Quantum-classical motion of charged particles in interaction with scalar fields

Shahnaz Farhat

Constructor University Campus Ring 1, 28759 Bremen, Germany

16th conference of the GDR DynQua "Quantum Dynamics"

CY Cergy Paris Université

1er février 2024

Bohr's correspondence principle :

 $\begin{array}{c} \textit{Quantum dynamic} \xrightarrow[\hbar \rightarrow 0]{} \textit{Classical dynamic} \\ \textit{Nelson model} \end{array} \xrightarrow[h \rightarrow 0]{} \textit{Classical dynamic} \\ \textit{Particle-field equation} \end{array}$

We study the transition by Wigner measure approach.

Bohr's correspondence principle :

 $\begin{array}{c} \textit{Quantum dynamic} \xrightarrow[\hbar \rightarrow 0]{} \textit{Classical dynamic} \\ \textit{Nelson model} \end{array} \xrightarrow[h \rightarrow 0]{} \textit{Classical dynamic} \\ \textit{Particle-field equation} \end{array}$

We study the transition by Wigner measure approach.

To exhibit the global well-posedness for the particle-field equation.

Consider *n* fixed particles in \mathbb{R}^d with $d \in \mathbb{N}^*$, interacting with scalar meson field. The particle-field system reads for all $j \in \{1, \dots, n\}$

$$\partial_{t}p_{j} = -\nabla_{q_{j}}V(q) - \int_{\mathbb{R}^{d}} 2\pi ik \frac{\chi(k)}{\sqrt{\omega(k)}} \left[\alpha(k)e^{2\pi ik \cdot q_{j}} - \overline{\alpha(k)}e^{-2\pi ik \cdot q_{j}}\right] dk ;$$

$$\partial_{t}q_{j} = \nabla f_{j}(p_{j}) ; \qquad (PFE)$$

$$i\partial_{t}\alpha = \omega(k) \alpha(k) + \sum_{j=1}^{n} \frac{\chi(k)}{\sqrt{\omega(k)}}e^{-2\pi ik \cdot q_{j}}$$

- \triangleright q_j , p_j are positions-momenta and M_j are the masses.
- $\alpha : \mathbb{R}^d \to \mathbb{C}$ describes the field, $\chi : \mathbb{R}^d \to \mathbb{R}$ is the form factor.
- $V : \mathbb{R}^{dn} \to \mathbb{R}$ is the potential.

$$f_j(p_j) = \begin{cases} \sqrt{p_j^2 + M_j^2} & \text{(relativistic)} \\ p_j^2/2M_j & \text{(non-relativistic)} \end{cases}$$

• $\omega(k) = \sqrt{k^2 + m_f^2} \ge m_f > 0$ is the dispersion relation;

Consider *n* fixed particles in \mathbb{R}^d with $d \in \mathbb{N}^*$, interacting with scalar meson field. The particle-field system reads for all $j \in \{1, \dots, n\}$

$$\partial_{t}p_{j} = -\nabla_{q_{j}}V(q) - \int_{\mathbb{R}^{d}} 2\pi i k \frac{\chi(k)}{\sqrt{\omega(k)}} \left[\alpha(k)e^{2\pi i k \cdot q_{j}} - \overline{\alpha(k)}e^{-2\pi i k \cdot q_{j}}\right] dk ;$$

$$\partial_{t}q_{j} = \nabla f_{j}(p_{j}) ; \qquad (PFE)$$

$$i\partial_{t}\alpha = \omega(k) \alpha(k) + \sum_{j=1}^{n} \frac{\chi(k)}{\sqrt{\omega(k)}}e^{-2\pi i k \cdot q_{j}}$$

- \triangleright q_j , p_j are positions-momenta and M_j are the masses.
- ▶ $\alpha : \mathbb{R}^d \to \mathbb{C}$ describes the field, $\chi : \mathbb{R}^d \to \mathbb{R}$ is the form factor.
- ▶ $V : \mathbb{R}^{dn} \to \mathbb{R}$ is the potential.

$$f_j(p_j) = \begin{cases} \sqrt{p_j^2 + M_j^2} & \text{(relativistic)} \\ p_j^2/2M_j & \text{(non-relativistic)} \end{cases}$$

• $\omega(k) = \sqrt{k^2 + m_f^2} \ge m_f > 0$ is the dispersion relation;

References

• χ is compactly supported :

[1] A. Komech, H. Kunze, and M. Spohn. Effective Dynamics for a Mechanical Particle Coupled to a Wave Field, 1999.

[3] A. Komech, H. Spohn, and M. Kunze. Long-time asymptotics for a classical particle interacting with a scalar wave field, 1997.

• Low restrictions on χ :

[4] Z. Ammari, M. Falconi, and F. Hiroshima. Towards a derivation of classical electrodynamics of charges and fields from qed. 2022.

References

• χ is compactly supported :

[1] A. Komech, H. Kunze, and M. Spohn. Effective Dynamics for a Mechanical Particle Coupled to a Wave Field, 1999.

[3] A. Komech, H. Spohn, and M. Kunze. Long-time asymptotics for a classical particle interacting with a scalar wave field, 1997.

• Low restrictions on χ :

[4] Z. Ammari, M. Falconi, and F. Hiroshima. Towards a derivation of classical electrodynamics of charges and fields from qed. 2022.

Consider *n* fixed particles in \mathbb{R}^d with $d \in \mathbb{N}^*$, interacting with scalar meson field. The particle-field system reads for all $j \in \{1, \dots, n\}$

$$\partial_{t}p_{j} = -\nabla_{q_{j}}V(q) - \int_{\mathbb{R}^{d}} 2\pi ik \frac{\chi(k)}{\sqrt{\omega(k)}} \left[\alpha(k)e^{2\pi ik \cdot q_{j}} - \overline{\alpha(k)}e^{-2\pi ik \cdot q_{j}}\right] dk ;$$

$$\partial_{t}q_{j} = \nabla f_{j}(p_{j}) ; \qquad (PFE)$$

$$i\partial_{t}\alpha = \omega(k) \ \alpha(k) + \sum_{j=1}^{n} \frac{\chi(k)}{\sqrt{\omega(k)}}e^{-2\pi ik \cdot q_{j}}$$

- \triangleright q_i , p_i are positions-momenta and M_i are the masses.
- $V : \mathbb{R}^{dn} \to \mathbb{R}$ is the potential.

The associated Hamiltonian is defined as follows

$$H(p,q,\alpha) = \sum_{j=1}^{n} f_{j}(p_{j}) + V(q_{1},\cdots,q_{n}) + \int_{\mathbb{R}^{d}} \overline{\alpha(k)} \,\omega(k) \,\alpha(k) \,dk$$
$$+ \sum_{j=1}^{n} \int_{\mathbb{R}^{d}} \frac{\chi(k)}{\sqrt{\omega(k)}} \left[\alpha(k) e^{2\pi i k \cdot q_{j}} + \overline{\alpha(k)} e^{-2\pi i k \cdot q_{j}}\right] dk.$$

The solution $u = (p, q, \alpha)$ belongs to the classical phase-space :

$$X^{\sigma} := \mathbb{R}_{\rho}^{dn} \times \mathbb{R}_{q}^{dn} \times \mathcal{G}^{\sigma},$$

where \mathcal{G}^{σ} is the weighted L^2 Lebesgue space endowed with the norm :

$$\|\alpha\|_{\mathcal{G}^{\sigma}}^{2} = \langle \alpha, \omega(\cdot)^{2\sigma} \alpha \rangle_{L^{2}} = \|\omega^{\sigma} \alpha\|_{L^{2}}^{2}$$

The associated Hamiltonian is defined as follows

$$H(p,q,\alpha) = \sum_{j=1}^{n} f_j(p_j) + V(q_1,\cdots,q_n) + \underbrace{\int_{\mathbb{R}^d} \overline{\alpha(k)} \,\omega(k) \,\alpha(k) \,dk}_{= \|\alpha\|_{\mathcal{G}^{1/2}}^2} + \sum_{j=1}^{n} \int_{\mathbb{R}^d} \frac{\chi(k)}{\sqrt{\omega(k)}} [\alpha(k)e^{2\pi ik \cdot q_j} + \overline{\alpha(k)}e^{-2\pi ik \cdot q_j}] \,dk.$$

The solution $u = (p, q, \alpha)$ belongs to the classical phase-space :

$$X^{\sigma} := \mathbb{R}_{\rho}^{dn} \times \mathbb{R}_{q}^{dn} \times \mathcal{G}^{\sigma},$$

where \mathcal{G}^{σ} is the weighted L^2 lebesgue space endowed with the norm :

$$\|\alpha\|_{\mathcal{G}^{\sigma}}^{2} = \langle \alpha, \omega(\cdot)^{2\sigma} \alpha \rangle_{L^{2}} = \|\omega^{\sigma} \alpha\|_{L^{2}}^{2}$$

The energy space is $X^{1/2}$. We will give our main results in the space X^{σ} with $\sigma \in [\frac{1}{2}, 1]$.

