2}, 1\right]$ and assume $\left(C_{0}\right)$ and $\left(C_{1}\right)$ hold true.
Then, for any initial data $u_{0} \in X^{\sigma}$, there exists a unique global strong solution $u(\cdot) \in \mathcal{C}\left(\mathbb{R}, X^{\sigma}\right) \cap \mathcal{C}^{1}\left(\mathbb{R}, X^{\sigma-1}\right)$ of the particle-field equation (PFE). Moreover, the generalized global flow

is Borel measurable.

- The proof of the above result still require some classical properties : for example uniqueness of solutions to the particle-field equation and so on.
- Assumptions $\left(C_{0}\right)$ and $\left(C_{1}\right)$ amount to these properties.

Wigner measures

Definition [Weyl operator]

The Weyl operator over the entire interacting Hilbert space \mathcal{H}

$$
\xi=(p, q, \alpha) \in X^{0} \longmapsto \mathcal{W}(\xi):=e^{i(p \cdot \hat{q}-q \cdot \hat{p})} \otimes e^{\frac{i}{\sqrt{2}}\left(a_{\hbar}(\alpha)+a_{\hbar}^{*}(\alpha)\right)}
$$

Definition [Wigner measure]
A Borel probability measure μ over X^{0} is a Wigner measure of a family of density
matrices $\left(\varrho_{i}\right)_{h \in(0,1)}$ on the Hilbert space \mathcal{H} if and only if there exists a subset
$\mathcal{E} \subset(0,1)$ with $0 \in \overline{\mathcal{E}}$ such that for any $\xi=\left(p_{0}, q_{0}, \alpha_{0}\right), \tilde{\xi}=\left(2 \pi q_{0},-2 \pi p_{0}, \sqrt{2} \pi \alpha_{0}\right) \in X^{0}$

[^0]
Wigner measures

Definition [Weyl operator]

The Weyl operator over the entire interacting Hilbert space \mathcal{H}

$$
\xi=(p, q, \alpha) \in X^{0} \longmapsto \mathcal{W}(\xi):=e^{i(p \cdot \hat{q}-q \cdot \hat{\rho})} \otimes e^{\frac{i}{\sqrt{2}}\left(a_{\hbar}(\alpha)+a_{\hbar}^{*}(\alpha)\right)}
$$

Definition [Wigner measure]

A Borel probability measure μ over X^{0} is a Wigner measure of a family of density matrices $\left(\varrho_{\hbar}\right)_{\hbar \in(0,1)}$ on the Hilbert space \mathcal{H} if and only if there exists a subset $\mathcal{E} \subset(0,1)$ with $0 \in \overline{\mathcal{E}}$ such that for any $\xi=\left(p_{0}, q_{0}, \alpha_{0}\right), \tilde{\xi}=\left(2 \pi q_{0},-2 \pi p_{0}, \sqrt{2} \pi \alpha_{0}\right) \in X^{0}$:

$$
\lim _{\hbar \rightarrow 0, \hbar \in \mathcal{E}} \operatorname{Tr}\left[\mathcal{W}(\tilde{\xi}) \varrho_{h}\right]=\int_{X^{0}} e^{2 \pi i \Re e\langle\xi, u\rangle_{x^{0}}} d \mu(u)=\mathcal{F}^{-1}[\mu](\xi) .
$$

- Denote by $\mathcal{M}\left(\varrho_{\hbar}, \hbar \in \mathcal{E}\right)$ the set of all Wigner measures of $\left(\varrho_{\hbar}\right)_{\hbar \in \mathcal{E}}$.
- $\mathcal{M}\left(\varrho_{\hbar}, \hbar \in \mathcal{E}\right) \neq \phi$ if some assumptions on $\left(\varrho_{\hbar}\right)_{\hbar}$ are imposed.
- In our approach, we need to prove $\mathcal{M}(n+\hbar \in \mathcal{E})=$ Singletnn Kuplto extraction of subsequence?

Wigner measures

Definition [Weyl operator]

The Weyl operator over the entire interacting Hilbert space \mathcal{H}

$$
\xi=(p, q, \alpha) \in X^{0} \longmapsto \mathcal{W}(\xi):=e^{i(p \cdot \hat{q}-q \cdot \hat{\rho})} \otimes e^{\frac{i}{\sqrt{2}}\left(a_{\hbar}(\alpha)+a_{\hbar}^{*}(\alpha)\right)}
$$

Definition [Wigner measure]

A Borel probability measure μ over X^{0} is a Wigner measure of a family of density matrices $\left(\varrho_{\hbar}\right)_{\hbar \in(0,1)}$ on the Hilbert space \mathcal{H} if and only if there exists a subset $\mathcal{E} \subset(0,1)$ with $0 \in \overline{\mathcal{E}}$ such that for any $\xi=\left(p_{0}, q_{0}, \alpha_{0}\right), \tilde{\xi}=\left(2 \pi q_{0},-2 \pi p_{0}, \sqrt{2} \pi \alpha_{0}\right) \in X^{0}$:

$$
\lim _{\hbar \rightarrow 0, \hbar \in \mathcal{E}} \operatorname{Tr}\left[\mathcal{W}(\tilde{\xi}) \varrho_{h}\right]=\int_{X^{0}} e^{2 \pi i \Re e\langle\xi, u\rangle_{x^{0}}} d \mu(u)=\mathcal{F}^{-1}[\mu](\xi) .
$$

- Denote by $\mathcal{M}\left(\varrho_{\hbar}, \hbar \in \mathcal{E}\right)$ the set of all Wigner measures of $\left(\varrho_{\hbar}\right)_{\hbar \in \mathcal{E}}$.
$\Rightarrow \mathcal{M}\left(\varrho_{\hbar}, \hbar \in \mathcal{E}\right) \neq \phi$ if some assumptions on $\left(\varrho_{\hbar}\right)_{\hbar}$ are imposed.
- In our approach, we need to prove $\mathcal{M}\left(\varrho_{\hbar}, \hbar \in \mathcal{E}\right)=$ Singléton whito extraction of subsequence?

Wigner measures

Definition [Weyl operator]

The Weyl operator over the entire interacting Hilbert space \mathcal{H}

$$
\xi=(p, q, \alpha) \in X^{0} \longmapsto \mathcal{W}(\xi):=e^{i(p \cdot \hat{q}-q \cdot \hat{\rho})} \otimes e^{\frac{i}{\sqrt{2}}\left(a_{\hbar}(\alpha)+a_{\hbar}^{*}(\alpha)\right)}
$$

Definition [Wigner measure]

A Borel probability measure μ over X^{0} is a Wigner measure of a family of density matrices $\left(\varrho_{\hbar}\right)_{\hbar \in(0,1)}$ on the Hilbert space \mathcal{H} if and only if there exists a subset $\mathcal{E} \subset(0,1)$ with $0 \in \overline{\mathcal{E}}$ such that for any $\xi=\left(p_{0}, q_{0}, \alpha_{0}\right), \tilde{\xi}=\left(2 \pi q_{0},-2 \pi p_{0}, \sqrt{2} \pi \alpha_{0}\right) \in X^{0}$:

$$
\lim _{\hbar \rightarrow 0, \hbar \in \mathcal{E}} \operatorname{Tr}\left[\mathcal{W}(\tilde{\xi}) \varrho_{h}\right]=\int_{X^{0}} e^{2 \pi i \Re e\langle\xi, u\rangle_{X^{0}}} d \mu(u)=\mathcal{F}^{-1}[\mu](\xi) .
$$

- Denote by $\mathcal{M}\left(\varrho_{\hbar}, \hbar \in \mathcal{E}\right)$ the set of all Wigner measures of $\left(\varrho_{\hbar}\right)_{\hbar \in \mathcal{E}}$.
- $\mathcal{M}\left(\varrho_{\hbar}, \hbar \in \mathcal{E}\right) \neq \phi$ if some assumptions on $\left(\varrho_{\hbar}\right)_{\hbar}$ are imposed.
\Rightarrow In our approach, we need to prove $\mathcal{M}\left(\varrho_{\hbar}, \hbar \in \mathcal{E}\right)=$ Singleton\} Lupto-extraction of subsequence?

Wigner measures

Definition [Weyl operator]

The Weyl operator over the entire interacting Hilbert space \mathcal{H}

$$
\xi=(p, q, \alpha) \in X^{0} \longmapsto \mathcal{W}(\xi):=e^{i(p \cdot \hat{q}-q \cdot \hat{p})} \otimes e^{\frac{i}{\sqrt{2}}\left(a_{\hbar}(\alpha)+a_{\hbar}^{*}(\alpha)\right)}
$$

Definition [Wigner measure]

A Borel probability measure μ over X^{0} is a Wigner measure of a family of density matrices $\left(\varrho_{\hbar}\right)_{\hbar \in(0,1)}$ on the Hilbert space \mathcal{H} if and only if there exists a subset $\mathcal{E} \subset(0,1)$ with $0 \in \overline{\mathcal{E}}$ such that for any $\xi=\left(p_{0}, q_{0}, \alpha_{0}\right), \tilde{\xi}=\left(2 \pi q_{0},-2 \pi p_{0}, \sqrt{2} \pi \alpha_{0}\right) \in X^{0}$:

$$
\lim _{\hbar \rightarrow 0, \hbar \in \mathcal{E}} \operatorname{Tr}\left[\mathcal{W}(\tilde{\xi}) \varrho_{h}\right]=\int_{X^{0}} e^{2 \pi i \Re e\langle\xi, u\rangle_{X^{0}}} d \mu(u)=\mathcal{F}^{-1}[\mu](\xi) .
$$

- Denote by $\mathcal{M}\left(\varrho_{\hbar}, \hbar \in \mathcal{E}\right)$ the set of all Wigner measures of $\left(\varrho_{\hbar}\right)_{\hbar \in \mathcal{E}}$.
- $\mathcal{M}\left(\varrho_{\hbar}, \hbar \in \mathcal{E}\right) \neq \phi$ if some assumptions on $\left(\varrho_{\hbar}\right)_{\hbar}$ are imposed.
- In our approach, we need to prove $\mathcal{M}\left(\varrho_{\hbar}, \hbar \in \mathcal{E}\right)=\{$ Singleton $\}$ up to extraction of subsequence?

Classical limit : Bohr Correspondence principle

Theorem [S. Farhat, 2023]

Let $\sigma \in\left[\frac{1}{2}, 1\right]$ and assume $\left(C_{0}\right)$ and $\left(C_{1}\right)$ hold true. Let $\left(\varrho_{\hbar}\right)_{\hbar \in(0,1)}$ be a family of density matrices on \mathcal{H} satisfying $\left(Q_{0}\right)$ and $\left(Q_{1}\right)$. Assume that

$$
\mathcal{M}\left(\varrho_{\hbar_{\ell}}, \ell \in \mathbf{N}\right)=\left\{\mu_{0}\right\}
$$

Then for all times $t \in \mathbb{R}$, we have

$$
\mathcal{M}(\underbrace{e^{-i \frac{t}{\hbar_{\ell}} \hat{H}} \varrho_{\hbar_{\ell}} e^{i \frac{t}{\hbar_{\ell}} \hat{H}}}_{:=\varrho_{\hbar_{\ell}}(t)}, \ell \in \mathbf{N})=\left\{\mu_{t}\right\},
$$

where $\mu_{t} \in \mathcal{P}\left(X^{0}\right)$ satisfies
(i) $\mu_{t}\left(X^{\sigma}\right)=1$.
(ii) $\mu_{t}=\left(\Phi_{t}\right)_{\sharp} \mu_{0}$, where Φ_{t} is the global flow of the particle-field equation.

The convergence is rephrased according to the following commutative diagram

Classical limit : Bohr Correspondence principle

Theorem [S. Farhat, 2023]

Let $\sigma \in\left[\frac{1}{2}, 1\right]$ and assume $\left(C_{0}\right)$ and $\left(C_{1}\right)$ hold true. Let $\left(\varrho_{\hbar}\right)_{\hbar \in(0,1)}$ be a family of density matrices on \mathcal{H} satisfying $\left(Q_{0}\right)$ and (Q_{1}). Assume that

$$
\mathcal{M}\left(\varrho_{\hbar_{\ell}}, \ell \in \mathbf{N}\right)=\left\{\mu_{0}\right\} .
$$

Then for all times $t \in \mathbb{R}$, we have

$$
\mathcal{M}(\underbrace{e^{-i \frac{t}{\hbar_{\ell}} \hat{H}} \varrho_{\varrho_{\ell}} e^{i \frac{t}{\hbar_{\ell}} \hat{H}}}_{:=\varrho_{\hbar_{\ell}}{ }^{(t)}}, \ell \in \mathbf{N})=\left\{\mu_{t}\right\},
$$

where $\mu_{t} \in \mathcal{P}\left(X^{0}\right)$ satisfies
(i) $\mu_{t}\left(X^{\sigma}\right)=1$.
(ii) $\mu_{t}=\left(\Phi_{t}\right)_{\sharp} \mu_{0}$, where Φ_{t} is the global flow of the particle-field equation.

The convergence is rephrased according to the following commutative diagram :

$$
\begin{aligned}
& \varrho_{\hbar} \xrightarrow{e^{-i \frac{t}{\hbar} \hat{H}_{\hbar}}(\cdot) e^{i \frac{t}{\hbar} \hat{H}_{\hbar}}} \varrho_{\hbar}(t) \\
& \downarrow_{\hbar \rightarrow 0} \\
& \mu_{0} \xrightarrow[\left(\Phi_{t}\right)_{\sharp}(\cdot)]{ } \downarrow^{2} \rightarrow 0
\end{aligned}
$$

The quantum dynamical system

The quantum dynamical system

- We work with the interaction representation with

$$
\tilde{\varrho}_{\hbar}(t):=e^{i \frac{t}{\hbar} d \Gamma(\omega)} \varrho_{\hbar}(t) e^{-i \frac{t}{\hbar} d \Gamma(\omega)}
$$

\Rightarrow The Wigner measures of $\tilde{\varrho}_{\hbar}(t)$ are the limits of the map

- For all $\xi=\left(p_{0}, q_{0}, \alpha_{0}\right) \in X^{1 / 2}$, for all $\hbar \in(0,1)$ and for all $t, t_{0} \in \mathbb{R}$, the quantum dynamical system of (1) is

The quantum dynamical system

- We work with the interaction representation with

$$
\tilde{\varrho}_{\hbar}(t):=e^{i \frac{t}{\hbar} d \Gamma(\omega)} \varrho_{\hbar}(t) e^{-i \frac{t}{\hbar} d \Gamma(\omega)}
$$

- The Wigner measures of $\tilde{\varrho}_{\hbar}(t)$ are the limits of the map

$$
\begin{equation*}
\lim _{\hbar \rightarrow 0} \underbrace{\operatorname{Tr}\left[\mathcal{W}(\tilde{\xi}) \tilde{\varrho}_{\hbar}(t)\right]}_{(1)}=\int_{X^{0}} e^{2 \pi i \Re e\langle\xi, u\rangle} \boldsymbol{d} \tilde{\mu}_{t}(u) . \tag{1}
\end{equation*}
$$

- For all $\xi=\left(p_{0}, q_{0}, \alpha_{0}\right) \in X^{1 / 2}$, for all $\hbar \in(0,1)$ and for all $t, t_{0} \in \mathbb{R}$, the quantum dynamical system of (1) is