The Quantum system

The Quantum system : Nelson Hamiltonian

The Nelson Hamiltonian is defined as follows

$$\hat{H} = \sum_{j=1}^n f_j(\hat{p}_j) + V(\hat{q}) + d\Gamma(\omega) + \sum_{j=1}^n (a_{\hbar} + a_{\hbar}^*)(rac{\chi}{\sqrt{\omega}} \ e^{-2\pi k\cdot \hat{q}_j}).$$

The Hilbert space of the quantized particle-field system is

$$\mathcal{H} := L^2(\mathbb{R}^{dn}_x, \mathbb{C}) \otimes \Gamma_s(L^2(\mathbb{R}^d_k, \mathbb{C})),$$

where Γ_s is the symmetric Fock space

$$\Gamma_{s}(L^{2}(\mathbb{R}^{d}_{k},\mathbb{C})):=\bigoplus_{m=0}^{+\infty}L^{2}(\mathbb{R}^{d},\mathbb{C})^{\bigotimes_{s}m}\simeq\bigoplus_{m=0}^{+\infty}L^{2}_{s}(\mathbb{R}^{dm},\mathbb{C}).$$

We denote by $\mathcal{F}^m := L^2_s(\mathbb{R}^{dm}, \mathbb{C})$ the symmetric L^2 space over \mathbb{R}^{dm}

Remark : \hat{H} is a self adjoint operator.

- $\hat{p}_j = -i\hbar \nabla_{x_j}$ is the momentum operator;
- $\hat{q}_j = x_j$ is the position operator;
- ▶ $d\Gamma(\omega)$: $\mathcal{H} \to \mathcal{H}$ is the free field Hamiltonian

$$d\Gamma(\omega)\mid_{\mathcal{F}^m} = \hbar \sum_{j=1}^m \omega(k_j);$$

► a_ħ and a^{*}_ħ are the generalized ħ scaled annihilation-creation operators are defined as follows :

or every
$$\psi = \{\psi^m\}_{m\geq 0} \in \mathcal{H} \text{ and } F(k) := \sum_{j=1}^n \frac{\chi(k)}{\sqrt{\omega(k)}} e^{-2\pi i k \cdot \hat{q}_j}$$

$$[a_\hbar(F)\psi(x)]^m(K_m) = \sqrt{\hbar(m+1)} \int_{\mathbb{R}^d} \overline{F(k)} \psi^{m+1}(x; K_m, k) \, dk;$$

$$[a_\hbar^*(F)\psi(x)]^m(K_m) = \frac{\sqrt{\hbar}}{\sqrt{m}} \sum_{j=1}^m F(k_j) \psi^{m-1}(x; k_1, \cdot, \hat{k}_j, \cdot, k_m)!$$

- $\hat{p}_j = -i\hbar \nabla_{x_j}$ is the momentum operator;
- $\hat{q}_j = x_j$ is the position operator;
- $d\Gamma(\omega) : \mathcal{H} \to \mathcal{H}$ is the free field Hamiltonian

$$d\Gamma(\omega) \mid_{\mathcal{F}^m} = \hbar \sum_{j=1}^m \omega(k_j);$$

a_ħ and a^{*}_ħ are the generalized ħ scaled annihilation-creation operators are defined as follows :

For every
$$\psi = \{\psi^m\}_{m\geq 0} \in \mathcal{H} \text{ and } F(k) := \sum_{j=1}^n \frac{\chi(k)}{\sqrt{\omega(k)}} e^{-2\pi i k \cdot \hat{q}_j}$$

$$[a_\hbar(F)\psi(x)]^m(K_m) = \sqrt{\hbar(m+1)} \int_{\mathbb{R}^d} \overline{F(k)} \psi^{m+1}(x; K_m, k) \, dk;$$

$$[a_\hbar^*(F)\psi(x)]^m(K_m) = \frac{\sqrt{\hbar}}{\sqrt{m}} \sum_{j=1}^m F(k_j) \psi^{m-1}(x; k_1, \cdot, \hat{k}_j, \cdot, k_m)!$$

- $\hat{p}_j = -i\hbar \nabla_{x_j}$ is the momentum operator;
- $\hat{q}_j = x_j$ is the position operator;
- $d\Gamma(\omega) : \mathcal{H} \to \mathcal{H}$ is the free field Hamiltonian

$$d\Gamma(\omega) \mid_{\mathcal{F}^m} = \hbar \sum_{j=1}^m \omega(k_j);$$

a_ħ and a^{*}_ħ are the generalized ħ scaled annihilation-creation operators are defined as follows :

For every
$$\psi = \{\psi^m\}_{m\geq 0} \in \mathcal{H} \text{ and } F(k) := \sum_{j=1}^n \frac{\chi(k)}{\sqrt{\omega(k)}} e^{-2\pi i k \cdot \hat{q}_j}$$

$$[a_\hbar(F)\psi(x)]^m(K_m) = \sqrt{\hbar(m+1)} \int_{\mathbb{R}^d} \overline{F(k)} \psi^{m+1}(x; K_m, k) \, dk;$$

$$[a_\hbar^*(F)\psi(x)]^m(K_m) = \frac{\sqrt{\hbar}}{\sqrt{m}} \sum_{j=1}^m F(k_j) \psi^{m-1}(x; k_1, \cdot, \hat{k}_j, \cdot, k_m)!$$

- $\hat{p}_j = -i\hbar \nabla_{x_j}$ is the momentum operator;
- $\hat{q}_j = x_j$ is the position operator;
- ▶ $d\Gamma(\omega)$: $\mathcal{H} \to \mathcal{H}$ is the free field Hamiltonian

$$d\Gamma(\omega)|_{\mathcal{F}^m} = \hbar \sum_{j=1}^m \omega(k_j);$$

► a_ħ and a^{*}_ħ are the generalized ħ scaled annihilation-creation operators are defined as follows :

for every
$$\psi = \{\psi^m\}_{m\geq 0} \in \mathcal{H} \text{ and } F(k) := \sum_{j=1}^n \frac{\chi(k)}{\sqrt{\omega(k)}} e^{-2\pi i k \cdot \hat{q}_j}$$

$$[a_\hbar(F)\psi(x)]^m(K_m) = \sqrt{\hbar(m+1)} \int_{\mathbb{R}^d} \overline{F(k)} \psi^{m+1}(x; K_m, k) dk;$$

$$[a_\hbar^*(F)\psi(x)]^m(K_m) = \frac{\sqrt{\hbar}}{\sqrt{m}} \sum_{j=1}^m F(k_j) \psi^{m-1}(x; k_1, \cdot, \hat{k}_j, \cdot, k_m).$$

Assumptions and main results

• On V and χ :

$$V \in \mathcal{C}_{b}^{2}(\mathbb{R}^{dn};\mathbb{R})$$

$$\omega(\cdot)^{\frac{3}{2}-\sigma}\chi(\cdot) \in L^{2}(\mathbb{R}^{d};\mathbb{R}),$$

$$\sigma \in [\frac{1}{2}, 1].$$

$$(C_{1})$$

• Let $(\varrho_{\hbar})_{\hbar \in (0,1)}$ be a family of density matrices on \mathcal{H} of the particle-field quantum system. We assume that :

$$\begin{split} \exists C_0 > 0, \ \forall \hbar \in (0, 1), \quad & \operatorname{Tr}[\varrho_\hbar \ d\Gamma(\omega^{2\sigma})] \le C_0, \\ \exists C_1 > 0, \ \forall \hbar \in (0, 1), \quad & \operatorname{Tr}[\varrho_\hbar \ (\hat{q}^2 + \hat{\rho}^2)] \le C_1. \end{split} \tag{Q}_1$$

Question : Propagation of estimates (Q_0) and (Q_1) uniformly in times?

Shahnaz Farhat Constructor university

• On *V* and χ :

$$V \in \mathcal{C}_{b}^{2}(\mathbb{R}^{dn};\mathbb{R})$$

$$\omega(\cdot)^{\frac{3}{2}-\sigma}\chi(\cdot) \in L^{2}(\mathbb{R}^{d};\mathbb{R}),$$

$$\sigma \in [\frac{1}{2}, 1].$$

$$(C_{1})$$

• Let $(\varrho_{\hbar})_{\hbar \in (0,1)}$ be a family of density matrices on \mathcal{H} of the particle-field quantum system. We assume that :

$$\begin{split} \exists C_0 > 0, \ \forall \hbar \in (0, 1), \quad & \operatorname{Tr}[\varrho_\hbar \ d\Gamma(\omega^{2\sigma})] \le C_0, \\ \exists C_1 > 0, \ \forall \hbar \in (0, 1), \quad & \operatorname{Tr}[\varrho_\hbar \ (\hat{q}^2 + \hat{\rho}^2)] \le C_1. \end{split} \tag{Q}_1$$

Question : Propagation of estimates (Q_0) and (Q_1) uniformly in times?