The quantum dynamical system

- We work with the interaction representation with

$$
\varrho_{\hbar}(t):=e^{i \frac{t}{\hbar} d \Gamma(\omega)} \varrho_{\hbar}(t) e^{-i \frac{t}{\hbar} d \Gamma(\omega)}
$$

- The Wigner measures of $\tilde{\varrho}_{\hbar}(t)$ are the limits of the map

$$
\begin{equation*}
\lim _{\hbar \rightarrow 0} \underbrace{\operatorname{Tr}\left[\mathcal{W}(\tilde{\xi}) \tilde{\varrho}_{\hbar}(t)\right]}_{(1)}=\int_{X^{0}} e^{2 \pi i \Re e\langle\xi, u\rangle} \boldsymbol{d} \tilde{\mu}_{t}(u) . \tag{1}
\end{equation*}
$$

- For all $\xi=\left(p_{0}, q_{0}, \alpha_{0}\right) \in X^{1 / 2}$, for all $\hbar \in(0,1)$ and for all $t, t_{0} \in \mathbb{R}$, the quantum dynamical system of (1) is

$$
\operatorname{Tr}\left[\mathcal{W}(\xi) \tilde{\varrho}_{\hbar}(t)\right]=\operatorname{Tr}\left[\mathcal{W}(\xi) \tilde{\varrho}_{\hbar}\left(t_{0}\right)\right]-i \int_{t_{0}}^{t} \operatorname{Tr}\left(\frac{1}{\hbar}\left[\mathcal{W}(\xi), \hat{H}_{k}(s)\right] \tilde{\varrho}_{\hbar}(s)\right) d s
$$

The commutator expansion

The commutator in the Duhamel formula can be expanded as follows :

We have with $\hat{H}_{0}=d \Gamma(\omega)+\sum_{j=1}^{n} f_{j}\left(\hat{p}_{j}\right)$ and $S=\left(\hat{H}_{0}+1\right)^{1 / 2}$

The commutator expansion

The commutator in the Duhamel formula can be expanded as follows :

$$
\frac{1}{\hbar}\left[\mathcal{W}(\xi), \hat{H}_{k}(s)\right]=\underset{\substack{\uparrow \\ \text { Main } \\ \text { term }}}{\left.B_{0}(s, \hbar, \xi)+\hbar \operatorname{Bin}_{1}(s, \hbar, \xi)\right]} \underset{\substack{\uparrow \\ \text { Remainder } \\ \text { term }}}{\mathcal{W}(\xi)}
$$

We have with $\hat{H}_{0}=d \Gamma(\omega)+\sum_{j=1}^{n} f_{j}\left(\hat{p}_{j}\right)$ and $S=\left(\hat{H}_{0}+1\right)^{1 / 2}$

$$
\begin{aligned}
& \left\|S^{-1} B_{0}(S, \hbar, \xi) S^{-1}\right\|_{\mathcal{L}(\mathcal{H})} \leq\|\xi\|_{x^{0}}\|\chi\|_{L^{2}} ; \\
& \left\|S^{-1} B_{1}(S, \hbar, \xi) S^{-1}\right\|_{\mathcal{L}(\mathcal{H})} \leq\|\xi\|_{X^{0}}^{2}\left\|\omega^{1 / 2} \chi\right\|_{L^{2}} .
\end{aligned}
$$

Globally well-defined quantum dynamic : Plugging the aboye expansion and exploiting the uniform estimates in the last part of the Duhanel formula.

The commutator expansion

The commutator in the Duhamel formula can be expanded as follows :

$$
\frac{1}{\hbar}\left[\mathcal{W}(\xi), \hat{H}_{k}(s)\right]=\underset{\substack{\text { Main } \\ \text { term }}}{B_{0}(s, \hbar, \xi)+\hbar \underset{\substack{\text { semiander } \\ \text { term }}}{\left.B_{1}(s, \hbar, \xi)\right]} \mathcal{W}(\xi) .}
$$

We have with $\hat{H}_{0}=d \Gamma(\omega)+\sum_{j=1}^{n} f_{j}\left(\hat{p}_{j}\right)$ and $S=\left(\hat{H}_{0}+1\right)^{1 / 2}$

$$
\begin{aligned}
\left\|S^{-1} B_{0}(s, \hbar, \xi) S^{-1}\right\|_{\mathcal{L}(\mathcal{H})} \leq\|\xi\|_{X^{0}}\|\chi\|_{L^{2}} ; \\
\left\|S^{-1} B_{1}(S, \hbar, \xi) S^{-1}\right\|_{\mathcal{L}(\mathcal{H})} \leq\|\xi\|_{X^{0}}^{2}\left\|\omega^{1 / 2} \chi\right\|_{L^{2}} .
\end{aligned}
$$

Globally well-defined quantum dynamic : Plugging the above expansion and exploiting the uniform estimates in the last part of the Duhamel formula.

A single Wigner measure for all times

The next step is to prove that we can extract a subsequence $\left(\hbar_{\ell}\right)_{\ell \in \mathbb{N}}$ and a family of Borel probability measures $\left(\tilde{\mu}_{t}\right)_{t \in \mathbb{R}}$ such that for all $t \in \mathbb{R}$

$$
\mathcal{M}\left(\tilde{\varrho}_{\hbar_{\ell}}(t), \ell \in \mathbb{N}\right)=\left\{\tilde{\mu}_{t}\right\}
$$

Ideas of proof :

> Propagation of quantum estimates : $\left(Q_{0}\right)$ and $\left(Q_{1}\right)$

- Diagonal extraction method and Prokhorov theorem to get uniforahity in time.

A single Wigner measure for all times

The next step is to prove that we can extract a subsequence $\left(\hbar_{\ell}\right)_{\ell \in \mathbb{N}}$ and a family of Borel probability measures $\left(\tilde{\mu}_{t}\right)_{t \in \mathbb{R}}$ such that for all $t \in \mathbb{R}$

$$
\mathcal{M}\left(\tilde{\varrho}_{\hbar_{\ell}}(t), \ell \in \mathbb{N}\right)=\left\{\tilde{\mu}_{t}\right\}
$$

Ideas of proof :

- Propagation of quantum estimates: $\left(Q_{0}\right)$ and $\left(Q_{1}\right)$
$-\operatorname{Tr}\left[\tilde{\varrho}_{\hbar}(t) d \Gamma\left(\omega^{2 \sigma}\right)\right] \leq C_{1} \operatorname{Tr}\left[\varrho_{\hbar}\left(d \Gamma\left(\omega^{2 \sigma}\right)+1\right)\right] e^{C_{2}|t|} \leq C_{3}$.
- $\operatorname{Tr}\left[\tilde{\varrho}_{\hbar}(t)\left(\hat{p}^{2}+\hat{q}^{2}\right)\right] \leq C_{1} \operatorname{Tr}\left[\varrho_{\hbar}\left(\hat{H}_{0}+\hat{p}^{2}+\hat{q}^{2}+1\right)\right] e^{C_{2}|t|} \leq C_{3}$,
- Diagonal extraction method and Prokhorov theorem to get unifbroxity in time.

A single Wigner measure for all times

The next step is to prove that we can extract a subsequence $\left(\hbar_{\ell}\right)_{\ell \in \mathbb{N}}$ and a family of Borel probability measures $\left(\tilde{\mu}_{t}\right)_{t \in \mathbb{R}}$ such that for all $t \in \mathbb{R}$

$$
\mathcal{M}\left(\tilde{\varrho}_{\hbar_{\ell}}(t), \ell \in \mathbb{N}\right)=\left\{\tilde{\mu}_{t}\right\}
$$

Ideas of proof :

- Propagation of quantum estimates: $\left(Q_{0}\right)$ and $\left(Q_{1}\right)$
$-\operatorname{Tr}\left[\tilde{\varrho}_{\hbar}(t) d \Gamma\left(\omega^{2 \sigma}\right)\right] \leq C_{1} \operatorname{Tr}\left[\varrho_{\hbar}\left(d \Gamma\left(\omega^{2 \sigma}\right)+1\right)\right] e^{C_{2}|t|} \leq C_{3}$.
- $\operatorname{Tr}\left[\tilde{\varrho}_{\hbar}(t)\left(\hat{p}^{2}+\hat{q}^{2}\right)\right] \leq C_{1} \operatorname{Tr}\left[\varrho_{\hbar}\left(\hat{H}_{0}+\hat{p}^{2}+\hat{q}^{2}+1\right)\right] e^{C_{2}|t|} \leq C_{3}$,
- Diagonal extraction method and Prokhorov theorem to get uniformity in time.