• On *V* and χ :

$$V \in C_b^2(\mathbb{R}^{dn}; \mathbb{R})$$

$$\omega(\cdot)^{\frac{3}{2}-\sigma} \chi(\cdot) \in L^2(\mathbb{R}^d; \mathbb{R}),$$

$$\sigma \in [\frac{1}{2}, 1].$$

$$(C_0)$$

• Let $(\varrho_{\hbar})_{\hbar \in (0,1)}$ be a family of density matrices on \mathcal{H} of the particle-field quantum system. We assume that :

$$\begin{split} \exists C_0 > 0, \ \forall \hbar \in (0, 1), \quad & \operatorname{Tr}[\varrho_\hbar \ d\Gamma(\omega^{2\sigma})] \le C_0, \\ \exists C_1 > 0, \ \forall \hbar \in (0, 1), \quad & \operatorname{Tr}[\varrho_\hbar \ (\hat{q}^2 + \hat{\rho}^2)] \le C_1. \end{split} \tag{Q}_1$$

Question : Propagation of estimates (Q_0) and (Q_1) uniformly in times?

• On *V* and χ :

$$V \in C_b^2(\mathbb{R}^{dn}; \mathbb{R})$$

$$\omega(\cdot)^{\frac{3}{2}-\sigma}\chi(\cdot) \in L^2(\mathbb{R}^d; \mathbb{R}),$$

$$\sigma \in [\frac{1}{2}, 1].$$

$$(C_0)$$

• Let $(\varrho_\hbar)_{\hbar\in(0,1)}$ be a family of density matrices on $\mathcal H$ of the particle-field quantum system. We assume that :

$$\exists C_0 > 0, \ \forall \hbar \in (0,1), \quad \operatorname{Tr}[\varrho_{\hbar} \ d\Gamma(\omega^{2\sigma})] \leq C_0, \tag{Q}_0$$

$$\exists \textit{C}_1 > 0, \ \forall \hbar \in (0,1), \quad \mathrm{Tr}[\varrho_\hbar \ (\hat{q}^2 + \hat{\rho}^2)] \leq \textit{C}_1. \tag{Q}_1$$

Question : Propagation of estimates (Q_0) and (Q_1) uniformly in times?

Global well-posedness of (PFE)

Theorem [S. Farhat, 2023]

Let $\sigma \in [\frac{1}{2}, 1]$ and assume (C_0) and (C_1) hold true. Then, for any initial data $u_0 \in X^{\sigma}$, there exists a unique global strong solution $u(\cdot) \in C(\mathbb{R}, X^{\sigma}) \cap C^1(\mathbb{R}, X^{\sigma-1})$ of the particle-field equation (PFE). Moreover, the generalized global flow

 $\begin{array}{ccccc} \Phi_t : X^{\sigma} & \longrightarrow & X^{\sigma} \\ & u_0 & \longmapsto & u(t). \end{array}$

is Borel measurable.

The proof of the above result still require some classical properties : for example uniqueness of solutions to the particle-field equation and so on.

Assumptions (C_0) and (C_1) amount to these properties.

Global well-posedness of (PFE)

Theorem [S. Farhat, 2023]

Let $\sigma \in [\frac{1}{2}, 1]$ and assume (C_0) and (C_1) hold true. Then, for any initial data $u_0 \in X^{\sigma}$, there exists a unique global strong solution $u(\cdot) \in C(\mathbb{R}, X^{\sigma}) \cap C^1(\mathbb{R}, X^{\sigma-1})$ of the particle-field equation (PFE). Moreover, the generalized global flow

 $\begin{array}{ccccc} \Phi_t : X^{\sigma} & \longrightarrow & X^{\sigma} \\ & u_0 & \longmapsto & u(t). \end{array}$

is Borel measurable.

The proof of the above result still require some classical properties : for example uniqueness of solutions to the particle-field equation and so on.

Assumptions (C₀) and (C₁) amount to these properties.

Global well-posedness of (PFE)

Theorem [S. Farhat, 2023]

Let $\sigma \in [\frac{1}{2}, 1]$ and assume (C_0) and (C_1) hold true. Then, for any initial data $u_0 \in X^{\sigma}$, there exists a unique global strong solution $u(\cdot) \in C(\mathbb{R}, X^{\sigma}) \cap C^1(\mathbb{R}, X^{\sigma-1})$ of the particle-field equation (PFE). Moreover, the generalized global flow

 $\begin{array}{ccccc} \Phi_t : X^{\sigma} & \longrightarrow & X^{\sigma} \\ u_0 & \longmapsto & u(t). \end{array}$

is Borel measurable.

- The proof of the above result still require some classical properties : for example uniqueness of solutions to the particle-field equation and so on.
- ▶ Assumptions (C_0) and (C_1) amount to these properties.

Definition [Weyl operator]

The Weyl operator over the entire interacting Hilbert space \mathcal{H}

$$\xi = (p,q,lpha) \in X^0 \longmapsto \mathcal{W}(\xi) := e^{i(p\cdot\hat{q}-q\cdot\hat{p})} \otimes e^{rac{i}{\sqrt{2}}(a_\hbar(lpha)+a^*_\hbar(lpha))}$$

Definition [Wigner measure]

A Borel probability measure μ over X^0 is a Wigner measure of a family of density matrices $(\varrho_h)_{h\in(0,1)}$ on the Hilbert space \mathcal{H} if and only if there exists a subset $\mathcal{E} \subset (0,1)$ with $0 \in \overline{\mathcal{E}}$ such that for any $\xi = (\rho_0, q_0, \alpha_0), \tilde{\xi} = (2\pi q_0, -2\pi \rho_0, \sqrt{2}\pi \alpha_0) \in X^0$:

$$\lim_{\hbar\to 0,\hbar\in\mathcal{E}}\operatorname{Tr}\left[\mathcal{W}(\tilde{\xi})_{\mathcal{Q}\hbar}\right] = \int_{X^0} e^{2\pi i \Re e\langle\xi,u\rangle_{X^0}} d\mu(u) = \mathcal{F}^{-1}[\mu](\xi).$$

- Denote by $\mathcal{M}(\varrho_{\hbar}, \hbar \in \mathcal{E})$ the set of all Wigner measures of $(\varrho_{\hbar})_{\hbar \in \mathcal{A}}$
- ▶ $\mathcal{M}(\varrho_{\hbar}, \hbar \in \mathcal{E}) \neq \phi$ if some assumptions on $(\varrho_{\hbar})_{\hbar}$ are imposed.
- ▶ In our approach, we need to prove $\mathcal{M}(\rho_{\hbar}, \hbar \in \mathcal{E}) =$ Singleton up to extraction of subsequence?

Definition [Weyl operator]

The Weyl operator over the entire interacting Hilbert space \mathcal{H}

$$\xi = (p,q,\alpha) \in X^0 \longmapsto \mathcal{W}(\xi) := e^{i(p\cdot\hat{q} - q\cdot\hat{p})} \otimes e^{\frac{i}{\sqrt{2}}(a_{\hbar}(\alpha) + a^*_{\hbar}(\alpha))}$$

Definition [Wigner measure]

A Borel probability measure μ over X^0 is a Wigner measure of a family of density matrices $(\varrho_\hbar)_{\hbar \in (0,1)}$ on the Hilbert space \mathcal{H} if and only if there exists a subset $\mathcal{E} \subset (0, 1)$ with $0 \in \overline{\mathcal{E}}$ such that for any $\xi = (\rho_0, q_0, \alpha_0), \tilde{\xi} = (2\pi q_0, -2\pi \rho_0, \sqrt{2}\pi \alpha_0) \in X^0$:

$$\lim_{h\to 0,h\in\mathcal{E}}\operatorname{Tr}\Big[\mathcal{W}(\tilde{\xi})_{\varrho_h}\Big] = \int_{X^0} e^{2\pi i \Re e\langle\xi,u\rangle_{X^0}} d\mu(u) = \mathcal{F}^{-1}[\mu](\xi).$$

- Denote by M(𝒫ħ, ħ ∈ 𝔅) the set of all Wigner measures of (𝒫ħ)ħ∈
- ▶ $\mathcal{M}(\varrho_{\hbar}, \hbar \in \mathcal{E}) \neq \phi$ if some assumptions on $(\varrho_{\hbar})_{\hbar}$ are imposed.
- ▶ In our approach, we need to prove $\mathcal{M}(\rho_{\hbar}, \hbar \in \mathcal{E}) =$ Singleton up to extraction of subsequence?

Definition [Weyl operator]

The Weyl operator over the entire interacting Hilbert space \mathcal{H}

$$\xi = (p,q,\alpha) \in X^0 \longmapsto \mathcal{W}(\xi) := e^{i(p\cdot\hat{q} - q\cdot\hat{p})} \otimes e^{\frac{i}{\sqrt{2}}(a_\hbar(\alpha) + a^*_\hbar(\alpha))}$$

Definition [Wigner measure]

A Borel probability measure μ over X^0 is a Wigner measure of a family of density matrices $(\varrho_\hbar)_{\hbar \in (0,1)}$ on the Hilbert space \mathcal{H} if and only if there exists a subset $\mathcal{E} \subset (0, 1)$ with $0 \in \overline{\mathcal{E}}$ such that for any $\xi = (\rho_0, q_0, \alpha_0), \tilde{\xi} = (2\pi q_0, -2\pi \rho_0, \sqrt{2}\pi \alpha_0) \in X^0$:

$$\lim_{\hbar\to 0,\hbar\in\mathcal{E}}\operatorname{Tr}\Big[\mathcal{W}(\tilde{\xi})_{\varrho_{\hbar}}\Big] = \int_{X^{0}} e^{2\pi i \Re e\langle\xi,u\rangle_{X^{0}}} d\mu(u) = \mathcal{F}^{-1}[\mu](\xi).$$

Denote by *M*(*ρ_ħ*, *ħ* ∈ *E*) the set of all Wigner measures of (*ρ_ħ*)_{*ħ*∈*E*}.

▶ $\mathcal{M}(\varrho_{\hbar}, \hbar \in \mathcal{E}) \neq \phi$ if some assumptions on $(\varrho_{\hbar})_{\hbar}$ are imposed.

▶ In our approach, we need to prove $\mathcal{M}(\varrho_{\hbar}, \hbar \in \mathcal{E}) =$ Singleton up to extraction of subsequence?

Definition [Weyl operator]

The Weyl operator over the entire interacting Hilbert space ${\mathcal H}$

$$\xi = (p,q,\alpha) \in X^0 \longmapsto \mathcal{W}(\xi) := e^{i(p\cdot\hat{q} - q\cdot\hat{p})} \otimes e^{\frac{i}{\sqrt{2}}(a_\hbar(\alpha) + a^*_\hbar(\alpha))}$$

Definition [Wigner measure]

A Borel probability measure μ over X^0 is a Wigner measure of a family of density matrices $(\varrho_\hbar)_{\hbar \in (0,1)}$ on the Hilbert space \mathcal{H} if and only if there exists a subset $\mathcal{E} \subset (0, 1)$ with $0 \in \overline{\mathcal{E}}$ such that for any $\xi = (\rho_0, q_0, \alpha_0), \tilde{\xi} = (2\pi q_0, -2\pi \rho_0, \sqrt{2}\pi \alpha_0) \in X^0$:

$$\lim_{h\to 0,h\in\mathcal{E}}\operatorname{Tr}\left[\mathcal{W}(\tilde{\xi})_{\varrho_h}\right] = \int_{X^0} e^{2\pi i \Re e\langle\xi,u\rangle_{X^0}} d\mu(u) = \mathcal{F}^{-1}[\mu](\xi).$$

Denote by *M*(*ρ_h*, *h* ∈ *E*) the set of all Wigner measures of (*ρ_h*)_{*h*∈*E*}.

- $\mathcal{M}(\varrho_{\hbar}, \hbar \in \mathcal{E}) \neq \phi$ if some assumptions on $(\varrho_{\hbar})_{\hbar}$ are imposed.
- ▶ In our approach, we need to prove $\mathcal{M}(\varrho_{\hbar}, \hbar \in \mathcal{E}) =$ Singleton up to extraction of subsequence?

Definition [Weyl operator]

The Weyl operator over the entire interacting Hilbert space \mathcal{H}

$$\xi = (p,q,lpha) \in X^0 \longmapsto \mathcal{W}(\xi) := e^{i(p\cdot\hat{q}-q\cdot\hat{p})} \otimes e^{rac{i}{\sqrt{2}}(a_\hbar(lpha)+a^*_\hbar(lpha))}$$

Definition [Wigner measure]

A Borel probability measure μ over X^0 is a Wigner measure of a family of density matrices $(\varrho_\hbar)_{\hbar \in (0,1)}$ on the Hilbert space \mathcal{H} if and only if there exists a subset $\mathcal{E} \subset (0, 1)$ with $0 \in \overline{\mathcal{E}}$ such that for any $\xi = (\rho_0, q_0, \alpha_0), \tilde{\xi} = (2\pi q_0, -2\pi \rho_0, \sqrt{2}\pi \alpha_0) \in X^0$:

$$\lim_{\hbar\to 0,\hbar\in\mathcal{E}}\operatorname{Tr}\Big[\mathcal{W}(\tilde{\xi})_{\varrho_h}\Big] = \int_{\chi^0} e^{2\pi i \Re e\langle\xi,u\rangle_{\chi^0}} d\mu(u) = \mathcal{F}^{-1}[\mu](\xi).$$

- Denote by *M*(*ρ_h*, *h* ∈ *E*) the set of all Wigner measures of (*ρ_h*)_{*h*∈*E*}.
- ▶ $\mathcal{M}(\varrho_{\hbar}, \hbar \in \mathcal{E}) \neq \phi$ if some assumptions on $(\varrho_{\hbar})_{\hbar}$ are imposed.
- ▶ In our approach, we need to prove $\mathcal{M}(\rho_{\hbar}, \hbar \in \mathcal{E}) = \{\text{Singleton}\}\$ up to extraction of subsequence?

Classical limit : Bohr Correspondence principle

Theorem [S. Farhat, 2023]

Let $\sigma \in [\frac{1}{2}, 1]$ and assume (C_0) and (C_1) hold true. Let $(\varrho_{\hbar})_{\hbar \in (0, 1)}$ be a family of density matrices on \mathcal{H} satisfying (Q_0) and (Q_1) . Assume that

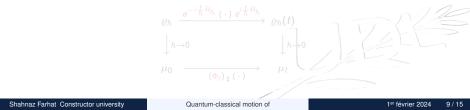
$$\mathcal{M}(\varrho_{\hbar_{\ell}}, \ell \in \mathbf{N}) = \{\mu_0\}.$$

Then for all times $t \in \mathbb{R}$, we have

$$\mathcal{M}(\underbrace{\mathbf{e}^{-i\frac{t}{h_{\ell}}\hat{H}}\varrho_{h_{\ell}}}_{:=\varrho_{h_{\ell}}(t)}\mathbf{e}^{i\frac{t}{h_{\ell}}\hat{H}}, \ell \in \mathbf{N}) = \{\mu_t\},$$

where $\mu_t \in \mathcal{P}(X^0)$ satisfies (i) $\mu_t(X^{\sigma}) = 1$. (ii) $\mu_t = (\Phi_t)_{\sharp} \mu_0$, where Φ_t is the global flow of the particle-field equation.

The convergence is rephrased according to the following commutative diagram :



Classical limit : Bohr Correspondence principle

Theorem [S. Farhat, 2023]

Let $\sigma \in [\frac{1}{2}, 1]$ and assume (C_0) and (C_1) hold true. Let $(\varrho_{\hbar})_{\hbar \in (0, 1)}$ be a family of density matrices on \mathcal{H} satisfying (Q_0) and (Q_1) . Assume that

$$\mathcal{M}(\varrho_{\hbar_{\ell}}, \ell \in \mathbf{N}) = \{\mu_0\}.$$

Then for all times $t \in \mathbb{R}$, we have

$$\mathcal{M}(\underbrace{\mathbf{e}^{-i\frac{t}{h_{\ell}}\hat{H}}\varrho_{h_{\ell}}}_{:=\varrho_{h_{\ell}}(t)}\mathbf{e}^{i\frac{t}{h_{\ell}}\hat{H}}, \ell \in \mathbf{N}) = \{\mu_t\},$$

where $\mu_t \in \mathcal{P}(X^0)$ satisfies (i) $\mu_t(X^{\sigma}) = 1$. (ii) $\mu_t = (\Phi_t)_{\sharp} \mu_0$, where Φ_t is the global flow of the particle-field equation.