Convergence

$$
\begin{aligned}
\lim _{\ell \rightarrow \infty} \operatorname{Tr}\left[\mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(t)\right] & =\lim _{\ell \rightarrow \infty} \operatorname{Tr}\left[\mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}\left(t_{0}\right)\right] \\
& -i \int_{t_{0}}^{t} \lim _{\ell \rightarrow \infty} \operatorname{Tr}\left[B_{0}\left(s, \hbar_{\ell}, \xi\right) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)\right] d s
\end{aligned}
$$

$\operatorname{Tr}\left[B_{0}\left(s, h_{\ell}, \xi\right) \mathcal{W}(\xi) \tilde{\varrho}_{h_{\ell}}(s)\right]=$ Non-interacting terms + Interacting terms.

- Non-interacting terms

- Interacting terms

Convergence

$$
\begin{aligned}
\lim _{\ell \rightarrow \infty} \operatorname{Tr}\left[\mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(t)\right] & =\lim _{\ell \rightarrow \infty} \operatorname{Tr}\left[\mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}\left(t_{0}\right)\right] \\
& -i \int_{t_{0}}^{t} \lim _{\ell \rightarrow \infty} \operatorname{Tr}\left[B_{0}\left(s, \hbar_{\ell}, \xi\right) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)\right] d s
\end{aligned}
$$

$\operatorname{Tr}\left[B_{0}\left(s, \hbar_{\ell}, \xi\right) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)\right]=$ Non-interacting terms + Interacting terms.

- Non-interacting terms

- Interacting terms

Convergence

$$
\begin{aligned}
\lim _{\ell \rightarrow \infty} \operatorname{Tr}\left[\mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(t)\right] & =\lim _{\ell \rightarrow \infty} \operatorname{Tr}\left[\mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}\left(t_{0}\right)\right] \\
& -i \int_{t_{0}}^{t} \lim _{\ell \rightarrow \infty} \operatorname{Tr}\left[B_{0}\left(s, \hbar_{\ell}, \xi\right) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)\right] d s
\end{aligned}
$$

$\operatorname{Tr}\left[B_{0}\left(s, \hbar_{\ell}, \xi\right) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)\right]=$ Non-interacting terms + Interacting terms.

- Non-interacting terms
$=-\sum_{j=1}^{n}\left[\operatorname{Tr}\left[\nabla_{q_{j}} V(\hat{q}) \cdot q_{0 j} \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)\right]+\operatorname{Tr}\left[\nabla f_{j}\left(\hat{p}_{j}\right) \cdot p_{0 j} \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)\right]\right]$.
- Interacting terms
$\begin{aligned}= & +\sum_{j=1}^{n} \operatorname{Tr}\left[\left(a_{\hbar_{\ell}}+a_{\hbar_{\ell}}^{*}\right)\left(e^{-2 \pi i k \cdot \hat{a}_{j}} \tilde{F}_{j}\left(\hbar_{\ell}, k\right)\right) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)\right] \\ & +\sum_{j=1}^{n} \frac{i}{\sqrt{2}}\left(\operatorname{Tr}\left[\left(\left\langle\alpha_{0}, e^{-2 \pi i k \cdot \hat{a}_{j}} F_{j}\right\rangle_{L^{2}}-\left\langle e^{-2 \pi i k \cdot \hat{q}_{j}} F_{j}, \alpha_{0}\right\rangle{ }_{2}\right) \mathcal{W}(\xi), \tilde{\varrho}_{\hbar_{\ell}}\left(s^{\prime}\right)\right]\right. \\ & \text { with } \tilde{F}_{j}\left(\hbar_{\ell}, k\right)=\left(\frac{e^{\left(2 \pi i k \cdot q_{0 j}\right) \hbar_{\ell}}-1}{\hbar_{\ell}}\right) F_{j}(k) .\end{aligned}$

Convergence

$$
\begin{aligned}
\lim _{\ell \rightarrow \infty} \operatorname{Tr}\left[\mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(t)\right] & =\lim _{\ell \rightarrow \infty} \operatorname{Tr}\left[\mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}\left(t_{0}\right)\right] \\
& -i \int_{t_{0}}^{t} \lim _{\ell \rightarrow \infty} \operatorname{Tr}\left[B_{0}\left(s, \hbar_{\ell}, \xi\right) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)\right] d s
\end{aligned}
$$

$\operatorname{Tr}\left[B_{0}\left(s, \hbar_{\ell}, \xi\right) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)\right]=$ Non-interacting terms + Interacting terms.

- Non-interacting terms

$$
=-\sum_{j=1}^{n}\left[\operatorname{Tr}\left[\nabla_{q_{j}} V(\hat{q}) \cdot q_{0 j} \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)\right]+\operatorname{Tr}\left[\nabla f_{j}\left(\hat{p}_{j}\right) \cdot p_{0 j} \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)\right]\right] .
$$

- Interacting terms

$$
\begin{aligned}
= & +\sum_{j=1}^{n} \operatorname{Tr}\left[\left(a_{\hbar_{\ell}}+a_{\hbar_{\ell}}^{*}\right)\left(e^{-2 \pi i k \cdot \hat{q}_{j}} \tilde{F}_{j}\left(\hbar_{\ell}, k\right)\right) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)\right] \\
& +\sum_{j=1}^{n} \frac{i}{\sqrt{2}}\left(\operatorname{Tr}\left[\left(\left\langle\alpha_{0}, e^{-2 \pi i k \cdot \hat{q}_{j}} F_{j}\right\rangle_{L^{2}}-\left\langle e^{-2 \pi i k \cdot \hat{q}_{j}} F_{j}, \alpha_{0}\right\rangle_{L^{2}}\right) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)\right]\right. \\
& \text { with } \tilde{F}_{j}\left(\hbar_{\ell}, k\right)=\left(\frac{e^{\left(2 \pi i k \cdot q_{0 j}\right) \hbar_{\ell}}-1}{\hbar_{\ell}}\right) F_{j}(k)
\end{aligned}
$$

The characteristic equations

- The limit of the Duhamel is formulated as follows for all $t, t_{0} \in \mathbb{R}$ and $y \in X^{\sigma}$

$$
\begin{align*}
& \int_{X^{0}} e^{2 \pi i \Re e\langle y, u\rangle_{X} \sigma} d \tilde{\mu}_{t}(u)=\int_{X^{0}} e^{2 \pi i \Re e\langle y, u\rangle_{X} \sigma} d \tilde{\mu}_{t_{0}}(u) \\
& \quad+2 \pi i \int_{t_{0}}^{t} \int_{X^{0}} e^{2 \pi i \Re e\langle y, u\rangle_{X^{\sigma}}} \Re e\langle v(s, u), y\rangle_{X^{\sigma}} d \tilde{\mu}_{s}(u) d s \tag{C}
\end{align*}
$$

(IPFE) : the interaction representation of (PFE)

$\Rightarrow \Phi_{t}^{f}: X^{\sigma} \longrightarrow X^{\sigma}$ is the free flow defined as follows