The convergence is rephrased according to the following commutative diagram :

▶ We work with the interaction representation with

$$\tilde{\varrho}_{\hbar}(t) := e^{i \frac{t}{\hbar} d\Gamma(\omega)} \varrho_{\hbar}(t) \ e^{-i \frac{t}{\hbar} d\Gamma(\omega)}$$

▶ The Wigner measures of $\tilde{\varrho}_{\hbar}(t)$ are the limits of the map

$$\lim_{h \to 0} \quad \underbrace{\operatorname{Tr}[\mathcal{W}(\tilde{\xi}) \; \tilde{\varrho}_h(t)]}_{(1)} = \int_{X^0} e^{2\pi i \Re e(\xi, u)} d\tilde{\mu}_t(u). \tag{1}$$

For all $\xi = (p_0, q_0, \alpha_0) \in X^{1/2}$, for all $\hbar \in (0, 1)$ and for all $t, t_0 \in \mathbb{R}$, the quantum dynamical system of (1) is

$$\operatorname{Tr}\Big[\mathcal{W}(\xi)\tilde{\varrho}_{\hbar}(t)\Big] = \operatorname{Tr}\Big[\mathcal{W}(\xi)\tilde{\varrho}_{\hbar}(t_{0})\Big] - i\int_{t_{0}}^{t}\operatorname{Tr}\Big(\frac{1}{\hbar}\big[\mathcal{W}(\xi),\hat{H}_{k}(s)\big]\,\tilde{\varrho}_{\hbar}(s)\Big)\,ds$$

Shahnaz Farhat Constructor university

▶ We work with the interaction representation with

$$\tilde{\varrho}_{\hbar}(t) := e^{i\frac{t}{\hbar}d\Gamma(\omega)}\varrho_{\hbar}(t) \ e^{-i\frac{t}{\hbar}d\Gamma(\omega)}$$

▶ The Wigner measures of $\tilde{\varrho}_{\hbar}(t)$ are the limits of the map

$$\lim_{\hbar \to 0} \quad \underbrace{\operatorname{Tr}[\mathcal{W}(\tilde{\xi}) \ \tilde{\varrho}_{\hbar}(t)]}_{(1)} = \int_{X^0} e^{2\pi i \Re e(\xi, u)} d\tilde{\mu}_t(u). \tag{1}$$

For all $\xi = (p_0, q_0, \alpha_0) \in X^{1/2}$, for all $\hbar \in (0, 1)$ and for all $t, t_0 \in \mathbb{R}$, the quantum dynamical system of (1) is

$$\operatorname{Tr}\Big[\mathcal{W}(\xi)\tilde{\varrho}_{\hbar}(t)\Big] = \operatorname{Tr}\Big[\mathcal{W}(\xi)\tilde{\varrho}_{\hbar}(t_{0})\Big] - i\int_{t_{0}}^{t}\operatorname{Tr}\Big(\frac{1}{\hbar}\big[\mathcal{W}(\xi),\hat{H}_{k}(s)\big]\,\tilde{\varrho}_{\hbar}(s)\Big)\,ds$$

▶ We work with the interaction representation with

$$\tilde{\varrho}_{\hbar}(t) := e^{i\frac{t}{\hbar}d\Gamma(\omega)}\varrho_{\hbar}(t) \ e^{-i\frac{t}{\hbar}d\Gamma(\omega)}$$

▶ The Wigner measures of $\tilde{\varrho}_{\hbar}(t)$ are the limits of the map

$$\lim_{\hbar \to 0} \quad \underbrace{\operatorname{Tr}[\mathcal{W}(\tilde{\xi}) \; \tilde{\varrho}_{\hbar}(t)]}_{(1)} = \int_{X^0} e^{2\pi i \Re e(\xi, u)} d\tilde{\mu}_t(u). \tag{1}$$

▶ For all $\xi = (p_0, q_0, \alpha_0) \in X^{1/2}$, for all $\hbar \in (0, 1)$ and for all $t, t_0 \in \mathbb{R}$, the quantum dynamical system of (1) is

$$\operatorname{Tr}\left[\mathcal{W}(\xi)\tilde{\varrho}_{\hbar}(t)\right] = \operatorname{Tr}\left[\mathcal{W}(\xi)\tilde{\varrho}_{\hbar}(t_{0})\right] - i\int_{t_{0}}^{t}\operatorname{Tr}\left(\frac{1}{\hbar}\left[\mathcal{W}(\xi),\hat{H}_{k}(s)\right]\tilde{\varrho}_{\hbar}(s)\right)\,ds$$

Shahnaz Farhat Constructor university

The commutator expansion

The commutator in the Duhamel formula can be expanded as follows :

$$\frac{1}{\hbar} [\mathcal{W}(\xi), \hat{H}_{k}(s)] = \begin{bmatrix} B_{0}(s, \hbar, \xi) + \hbar B_{1}(s, \hbar, \xi) \\ \uparrow \\ M_{em}^{\dagger} \end{bmatrix} \mathcal{W}(\xi).$$

We have with
$$\hat{H}_0 = d\Gamma(\omega) + \sum_{j=1}^n f_j(\hat{p}_j)$$
 and $S = (\hat{H}_0 + 1)^{1/2}$
 $\|S^{-1}B_0(s, \hbar, \xi)S^{-1}\|_{\mathcal{L}(\mathcal{H})} \le \|\xi\|_{X^0} \|\chi\|_{L^2};$

Globally well-defined quantum dynamic : Plugging the above expansion and exploiting the uniform estimates in the last part of the Duhardel amult

Shahnaz Farhat Constructor university

Quantum-classical motion of

The commutator expansion

The commutator in the Duhamel formula can be expanded as follows :

$$\frac{1}{\hbar}[\mathcal{W}(\xi),\hat{H}_{k}(s)] = \begin{bmatrix} B_{0}(s,\hbar,\xi) + \hbar B_{1}(s,\hbar,\xi) \\ \uparrow \\ M_{elm} \\ Herm \\ Herm$$

We have with
$$\hat{H}_0 = d\Gamma(\omega) + \sum_{j=1}^n f_j(\hat{p}_j)$$
 and $S = (\hat{H}_0 + 1)^{1/2}$
 $\|S^{-1}B_0(s,\hbar,\xi)S^{-1}\|_{\mathcal{L}(\mathcal{H})} \le \|\xi\|_{X^0} \|\chi\|_{L^2};$
 $\|S^{-1}B_1(s,\hbar,\xi)S^{-1}\|_{\mathcal{L}(\mathcal{H})} \le \|\xi\|_{X^0}^2 \|\omega^{1/2}\chi\|_{L^2}.$

Globally well-defined quantum dynamic : Plugging the above expansion and exploiting the uniform estimates in the last part of the Duhamel formula.

Shahnaz Farhat Constructor university

Quantum-classical motion of

The commutator expansion

The commutator in the Duhamel formula can be expanded as follows :

$$\frac{1}{\hbar} [\mathcal{W}(\xi), \hat{H}_k(s)] = \begin{bmatrix} B_0(s, \hbar, \xi) + \hbar B_1(s, \hbar, \xi) \\ \uparrow \\ M_{elm} \\ Herm \\ Herm$$

We have with
$$\hat{H}_0 = d\Gamma(\omega) + \sum_{j=1}^n f_j(\hat{p}_j)$$
 and $S = (\hat{H}_0 + 1)^{1/2}$
 $\|S^{-1}B_0(s, \hbar, \xi)S^{-1}\|_{\mathcal{L}(\mathcal{H})} \le \|\xi\|_{X^0} \|\chi\|_{L^2};$
 $\|S^{-1}B_1(s, \hbar, \xi)S^{-1}\|_{\mathcal{L}(\mathcal{H})} \le \|\xi\|_{X^0}^2 \|\omega^{1/2}\chi\|_{L^2}$

Globally well-defined quantum dynamic : Plugging the above expansion and exploiting the uniform estimates in the last part of the Duhamel formula.

The next step is to prove that we can extract a subsequence $(\hbar_{\ell})_{\ell \in \mathbb{N}}$ and a family of Borel probability measures $(\tilde{\mu}_t)_{t \in \mathbb{R}}$ such that for all $t \in \mathbb{R}$

$$\mathcal{M}(\tilde{\varrho}_{\hbar_{\ell}}(t), \ \ell \in \mathbb{N}) = \{\tilde{\mu}_t\}$$

Ideas of proof :

- **Propagation of quantum estimates :** (Q_0) and (Q_1)

 - $\blacktriangleright \operatorname{Tr} \left[\tilde{\varrho}_{\hbar}(t) \left(\hat{p}^2 + \hat{q}^2 \right) \right] \leq C_1 \operatorname{Tr} \left[\varrho_{\hbar} \left(\hat{H}_0 + \hat{p}^2 + \hat{q}^2 + 1 \right) \right] e^{C_2 |t|} \leq C_3,$
- Diagonal extraction method and Prokhorov theorem to get uniformity in time.

The next step is to prove that we can extract a subsequence $(\hbar_{\ell})_{\ell \in \mathbb{N}}$ and a family of Borel probability measures $(\tilde{\mu}_t)_{t \in \mathbb{R}}$ such that for all $t \in \mathbb{R}$

$$\mathcal{M}(\tilde{\varrho}_{\hbar_{\ell}}(t), \ \ell \in \mathbb{N}) = \{\tilde{\mu}_t\}$$

Ideas of proof :

- **Propagation of quantum estimates :** (Q_0) and (Q_1)
 - $\blacktriangleright \operatorname{Tr}\left[\frac{\tilde{\varrho}_{\hbar}(t)}{\varrho_{\hbar}}d\Gamma(\omega^{2\sigma})\right] \leq C_{1} \operatorname{Tr}\left[\frac{\varrho_{\hbar}}{\varrho_{\hbar}}\left(d\Gamma(\omega^{2\sigma})+1\right)\right]e^{C_{2}|t|} \leq C_{3}.$
 - $\blacktriangleright \operatorname{Tr} \big[\frac{\tilde{\varrho}_{\hbar}(t)}{\tilde{\varrho}^{\hbar}(t)} \left(\hat{\rho}^2 + \hat{q}^2 \right) \big] \leq C_1 \operatorname{Tr} \big[\frac{\varrho_{\hbar}}{\ell} \left(\hat{H_0} + \hat{\rho}^2 + \hat{q}^2 + 1 \right) \big] e^{C_2 |t|} \leq C_3,$

Diagonal extraction method and Prokhorov theorem to get uniformity in time.

The next step is to prove that we can extract a subsequence $(\hbar_{\ell})_{\ell \in \mathbb{N}}$ and a family of Borel probability measures $(\tilde{\mu}_t)_{t \in \mathbb{R}}$ such that for all $t \in \mathbb{R}$

$$\mathcal{M}(\tilde{\varrho}_{\hbar_{\ell}}(t), \ \ell \in \mathbb{N}) = \{\tilde{\mu}_t\}$$

Ideas of proof :

- **Propagation of quantum estimates :** (Q_0) and (Q_1)
 - $\blacktriangleright \operatorname{Tr} \left[\frac{\tilde{\varrho}_{\hbar}(t)}{\varrho_{\hbar}} d\Gamma(\omega^{2\sigma}) \right] \leq C_1 \operatorname{Tr} \left[\frac{\varrho_{\hbar}}{\varrho_{\hbar}} \left(d\Gamma(\omega^{2\sigma}) + 1 \right) \right] e^{C_2 |t|} \leq C_3.$
 - $\blacktriangleright \operatorname{Tr} \left[\frac{\tilde{\varrho}_{\hbar}(t)}{\tilde{\varrho}^{\hbar}(t)} \left(\hat{p}^2 + \hat{q}^2 \right) \right] \leq C_1 \operatorname{Tr} \left[\frac{\varrho_{\hbar}}{\ell} \left(\hat{H}_0 + \hat{p}^2 + \hat{q}^2 + 1 \right) \right] e^{C_2 |t|} \leq C_3,$
- ▶ Diagonal extraction method and Prokhorov theorem to get uniformity in time.

$$\lim_{\ell \to \infty} \operatorname{Tr}[\mathcal{W}(\xi) \ \tilde{\varrho}_{\hbar_{\ell}}(t)] = \lim_{\ell \to \infty} \operatorname{Tr}[\mathcal{W}(\xi) \ \tilde{\varrho}_{\hbar_{\ell}}(t_0)] - i \int_{t_0}^{t} \lim_{\ell \to \infty} \operatorname{Tr}[B_0(s, \hbar_{\ell}, \xi) \ \mathcal{W}(\xi) \ \tilde{\varrho}_{\hbar_{\ell}}(s)] \ ds$$

 $\operatorname{Tr}[B_0(s, \hbar_{\ell}, \xi) \mathcal{W}(\xi) \ \tilde{\varrho}_{\hbar_{\ell}}(s)] =$ Non-interacting terms + Interacting terms.

► Non-interacting terms

$$= -\sum_{j=1}^{n} \left[\operatorname{Tr}[\nabla_{q_{j}} V(\hat{q}) \cdot q_{0j} \ \mathcal{W}(\xi) \ \tilde{\varrho}_{\hbar_{\ell}}(s)] + \operatorname{Tr}[\nabla f_{j}(\hat{\rho}_{j}) \cdot \rho_{0j} \ \mathcal{W}(\xi) \ \tilde{\varrho}_{\hbar_{\ell}}(s)] \right].$$

Interacting terms

$$= + \sum_{j=1}^{n} \operatorname{Tr}[(a_{\hbar_{\ell}} + a_{\hbar_{\ell}}^{*})(e^{-2\pi i k \cdot \hat{q}_{j}} \tilde{F}_{j}(\hbar_{\ell}, k)) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)]$$

$$+ \sum_{j=1}^{n} \frac{i}{\sqrt{2}} \left(\operatorname{Tr}[(\langle \alpha_{0}, e^{-2\pi i k \cdot \hat{q}_{j}} F_{j} \rangle_{L^{2}} - \langle e^{-2\pi i k \cdot \hat{q}_{j}} F_{j}, \alpha_{0} \rangle_{L^{2}}) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)]$$
with $\tilde{F}_{j}(\hbar_{\ell}, k) = \left(\frac{e^{(2\pi i k \cdot q_{0j}) \hbar_{\ell}} - 1}{\hbar_{\ell}} \right) F_{j}(k).$

$$\begin{split} \lim_{\ell \to \infty} \operatorname{Tr}[\mathcal{W}(\xi) \; \tilde{\varrho}_{\hbar_{\ell}}(t)] &= \lim_{\ell \to \infty} \operatorname{Tr}[\mathcal{W}(\xi) \; \tilde{\varrho}_{\hbar_{\ell}}(t_0)] \\ &- i \int_{t_0}^{t} \lim_{\ell \to \infty} \operatorname{Tr}[B_0(s, \hbar_{\ell}, \xi) \; \mathcal{W}(\xi) \; \tilde{\varrho}_{\hbar_{\ell}}(s)] \; ds \end{split}$$

 $\operatorname{Tr}[B_0(s, \hbar_{\ell}, \xi) \mathcal{W}(\xi) \ \tilde{\varrho}_{\hbar_{\ell}}(s)] =$ Non-interacting terms + Interacting terms.

► Non-interacting terms

$$= -\sum_{j=1}^{n} \left[\operatorname{Tr}[\nabla_{q_{j}} V(\hat{q}) \cdot q_{0j} \ \mathcal{W}(\xi) \ \tilde{\varrho}_{\hbar_{\ell}}(s)] + \operatorname{Tr}[\nabla f_{j}(\hat{\rho}_{j}) \cdot \rho_{0j} \ \mathcal{W}(\xi) \ \tilde{\varrho}_{\hbar_{\ell}}(s)] \right].$$

Interacting terms

$$= + \sum_{j=1}^{n} \operatorname{Tr}[(a_{\hbar_{\ell}} + a_{\hbar_{\ell}}^{*})(e^{-2\pi i k \cdot \hat{q}_{j}} \tilde{F}_{j}(\hbar_{\ell}, k)) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)]$$

$$+ \sum_{j=1}^{n} \frac{i}{\sqrt{2}} \left(\operatorname{Tr}[(\langle \alpha_{0}, e^{-2\pi i k \cdot \hat{q}_{j}} F_{j} \rangle_{L^{2}} - \langle e^{-2\pi i k \cdot \hat{q}_{j}} F_{j}, \alpha_{0} \rangle_{L^{2}}) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s) \right]$$
with $\tilde{F}_{j}(\hbar_{\ell}, k) = \left(\frac{e^{(2\pi i k \cdot q_{0j}) \hbar_{\ell}} - 1}{\hbar_{\ell}} \right) F_{j}(k).$

$$\begin{split} \lim_{\ell \to \infty} \operatorname{Tr}[\mathcal{W}(\xi) \; \tilde{\varrho}_{\hbar_{\ell}}(t)] &= \lim_{\ell \to \infty} \operatorname{Tr}[\mathcal{W}(\xi) \; \tilde{\varrho}_{\hbar_{\ell}}(t_0)] \\ &- i \int_{t_0}^{t} \lim_{\ell \to \infty} \operatorname{Tr}[B_0(s, \hbar_{\ell}, \xi) \; \mathcal{W}(\xi) \; \tilde{\varrho}_{\hbar_{\ell}}(s)] \; ds \end{split}$$

 $\operatorname{Tr}[B_0(s, \hbar_{\ell}, \xi) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)] =$ Non-interacting terms + Interacting terms.

Non-interacting terms

$$= -\sum_{j=1}^{n} \left[\operatorname{Tr}[\nabla_{q_{j}} V(\hat{q}) \cdot q_{0j} \mathcal{W}(\xi) \ \tilde{\varrho}_{\hbar_{\ell}}(s)] + \operatorname{Tr}[\nabla f_{j}(\hat{p}_{j}) \cdot p_{0j} \mathcal{W}(\xi) \ \tilde{\varrho}_{\hbar_{\ell}}(s)] \right].$$

Interacting terms

$$= + \sum_{j=1}^{n} \operatorname{Tr}[(a_{\hbar_{\ell}} + a_{\hbar_{\ell}}^{*})(e^{-2\pi i k \cdot \hat{q}_{j}} \tilde{F}_{j}(\hbar_{\ell}, k)) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)]$$

$$+ \sum_{j=1}^{n} \frac{i}{\sqrt{2}} \left(\operatorname{Tr}[(\langle \alpha_{0}, e^{-2\pi i k \cdot \hat{q}_{j}} F_{j} \rangle_{L^{2}} - \langle e^{-2\pi i k \cdot \hat{q}_{j}} F_{j}, \alpha_{0} \rangle]_{2} \right) \mathcal{W}(\xi) [\tilde{\varrho}_{\hbar_{\ell}}(s)]$$
with $\tilde{F}_{j}(\hbar_{\ell}, k) = \left(\frac{e^{(2\pi i k \cdot q_{0j}) \hbar_{\ell}}}{\hbar_{\ell}}\right) F_{j}(k).$

$$\begin{split} \lim_{\ell \to \infty} \operatorname{Tr}[\mathcal{W}(\xi) \; \tilde{\varrho}_{\hbar_{\ell}}(t)] &= \lim_{\ell \to \infty} \operatorname{Tr}[\mathcal{W}(\xi) \; \tilde{\varrho}_{\hbar_{\ell}}(t_0)] \\ &- i \int_{t_0}^{t} \lim_{\ell \to \infty} \operatorname{Tr}[B_0(s, \hbar_{\ell}, \xi) \; \mathcal{W}(\xi) \; \tilde{\varrho}_{\hbar_{\ell}}(s)] \; ds \end{split}$$

 $\operatorname{Tr}[B_0(s, \hbar_{\ell}, \xi) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_{\ell}}(s)] =$ Non-interacting terms + Interacting terms.