\rightarrow The non-autonomous vector field v is as follows v

The characteristic equations

- The limit of the Duhamel is formulated as follows for all $t, t_{0} \in \mathbb{R}$ and $y \in X^{\sigma}$

$$
\begin{align*}
& \int_{X^{0}} e^{2 \pi i \Re e\langle y, u\rangle_{X} \sigma} d \tilde{\mu}_{t}(u)=\int_{X^{0}} e^{2 \pi i \Re e\langle y, u\rangle_{X} \sigma} d \tilde{\mu}_{t_{0}}(u) \\
& \quad+2 \pi i \int_{t_{0}}^{t} \int_{X^{0}} e^{2 \pi i \Re e\langle y, u\rangle_{X^{\sigma}}} \Re e\langle v(s, u), y\rangle_{X^{\sigma}} d \tilde{\mu}_{s}(u) d s \tag{C}
\end{align*}
$$

(IPFE) : the interaction representation of (PFE)

$$
\left\{\begin{array}{l}
\frac{d u}{d t}=v(t, u(t))=\Phi_{-t}^{f} \circ \underbrace{\mathcal{N}}_{\text {Non-linearity of (PFE) }} \circ \Phi_{t}^{f}(u(t)), \tag{IPFE}\\
u(0)=u_{0} \in X^{\sigma} .
\end{array}\right.
$$

$\Rightarrow \Phi_{t}^{f}: X^{\sigma} \longrightarrow X^{\sigma}$ is the free flow defined as follows
\rightarrow The non-autonomous vector field v is as follows v

$$
\int_{i} \int_{x^{\sigma}}\|v(t, u)\| x \sigma d \mu_{t}(u) d t
$$

The characteristic equations

- The limit of the Duhamel is formulated as follows for all $t, t_{0} \in \mathbb{R}$ and $y \in X^{\sigma}$

$$
\begin{align*}
& \int_{X^{0}} e^{2 \pi i \Re e\langle y, u\rangle_{X} \sigma} d \tilde{\mu}_{t}(u)=\int_{X^{0}} e^{2 \pi i \Re e\langle y, u\rangle_{X} \sigma} d \tilde{\mu}_{t_{0}}(u) \\
& \quad+2 \pi i \int_{t_{0}}^{t} \int_{X^{0}} e^{2 \pi i \Re e\langle y, u\rangle_{X^{\sigma}}} \Re e\langle v(s, u), y\rangle_{X^{\sigma}} d \tilde{\mu}_{s}(u) d s \tag{C}
\end{align*}
$$

(IPFE) : the interaction representation of (PFE)

$$
\left\{\begin{array}{l}
\frac{d u}{d t}=v(t, u(t))=\Phi_{-t}^{f} \circ \underbrace{\mathcal{N}}_{\text {Non-linearity of (PFE) }} \circ \Phi_{t}^{f}(u(t)), \tag{IPFE}\\
u(0)=u_{0} \in X^{\sigma} .
\end{array}\right.
$$

- $\Phi_{t}^{f}: X^{\sigma} \longrightarrow X^{\sigma}$ is the free flow defined as follows

$$
\Phi_{t}^{f}(p, q, \alpha)=\left(p, q, e^{-i t \omega(k)} \alpha\right)
$$

- The non-autonomous vector field v is as follows $v: \mathbb{R} \times X^{\sigma} \rightarrow X^{\sigma}$ satisfying

$$
\begin{equation*}
\int_{I} \int_{X^{\sigma}}\|v(t, u)\|_{X^{\sigma}} d \tilde{\mu}_{t}(u) d t<+\infty . \tag{Int}
\end{equation*}
$$

Equivalence between characteristic and Liouville equation

Definition : Liouville equation

A family of Borel probability measures $\left\{\tilde{\mu}_{t}\right\}_{t \in I}$ on X^{σ} is a measure-valued solution of the Liouville equation associated to the vector field $v: \mathbb{R} \times X^{\sigma} \rightarrow X^{\sigma}$ if and only if for all $\phi \in \mathcal{C}_{0, c y l}^{\infty}\left(I \times X^{\sigma}\right)$:

$$
\begin{equation*}
\int_{I} \int_{X^{\sigma}}\left\{\partial_{t} \phi(t, u)+\Re e\langle v(t, u), \nabla \phi(t, u)\rangle_{X^{\sigma}}\right\} d \tilde{\mu}_{t}(u) d t=0 \tag{L}
\end{equation*}
$$

$\mathcal{C}_{0, c y l}^{\infty}\left(I \times X^{\sigma}\right)$ is the cylindrical functional space.

Then, thanks to the regular properties of $\tilde{\mu}_{t}$ and of the vector field $v(t, u)$, we have the following are equivalent

Equivalence between Liouville equation and Characteristic equation

Equivalence between characteristic and Liouville equation

Definition : Liouville equation

A family of Borel probability measures $\left\{\tilde{\mu}_{t}\right\}_{t \in I}$ on X^{σ} is a measure-valued solution of the Liouville equation associated to the vector field $v: \mathbb{R} \times X^{\sigma} \rightarrow X^{\sigma}$ if and only if for all $\phi \in \mathcal{C}_{0, c y l}^{\infty}\left(I \times X^{\sigma}\right):$

$$
\begin{equation*}
\int_{I} \int_{X^{\sigma}}\left\{\partial_{t} \phi(t, u)+\Re e\langle v(t, u), \nabla \phi(t, u)\rangle_{X^{\sigma}}\right\} d \tilde{\mu}_{t}(u) d t=0 \tag{L}
\end{equation*}
$$

$\mathcal{C}_{0, c y l}^{\infty}\left(I \times X^{\sigma}\right)$ is the cylindrical functional space.

Then, thanks to the regular properties of $\tilde{\mu}_{t}$ and of the vector field $v(t, u)$, we have the following are equivalent :

Equivalence between Liouville equation and Characteristic equation

$\left\{\tilde{\mu}_{t}\right\}_{t \in I}$ solves the Liouville equation $(\mathrm{L}) \Leftrightarrow\left\{\tilde{\mu}_{t}\right\}_{t \in I}$ solves the characteristic equation (C).

Proof of the main results

Proof of the main results

- Using measure theoretical techniques, we have :
\Rightarrow Almost sure existence of unique global solutions to (PFE) with a generalized global flow

$$
\Phi_{t}=\Phi_{t}^{f} \circ \tilde{\Phi}_{t}
$$

- To get rid of almost sureness, we select a special choice of family of density matrices which is coherent states centered at initial data.
- It remains to check
- The important tool to do is the following link
\square
- We have, by probabilistic representation, that
\square

Proof of the main results

- Using measure theoretical techniques, we have :
\Rightarrow Almost sure existence of unique global solutions to (PFE) with a generalized global flow

$$
\Phi_{t}=\Phi_{t}^{f} \circ \tilde{\Phi}_{t}
$$

- To get rid of almost sureness, we select a special choice of family of density matrices which is coherent states centered at initial data.
- The important tool to do is the following link :
\square
- We have, by probabilistic representation, that
\square

Proof of the main results

- Using measure theoretical techniques, we have :
\Rightarrow Almost sure existence of unique global solutions to (PFE) with a generalized global flow

$$
\Phi_{t}=\Phi_{t}^{f} \circ \tilde{\Phi}_{t}
$$

- To get rid of almost sureness, we select a special choice of family of density matrices which is coherent states centered at initial data.
- It remains to check

$$
\mu_{t}=\left(\Phi_{t}\right)_{\sharp} \mu_{0}, \quad \Phi_{t}=\Phi_{t}^{f} \circ \tilde{\Phi}_{t}
$$

- The important tool to do is the following link

- We have, by probabilistic representation, that
\square

Proof of the main results

- Using measure theoretical techniques, we have :
\Rightarrow Almost sure existence of unique global solutions to (PFE) with a generalized global flow

$$
\Phi_{t}=\Phi_{t}^{f} \circ \tilde{\Phi}_{t}
$$

- To get rid of almost sureness, we select a special choice of family of density matrices which is coherent states centered at initial data.
- It remains to check

$$
\mu_{t}=\left(\Phi_{t}\right)_{\sharp} \mu_{0}, \quad \Phi_{t}=\Phi_{t}^{f} \circ \tilde{\Phi}_{t}
$$