Non-interacting terms

$$= -\sum_{j=1}^{n} \left[\operatorname{Tr}[\nabla_{q_{j}} V(\hat{q}) \cdot q_{0j} \mathcal{W}(\xi) \ \tilde{\varrho}_{\hbar_{\ell}}(s)] + \operatorname{Tr}[\nabla f_{j}(\hat{p}_{j}) \cdot p_{0j} \mathcal{W}(\xi) \ \tilde{\varrho}_{\hbar_{\ell}}(s)] \right].$$

Interacting terms

$$= + \sum_{j=1}^{n} \operatorname{Tr}[(a_{h_{\ell}} + a_{h_{\ell}}^{*})(e^{-2\pi i k \cdot \hat{q}_{j}} \tilde{F}_{j}(h_{\ell}, k)) \mathcal{W}(\xi) \tilde{\varrho}_{h_{\ell}}(s)] \\ + \sum_{j=1}^{n} \frac{i}{\sqrt{2}} \left(\operatorname{Tr}[(\langle \alpha_{0}, e^{-2\pi i k \cdot \hat{q}_{j}} F_{j} \rangle_{L^{2}} - \langle e^{-2\pi i k \cdot \hat{q}_{j}} F_{j}, \alpha_{0} \rangle_{L^{2}}) \mathcal{W}(\xi) \tilde{\varrho}_{h_{\ell}}(s)] \right)$$
with $\tilde{E}(h, k) = \left(e^{i(2\pi i k \cdot q_{0j})h_{\ell}} - 1\right) E(k)$

with $\mathbf{r}_{j}(n_{\ell}, \mathbf{k}) = ($ ħρ $) \Gamma_{j}(\mathbf{x}).$

The characteristic equations

▶ The limit of the Duhamel is formulated as follows for all $t, t_0 \in \mathbb{R}$ and $y \in X^{\sigma}$

$$\int_{X^{0}} e^{2\pi i \Re e\langle y, u \rangle X^{\sigma}} d\tilde{\mu}_{t}(u) = \int_{X^{0}} e^{2\pi i \Re e\langle y, u \rangle X^{\sigma}} d\tilde{\mu}_{t_{0}}(u) + 2\pi i \int_{t_{0}}^{t} \int_{X^{0}} e^{2\pi i \Re e\langle y, u \rangle X^{\sigma}} \Re e\langle v(s, u), y \rangle_{X^{\sigma}} d\tilde{\mu}_{s}(u) ds,$$
(C)

• $\Phi_t^f: X^\sigma \longrightarrow X^\sigma$ is the free flow defined as follows

$$\Phi_t^f(p,q,\alpha) = (p,q,e^{-it\omega(k)}\alpha)$$

▶ The non-autonomous vector field v is as follows $v : \mathbb{R} \times X^{\sigma} \to X^{\sigma}$ satisfying

 $\int_{X^{\sigma}} \| \mathbf{v}(t, \mathbf{u}) \|_{X^{\sigma}} \, d\tilde{\mu}_t(\mathbf{u}) \, dt < +$

The characteristic equations

▶ The limit of the Duhamel is formulated as follows for all $t, t_0 \in \mathbb{R}$ and $y \in X^{\sigma}$

$$\int_{X^{0}} e^{2\pi i \Re e\langle y, u \rangle X^{\sigma}} d\tilde{\mu}_{t}(u) = \int_{X^{0}} e^{2\pi i \Re e\langle y, u \rangle X^{\sigma}} d\tilde{\mu}_{t_{0}}(u) + 2\pi i \int_{t_{0}}^{t} \int_{X^{0}} e^{2\pi i \Re e\langle y, u \rangle X^{\sigma}} \Re e\langle v(s, u), y \rangle_{X^{\sigma}} d\tilde{\mu}_{s}(u) ds,$$
(C)

(IPFE) : the interaction representation of (PFE)

$$\begin{cases} \frac{du}{dt} = \mathbf{v}(t, u(t)) = \Phi_{-t}^{f} \circ \underbrace{\mathcal{N}}_{\text{Non-linearity of (PFE)}} \circ \Phi_{t}^{f}(u(t)), \\ u(0) = u_{0} \in X^{\sigma}. \end{cases}$$
(IPFE)

• $\Phi_t^f: X^\sigma \longrightarrow X^\sigma$ is the free flow defined as follows

$$\Phi_t^f(p,q,\alpha) = (p,q,e^{-it\omega(k)}\alpha)$$

▶ The non-autonomous vector field v is as follows $v : \mathbb{R} \times X^{\sigma} \to X^{\sigma}$ satisfying

 $\int_{X^{\sigma}} \|v(t,u)\|_{X^{\sigma}} d\tilde{\mu}_t(u) dt$

Shahnaz Farhat Constructor university

Quantum-classical motion of

The characteristic equations

▶ The limit of the Duhamel is formulated as follows for all $t, t_0 \in \mathbb{R}$ and $y \in X^{\sigma}$

$$\int_{X^{0}} e^{2\pi i \Re e\langle y, u \rangle X^{\sigma}} d\tilde{\mu}_{t}(u) = \int_{X^{0}} e^{2\pi i \Re e\langle y, u \rangle X^{\sigma}} d\tilde{\mu}_{t_{0}}(u)$$

$$+ 2\pi i \int_{t_{0}}^{t} \int_{X^{0}} e^{2\pi i \Re e\langle y, u \rangle X^{\sigma}} \Re e\langle v(s, u), y \rangle_{X^{\sigma}} d\tilde{\mu}_{s}(u) ds,$$
(C)

(IPFE) : the interaction representation of (PFE)

$$\begin{cases} \frac{du}{dt} = \mathbf{v}(t, u(t)) = \Phi_{-t}^{f} \circ \underbrace{\mathcal{N}}_{\text{Non-linearity of (PFE)}} \circ \Phi_{t}^{f}(u(t)), \\ u(0) = u_{0} \in X^{\sigma}. \end{cases}$$
(IPFE)

• $\Phi_t^f: X^\sigma \longrightarrow X^\sigma$ is the free flow defined as follows

$$\Phi_t^f(\boldsymbol{\rho},\boldsymbol{q},\alpha) = (\boldsymbol{\rho},\boldsymbol{q},\boldsymbol{e}^{-it\omega(k)}\alpha).$$

▶ The non-autonomous vector field v is as follows $v : \mathbb{R} \times X^{\sigma} \to X^{\sigma}$ satisfying

$$\int_{I}\int_{X^{\sigma}}\|\boldsymbol{v}(t,\boldsymbol{u})\|_{X^{\sigma}} d\tilde{\mu}_{t}(\boldsymbol{u}) dt < +\infty.$$
 (Int)

Equivalence between characteristic and Liouville equation

Definition : Liouville equation

A family of Borel probability measures $\{\tilde{\mu}_t\}_{t\in I}$ on X^{σ} is a measure-valued solution of the Liouville equation associated to the vector field $\mathbf{v} : \mathbb{R} \times X^{\sigma} \to X^{\sigma}$ if and only if for all $\phi \in C^{\infty}_{0,cvl}(I \times X^{\sigma})$:

$$\int_{I}\int_{X^{\sigma}} \{\partial_{t}\phi(t,u) + \Re e\langle v(t,u), \nabla \phi(t,u) \rangle_{X^{\sigma}} \} d\tilde{\mu}_{t}(u) dt = 0, \qquad (\mathsf{L}$$

 $\mathcal{C}^{\infty}_{0,cyl}(I \times X^{\sigma})$ is the cylindrical functional space.

Then, thanks to the regular properties of $\tilde{\mu}_t$ and of the vector field v(t, u), we have the following are equivalent :

Equivalence between Liouville equation and Characteristic equation

 $\{\tilde{\mu}_t\}_{t\in I}$ solves the Liouville equation (L) $\Leftrightarrow \{\tilde{\mu}_t\}_{t\in I}$ solves the characteristic equation (C).