- The important tool to do is the following link

- We have, by probabilistic representation, that
\square

Proof of the main results

- Using measure theoretical techniques, we have :
\Rightarrow Almost sure existence of unique global solutions to (PFE) with a generalized global flow

$$
\Phi_{t}=\Phi_{t}^{f} \circ \tilde{\Phi}_{t}
$$

- To get rid of almost sureness, we select a special choice of family of density matrices which is coherent states centered at initial data.
- It remains to check

$$
\mu_{t}=\left(\Phi_{t}\right)_{\sharp} \mu_{0}, \quad \Phi_{t}=\Phi_{t}^{f} \circ \tilde{\Phi}_{t}
$$

- The important tool to do is the following link :

$$
\underset{=\left\{\mu_{t}\right\}}{\mathcal{M}\left(\varrho_{\hbar}(t), \hbar \in(0,1)\right)}=\left\{\left(\Phi_{t}^{f}\right)_{\sharp} \tilde{\mu}_{t}, \tilde{\mu}_{t} \in \mathcal{M}\left(\varrho_{\hbar}(t), \underset{=\left\{\tilde{\mu}_{t}\right\}}{, \hbar \in(0,1))\}}\right.\right.
$$

- We have, by probabilistic representation, that
\qquad

Proof of the main results

- Using measure theoretical techniques, we have :
\Rightarrow Almost sure existence of unique global solutions to (PFE) with a generalized global flow

$$
\Phi_{t}=\Phi_{t}^{f} \circ \tilde{\Phi}_{t}
$$

- To get rid of almost sureness, we select a special choice of family of density matrices which is coherent states centered at initial data.
- It remains to check

$$
\mu_{t}=\left(\Phi_{t}\right)_{\sharp} \mu_{0}, \quad \Phi_{t}=\Phi_{t}^{f} \circ \tilde{\Phi}_{t}
$$

- The important tool to do is the following link :

$$
\mathcal{M}\left(\varrho_{\hbar}(t), \hbar \in(0,1)\right)=\left\{\left(\Phi_{t}^{f}\right)_{\sharp} \tilde{\mu}_{t}, \tilde{\mu}_{t} \in \mathcal{M}\left(\tilde{\varrho}_{\hbar}(t), \hbar \in(0,1)\right)\right\}
$$

- We have, by probabilistic representation, that

$$
\tilde{\mu}_{t}=\left(\tilde{\Phi}_{t}\right)_{\sharp} \tilde{\mu}_{0} .
$$

Thank you for your attention!

Slides for more details about the presentation

Almost sure existence result

Theorem 2 [Z. Ammari, M. Falconi and F. Hiroshima, 2022]

In a separable Hilbert space \mathcal{H}, consider the initial value problem (IPFE) with a vector field $v: \mathbb{R} \times \mathcal{H} \rightarrow \mathcal{H}$ continuous and bounded on bounded sets. Let $I \ni 0$ be a bounded open interval and assume
(i) $\exists t \in \mathbb{R} \rightarrow \mu_{t} \in \mathcal{P}(\mathcal{H})$ a weakly narrowly continuous solution to (L) satisfying

$$
\begin{equation*}
\int_{I} \int_{\mathcal{H}}\|v(t, u)\|_{\mathcal{H}} d \mu_{t}(u) d t<+\infty . \tag{Int}
\end{equation*}
$$

(ii) Uniqueness of the solutions to (IPFE) over any I.

Then for μ_{0}-almost all initial conditions x in \mathcal{H}, there exists a (unique) global strong solution (i.e. $u(\cdot) \in \mathcal{C}^{1}(\mathbb{R}, \mathcal{H})$) to (IPFE). Moreover, the set

$$
\mathfrak{G}:=\{x \in \mathcal{H}: \exists u(\cdot) \text { a global strong solution of (IPFE) with } u(0)=x\}
$$

is Borel subset of \mathcal{H} with $\mu_{0}(\mathfrak{G})=1$ and for any time $t \in \mathbb{R}$ the map

$$
\begin{aligned}
\Phi_{t}: \mathfrak{G} & \longrightarrow \mathfrak{G}^{\prime} \\
x & \longmapsto \Phi_{t}(x)=u(t) .
\end{aligned}
$$

is Borel measurable.

Existence of unique global solutions

- Apply Theorem 2 with the following choices:
$-\mu_{t} \equiv \tilde{\mu}_{t} ;$
- $\mathcal{H} \equiv X^{\sigma}$.
\Rightarrow Almost sure existence of unique global solutions for (IPFE) with a generalized global flow $\tilde{\Phi}_{t}$.
- We have this equivalence : (PFE) $\underset{\Phi_{t}^{f}}{\stackrel{\Phi^{f}-t}{\rightleftharpoons}}$
\Rightarrow Almost sure existence of unique global solutions to (PFE) with a generalized global flow

$$
\Phi_{t}=\Phi_{t}^{f} \circ \tilde{\Phi}_{t}
$$

- To get rid of almost sureness, we select a special choice of family of density matrices which is coherent states centered at initial data.

Probabilistic representation

The crucial tool that was used for constructing the above generalized global flow for (IPFE) is the following :

Probabilistic representation

There exists $\eta \in \mathscr{P}\left(X^{\sigma} \times \mathcal{C}\left(\bar{I}, X^{\sigma}\right)\right)$ satisfying :
(i) $\eta\left(\mathcal{F}_{l}\right)=1$ where

$$
\mathcal{F}_{1}:=\left\{\left(u_{0}, u(\cdot)\right) \in X^{\sigma} \times \mathcal{C}\left(\bar{l}, X^{\sigma}\right): u(\cdot) \text { satisfies (IPFE) on } / \text { with } u_{0}\right\}
$$

(ii) $\tilde{\mu}_{t}=\left(e_{t}\right)_{\sharp} \eta, \quad \forall t \in I$, where the map

$$
\begin{aligned}
e_{t}: X^{\sigma} \times \mathcal{C}\left(\bar{l}, X^{\sigma}\right) & \longrightarrow X^{\sigma} \\
\left(u_{0}, u(\cdot)\right) & \longmapsto e_{t}\left(u_{0}, u(\cdot)\right)=u(t)
\end{aligned}
$$

is the evaluation map.
Generalization : Z. Ammari, S. Farhat and V. Sohinger "Almost sure existence of global solutions for general initial value problems."

Global well-posedness of the particle-field equation

- Let $u_{0}=\left(z_{0}, \alpha_{0}\right) \in X^{\sigma}$ and consider the coherent vectors repectively in the particle and Fock spaces

$$
W_{1}\left(\frac{\sqrt{2}}{i \hbar} z_{0}\right) \psi, \quad W_{2}\left(\frac{\sqrt{2}}{i \hbar} \alpha_{0}\right) \Omega
$$

- $\psi(x)=(\pi \hbar)^{-d n / 4} e^{-x^{2} / 2 \hbar} \in L^{2}\left(\mathbb{R}^{d n}, d x\right)$ is the normalized gaussian function on the particles.
- Ω is the vacuum vector on the Fock space.

Then, the following projection

$$
\mathcal{C}_{\hbar}\left(u_{0}\right)=\left|W_{1}\left(\frac{\sqrt{2}}{i \hbar} z_{0}\right) \psi \otimes W_{2}\left(\frac{\sqrt{2}}{i \hbar} \alpha_{0}\right) \Omega\right\rangle\left\langle W_{1}\left(\frac{\sqrt{2}}{i \hbar} z_{0}\right) \psi \otimes W_{2}\left(\frac{\sqrt{2}}{i \hbar} \alpha_{0}\right) \Omega\right|
$$

gives rise to a family of coherent states.

- We have

$$
\mathcal{M}\left(\mathcal{C}_{\hbar}\left(u_{0}\right), \hbar \in(0,1)\right)=\left\{\delta_{u_{0}}\right\}: \text { Dirac measure centered on } u_{0}
$$

- Since $u_{0} \in X^{\sigma}$, this implies

$$
\left(\mathcal{C}_{\hbar}\left(u_{0}\right)\right)_{\hbar} \text { satisfies }\left(Q_{0}\right) \text { and }\left(Q_{1}\right) .
$$

Let $u_{0} \in X^{\sigma}$ and let $\varrho_{\hbar}=\mathcal{C}_{\hbar}\left(u_{0}\right)$.

- Apply Theorem A with the measure $\tilde{\mu}_{t}$ to get the

GWP of (IPFE) $\tilde{\mu}_{0}$-almost all initial data in X^{σ}
with a generalized global flow $\tilde{\Phi}_{t}$.

- We have also

$$
\tilde{\mu}_{0}(\mathfrak{G})=\delta_{u_{0}}(\mathfrak{G})=1
$$

This implies $u_{0} \in \mathfrak{G}$.

- GWP of (PFE) with a generalized global flow

$$
\Phi_{t}\left(u_{0}\right)=\Phi_{t}^{f} \circ \tilde{\Phi}_{t}\left(u_{0}\right)
$$

The classical limit : Validity of Bohr's correspondance

Goal

To prove the second property : $\mu_{t}=\left(\Phi_{t}\right)_{\sharp} \mu_{0}, \Phi_{t}=\Phi_{t}^{f} \circ \tilde{\Phi}_{t}$.
We have, by probabilistic representation, that

$$
\tilde{\mu}_{t}=\left(\tilde{\Phi}_{t}\right)_{\sharp} \tilde{\mu}_{0} .
$$

The important tool to do that is the following link:

$$
\mathcal{M}\left(\varrho_{\hbar}(t), \hbar \in(0,1)\right)=\left\{\left(\Phi_{t}^{f}\right)_{\sharp} \tilde{\mu}_{t}, \tilde{\mu}_{t}\right\} \in \underset{=\left\{\tilde{\mu}_{t}\right\}}{\left.\mathcal{M}\left(\tilde{\varrho}_{\hbar}(t), \underset{=}{, ~} \in(0,1)\right)\right\}}
$$

This implies using the two boxes:

$$
\begin{aligned}
\mu_{t} & =\left(\Phi_{t}^{f}\right)_{\sharp} \tilde{\mu}_{t}=\left(\Phi_{t}^{f} \circ \tilde{\Phi}_{t}\right)_{\sharp} \tilde{\mu}_{0} \\
& =\left(\Phi_{t}\right)_{\sharp} \tilde{\mu}_{0}=\left(\Phi_{t}\right)_{\sharp} \mu_{0}
\end{aligned}
$$

and where we have used $\tilde{\mu}_{0}=\mu_{0}$ as a consequence of

$$
\tilde{\varrho}_{\hbar}(0)=\varrho_{\hbar}(0)=\varrho_{\hbar} .
$$

Globally defined quantum dynamical system

The last part of the Duhamel formula is well-defined :

$$
\begin{aligned}
& \operatorname{Tr}\left(\frac{1}{\hbar}\left[\mathcal{W}(\xi), \hat{H}_{k}(s)\right] \tilde{\varrho}_{\hbar}(s)\right) \\
& =\operatorname{Tr}[\underbrace{S^{-1} B_{0}(s, \hbar, \xi) S^{-1}}_{\in \mathcal{L}(\mathcal{H})} \underbrace{S \mathcal{W}(\xi) S^{-1}}_{\in \mathcal{L}(\mathcal{H})} \underbrace{S \tilde{\rho}_{\hbar}(s) S}_{\in \mathcal{L}^{1}(\mathcal{H})}] \\
& +\hbar \operatorname{Tr}[\underbrace{S^{-1} B_{1}(\hbar, s, \xi) S^{-1}}_{\in \mathcal{L}(\mathcal{H})} \underbrace{S \mathcal{W}(\xi) S^{-1}}_{\in \mathcal{L}(\mathcal{H})} \underbrace{S \tilde{\rho}_{\hbar}(s) S}_{\in \mathcal{L}^{1}(\mathcal{H})}]
\end{aligned}
$$

\rightarrow The second term in the last two lines is a consequence of Weyl -Heisenberg operator estimates;
\rightarrow The last term is a consequence of $\operatorname{Assumption}\left(Q_{0}\right)$ and $\left(Q_{1}\right)$ together with equivalence between \hat{H} and \hat{H}_{0}.
The next step is to pass to the limit in the Duhamel formula as \hbar tends to zero. So that, we prove that there exists a subsequence $\left(\hbar_{\ell}\right)_{\ell \in \mathbb{N}}$ such that

$$
\mathcal{M}\left(\tilde{\varrho}_{\hbar_{\ell}}(t), \ell \in \mathbb{N}\right)=\{\text { Singelton }\}
$$

A single Wigner measure for all times

Proposition. (Wigner measure for all times)

Let $\left(\varrho_{\hbar}\right)_{\hbar}$ be a family of density matrices satisfying $\left(Q_{0}\right)$ and $\left(Q_{1}\right)$. Then, for any sequence $\left(\hbar_{n}\right)_{n \in \mathbb{N}}$ such that $\hbar_{n} \underset{n \rightarrow \infty}{ } 0$, we can extract a subsequence $\left(\hbar_{\ell}\right)_{\ell \in \mathbb{N}}$ such that $\hbar_{\ell} \underset{\ell \rightarrow \infty}{\longrightarrow} 0$ and a family of Borel probability measures $\left(\tilde{\mu}_{t}\right)_{t \in \mathbb{R}}$ such that for all $t \in \mathbb{R}$,

$$
\mathcal{M}\left(\tilde{\varrho}_{\hbar_{\ell}}(t) ; \ell \in \mathbb{N}\right)=\left\{\tilde{\mu}_{t}\right\} .
$$

Moreover, for any compact interval, there exists $C>0$ such that for $t \in J$:

$$
\int_{X^{0}}\|u\|_{X^{\sigma}}^{2} d \tilde{\mu}_{t}(u) \leq C .
$$

- To prove the above proposition, we have to use the following result [Z. Ammari, F. Nier (2008)]

Let $\left(\varrho_{\hbar}\right)_{\hbar \in(0,1)}$ satisfies : $\exists C>0, \forall \hbar \in(0,1), \operatorname{Tr}\left[\varrho_{\hbar}\left(\hat{p}^{2}+\hat{q}^{2}+\hat{N}_{\hbar}\right)\right]<C$. Then : $\forall \hbar_{n} \underset{n \rightarrow \infty}{\longrightarrow} 0, \exists \hbar_{\ell} \underset{\ell \rightarrow \infty}{\longrightarrow} 0 ; \mathcal{M}\left(\varrho_{\hbar_{\ell}}, \ell \in \mathbb{N}\right)=\{\mu\}$.

Sketch of the proof :

Recall that

$$
\begin{align*}
& \exists C_{0}>0, \quad \forall \hbar \in(0,1), \quad \operatorname{Tr}\left[\varrho_{\hbar} d \Gamma\left(\omega^{2 \sigma}\right)\right] \leq C_{0}, \tag{0}\\
& \exists C_{1}>0, \quad \forall \hbar \in(0,1), \quad \operatorname{Tr}\left[\varrho_{\hbar}\left(\hat{q}^{2}+\hat{p}^{2}\right)\right] \leq C_{1} . \tag{1}
\end{align*}
$$

- Let $\left(\varrho_{\hbar}\right)_{\hbar \in(0,1)}$ satisfies $\left(Q_{0}\right)$ and $\left(Q_{1}\right)$. Then, the family of states

$$
\left(\tilde{\varrho}_{h}(t)\right)_{\hbar \in(0,1)}
$$

satisfy $\left(Q_{0}\right)$ and $\left(Q_{1}\right)$ uniformly for any $t \in \mathbb{R}$ in every arbitrary compact time interval.

Indeed, we have the following inequalities with some $C_{1}, C_{2}, C_{3}>0$

- $\operatorname{Tr}\left[\tilde{\varrho}_{\hbar}(t) d \Gamma\left(\omega^{2 \sigma}\right)\right] \leq C_{1} \operatorname{Tr}\left[\varrho_{\hbar}\left(d \Gamma\left(\omega^{2 \sigma}\right)+1\right)\right] e^{C_{2}|t|} \leq C_{3}$.
- $\operatorname{Tr}\left[\tilde{\varrho}_{\hbar}(t)\left(\hat{p}^{2}+\hat{q}^{2}\right)\right] \leq C_{1} \operatorname{Tr}\left[\varrho_{\hbar}\left(\hat{H}_{0}+\hat{p}^{2}+\hat{q}^{2}+1\right)\right] e^{C_{2}|t|} \leq C_{3}$,
- For each fixed $t_{0} \in \mathbb{R}$:

$$
\mathcal{M}\left(\tilde{\varrho}_{\hbar_{\ell}}\left(t_{0}\right) ; \ell \in \mathbb{N}\right)=\left\{\tilde{\mu}_{t_{0}}\right\}, \quad \int_{X^{0}} \underbrace{\|u\|_{X^{\sigma}}^{2}}_{=p^{2}+q^{2}+\|\alpha\|_{\mathcal{G}^{\sigma}}^{2}} d \tilde{\mu}_{t_{0}}(u) \leq C .
$$

For all $\mu \in \mathcal{M}\left(\varrho_{\hbar}, \hbar \in(0,1)\right)$, we have the implications below

- $\operatorname{Tr}\left[\varrho_{\hbar}\left(\hat{p}^{2}+\hat{q}^{2}\right)\right] \leq C \Rightarrow \quad \int_{X^{0}}\left(p^{2}+q^{2}\right) d \mu(u) \leq C ;$
- $\operatorname{Tr}\left[\varrho_{\hbar} \hat{N}_{\hbar}\right] \leq C \Rightarrow \quad \int_{X^{0}}\|\alpha\|_{L^{2}}^{2} d \mu(u) \leq C ;$
- $\operatorname{Tr}\left[\varrho_{\hbar} d \Gamma\left(\omega^{2 \sigma}\right)\right] \leq C \Rightarrow \quad \int_{X^{0}}\|\alpha\|_{\mathcal{G}^{\sigma}}^{2} d \mu(u) \leq C$.
- We use the above localization estimates, the diagonal extraction method and the prokhorov's theorem to prove for all times.

Convergence of the interacting terms

Let $\varphi(k):=2 \pi i k . q_{0 j} F_{j}(k)$, we have for $u=(p, q, \alpha) \in X^{0}$

$$
\begin{aligned}
& \left|\operatorname{Tr}\left[a_{\hbar_{\ell}}^{*}\left(e^{-2 \pi i k \cdot \hat{q}_{j}} \tilde{F}_{j}\left(\hbar_{\ell}, k\right)\right) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)\right]-\int_{X^{0}}\left\langle\alpha, e^{-2 \pi i k \cdot q_{j}} \varphi(.)\right\rangle e^{Q(\xi, u)} d \tilde{\mu}_{s}(u)\right| \\
& +\left|\operatorname{Tr}\left[a_{\hbar_{\ell}}^{*}\left(e^{-2 \pi i k \cdot \hat{q}_{j}} \varphi(.)\right) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)\right]-\int_{X^{0}}\left\langle\alpha, e^{-2 \pi i k \cdot q_{j}} \varphi(.)\right\rangle e^{Q(\xi, u)} d \tilde{\mu}_{s}(u)\right| \cdots(2) \rightarrow 0
\end{aligned}
$$

- (1) goes to zero as $\ell \rightarrow \infty$ by lebesgue dominated convergence theorem.
- (2) goes to zero as $\ell \rightarrow \infty$ by exploiting the following convergence for all $\varphi \in L^{2}\left(\mathbb{R}_{k}^{d}\right)$:
$\lim _{\ell \rightarrow \infty} \operatorname{Tr}\left[a_{\hbar_{\ell}}\left(e^{-2 \pi i k \cdot \hat{a}_{j}} \varphi\right) \mathcal{W}(\xi) \varrho_{\hbar_{\ell}}\right]=\int_{X^{0}}\left\langle e^{-2 \pi i k \cdot q_{j}} \varphi, \alpha\right\rangle_{L^{2}\left(\mathbb{R}_{k}^{d}\right)} e^{Q(\xi, u)} d \mu(u)$
$\lim _{\ell \rightarrow \infty} \operatorname{Tr}\left[a_{\hbar_{\ell}}^{*}\left(e^{-2 \pi i k \cdot \hat{q}_{j}} \varphi\right) \mathcal{W}(\xi) \varrho_{\hbar_{\ell}}\right]=\int_{X^{0}}\left\langle\alpha, e^{-2 \pi i k \cdot q_{j}} \varphi\right\rangle_{L^{2}\left(\mathbb{R}_{k}^{d}\right)} e^{Q(\xi, u)} d \mu(u)$

Equivalence between characteristic and Liouville equation

$$
\mathcal{M}\left(\tilde{\varrho}_{\hbar_{\ell}}(t), \ell \in \mathbb{N}\right)=\left\{\tilde{\mu}_{t}\right\}
$$

Lemma [Regular properties of the Wigner Measure $\tilde{\mu}_{t}$]

The Wigner measures $\left(\tilde{\mu}_{t}\right)_{t \in \mathbb{R}}$ extracted in above arguments satisfy
(i) $\tilde{\mu}_{t}\left(X^{\sigma}\right)=1$ i.e. $\tilde{\mu}_{t}$ concentrates on X^{σ}.
(ii) $\mathbb{R} \ni t \longmapsto \tilde{\mu}_{t} \in \mathcal{P}\left(X^{\sigma}\right)$ is weakly narrowly continuous.

Lemma [Continuity, integrability and boundedness]

Assume $\left(C_{0}\right)$ and $\left(C_{1}\right)$ are satisfied.
Then, the vector field $v: \mathbb{R} \times X^{\sigma} \longrightarrow X^{\sigma}$ is continuous and bounded on bounded subsets of $\mathbb{R} \times X^{\sigma}$. Moreover, for any bounded open interval I,

$$
\begin{equation*}
\int_{I} \int_{X^{\sigma}}\|v(t, u)\|_{X^{\sigma}} d \tilde{\mu}_{t}(u) d t<+\infty \tag{Int}
\end{equation*}
$$

Equivalence between Liouville equation and Characteristic equation

$\left\{\tilde{\mu}_{t}\right\}_{t \in I}$ solves the Liouville equation $(\mathrm{L}) \Leftrightarrow\left\{\tilde{\mu}_{t}\right\}_{t \in I}$ solves the characteristic equation (C).

[^0]: - Denote by $\mathcal{M}\left(\varrho_{\hbar}, \hbar \in \mathcal{E}\right)$ the set of all Wigner measures of $\left(\varrho_{\hbar}\right)_{\hbar \in \mathcal{E}}$
 $\rightarrow \mathcal{M}\left(\varrho_{\hbar}, \hbar \in \mathcal{E}\right) \neq \phi$ if some assumptions on $\left(\varrho_{\hbar}\right)_{\hbar}$ are imposed
 \Rightarrow In our approach, we need to prove $\mathcal{M}(\varrho \hbar, \hbar \in \mathcal{E})=$ Singletonkupto extraction
 of subsequence?