Equivalence between characteristic and Liouville equation

Definition : Liouville equation

A family of Borel probability measures $\{\tilde{\mu}_t\}_{t \in I}$ on X^{σ} is a measure-valued solution of the Liouville equation associated to the vector field $\mathbf{v} : \mathbb{R} \times X^{\sigma} \to X^{\sigma}$ if and only if for all $\phi \in \mathcal{C}_{0,cvl}^{\infty}(I \times X^{\sigma})$:

$$\int_{I}\int_{X^{\sigma}} \{\partial_{t}\phi(t,u) + \Re e\langle v(t,u), \nabla \phi(t,u) \rangle_{X^{\sigma}} \} d\tilde{\mu}_{t}(u) dt = 0, \qquad (\mathsf{L}$$

 $\mathcal{C}^{\infty}_{0,cyl}(I \times X^{\sigma})$ is the cylindrical functional space.

Then, thanks to the regular properties of $\tilde{\mu}_t$ and of the vector field v(t, u), we have the following are equivalent :

Equivalence between Liouville equation and Characteristic equation

 $\{\tilde{\mu_t}\}_{t \in I}$ solves the Liouville equation (L) $\Leftrightarrow \{\tilde{\mu_t}\}_{t \in I}$ solves the characteristic equation (C).

► Using measure theoretical techniques, we have :

 \Rightarrow Almost sure existence of unique global solutions to (PFE) with a generalized global flow

$$\Phi_t = \Phi^f_t \circ \tilde{\Phi}_t.$$

To get rid of almost sureness, we select a special choice of family of density matrices which is coherent states centered at initial data.

▶ It remains to check

$$\mu_t = (\Phi_t)_{\sharp} \mu_0, \qquad \Phi_t = \Phi_t^f \circ \tilde{\Phi}_t.$$

▶ The important tool to do is the following link :

 $\mathcal{M}(\varrho_{\hbar}(t), \hbar \in (0, 1)) = \left\{ (\Phi_{t}^{f})_{\sharp} \tilde{\mu}_{t}, \ \tilde{\mu}_{t} \in \mathcal{M}(\tilde{\varrho}_{\hbar}(t), \ \hbar \in (0, 1)) \\ = \{\mu_{t}\} = \{\tilde{\mu}_{t}\}$

▶ We have, by probabilistic representation, that

$$\tilde{\mu}_t = (\tilde{\Phi}_t)_{\sharp} \tilde{\mu}_0.$$

► Using measure theoretical techniques, we have :

 \Rightarrow Almost sure existence of unique global solutions to (PFE) with a generalized global flow

$$\Phi_t = \Phi^f_t \circ \tilde{\Phi}_t.$$

To get rid of almost sureness, we select a special choice of family of density matrices which is coherent states centered at initial data.

It remains to check

$$\mu_t = (\Phi_t)_{\sharp} \mu_0, \qquad \Phi_t = \Phi_t^f \circ \tilde{\Phi}_t.$$

► The important tool to do is the following link :

 $\mathcal{M}(\varrho_{\hbar}(t), \hbar \in (0, 1)) = \left\{ (\Phi_t^f)_{\sharp} \tilde{\mu}_t, \ \tilde{\mu}_t \in \mathcal{M}(\tilde{\varrho}_{\hbar}(t), \ \hbar \in (0, 1)) \right\} = \left\{ (\Phi_t^f)_{\sharp} \tilde{\mu}_t, \ \tilde{\mu}_t \in \mathcal{M}(\tilde{\varrho}_{\hbar}(t), \ h \in (0, 1)) \right\}$

▶ We have, by probabilistic representation, that

$$\tilde{\mu}_t = (\tilde{\Phi}_t)_{\sharp} \tilde{\mu}_0.$$

► Using measure theoretical techniques, we have :

 \Rightarrow Almost sure existence of unique global solutions to (PFE) with a generalized global flow

$$\Phi_t = \Phi^f_t \circ \tilde{\Phi}_t.$$

- To get rid of almost sureness, we select a special choice of family of density matrices which is coherent states centered at initial data.
- It remains to check

$$\mu_t = (\Phi_t)_{\sharp} \mu_0, \qquad \Phi_t = \Phi_t^f \circ \tilde{\Phi}_t.$$

The important tool to do is the following link :

 $\mathcal{M}(\varrho_{\hbar}(t), \hbar \in (0, 1)) = \left\{ (\Phi_{t}^{f})_{\sharp} \tilde{\mu}_{t}, \ \tilde{\mu}_{t} \in \mathcal{M}(\tilde{\varrho}_{\hbar}(t), \ \hbar \in (0, 1)) \\ = \{\mu_{t}\} = \{\mu_{t}\} - \{\mu_{t}\}$

▶ We have, by probabilistic representation, that

$$\tilde{\mu}_t = (\tilde{\Phi}_t)_{\sharp} \tilde{\mu}_0.$$

► Using measure theoretical techniques, we have :

 \Rightarrow Almost sure existence of unique global solutions to (PFE) with a generalized global flow

$$\Phi_t = \Phi^f_t \circ \tilde{\Phi}_t.$$

- To get rid of almost sureness, we select a special choice of family of density matrices which is coherent states centered at initial data.
- It remains to check

$$\mu_t = (\Phi_t)_{\sharp} \mu_0, \qquad \Phi_t = \Phi_t^f \circ \tilde{\Phi}_t.$$

The important tool to do is the following link :

 $\mathcal{M}(\varrho_{\hbar}(t), \hbar \in (0, 1)) = \left\{ (\Phi_{t}^{f})_{\sharp} \tilde{\mu}_{t}, \ \tilde{\mu}_{t} \in \mathcal{M}(\tilde{\varrho}_{\hbar}(t), \ \hbar \in (0, 1)) \\ = \{\mu_{t}\} = \{\mu_{t}\} - \{\mu_{t}\}$

▶ We have, by probabilistic representation, that

$$\tilde{\mu}_t = (\tilde{\Phi}_t)_{\sharp} \tilde{\mu}_0.$$

► Using measure theoretical techniques, we have :

 \Rightarrow Almost sure existence of unique global solutions to (PFE) with a generalized global flow

$$\Phi_t = \Phi^f_t \circ \tilde{\Phi}_t.$$

- To get rid of almost sureness, we select a special choice of family of density matrices which is coherent states centered at initial data.
- It remains to check

$$\mu_t = (\Phi_t)_{\sharp} \mu_0, \qquad \Phi_t = \Phi_t^f \circ \tilde{\Phi}_t.$$

▶ The important tool to do is the following link :

 $\mathcal{M}(\varrho_{\hbar}(t), \hbar \in (0, 1)) = \left\{ (\Phi_t^f)_{\sharp} \tilde{\mu}_t, \ \tilde{\mu}_t \in \mathcal{M}(\tilde{\varrho}_{\hbar}(t), \ \hbar \in (0, 1)) \right\} = \left\{ \mu_t \right\}$

We have, by probabilistic representation, that

$$\tilde{\mu}_t = (\tilde{\Phi}_t)_{\sharp} \tilde{\mu}_0.$$

► Using measure theoretical techniques, we have :

 \Rightarrow Almost sure existence of unique global solutions to (PFE) with a generalized global flow

$$\Phi_t = \Phi^f_t \circ \tilde{\Phi}_t.$$

- To get rid of almost sureness, we select a special choice of family of density matrices which is coherent states centered at initial data.
- It remains to check

$$\mu_t = (\Phi_t)_{\sharp} \mu_0, \qquad \Phi_t = \Phi_t^f \circ \tilde{\Phi}_t.$$

▶ The important tool to do is the following link :

 $\mathcal{M}(\varrho_{\hbar}(t), \hbar \in (0, 1)) = \left\{ (\Phi_t^f)_{\sharp} \tilde{\mu}_t, \ \tilde{\mu}_t \in \mathcal{M}(\tilde{\varrho}_{\hbar}(t), \ \hbar \in (0, 1)) \right\} = \left\{ \mu_t \right\}$

▶ We have, by probabilistic representation, that

$$\tilde{\mu}_t = (\tilde{\Phi}_t)_{\sharp} \tilde{\mu}_0.$$

Thank you for your attention !

Slides for more details about the presentation

Almost sure existence result

Theorem 2 [Z. Ammari, M. Falconi and F. Hiroshima, 2022]

In a separable Hilbert space \mathcal{H} , consider the initial value problem (IPFE) with a vector field $v : \mathbb{R} \times \mathcal{H} \to \mathcal{H}$ continuous and bounded on bounded sets. Let $I \ni 0$ be a bounded open interval and assume

(i) $\exists t \in \mathbb{R} \rightarrow \mu_t \in \mathcal{P}(\mathcal{H})$ a weakly narrowly continuous solution to (L) satisfying

$$\int_{I}\int_{\mathcal{H}}\|v(t,u)\|_{\mathcal{H}} \ d\mu_t(u) \ dt < +\infty.$$
 (Int)

(ii) Uniqueness of the solutions to (IPFE) over any *I*.

Then for μ_0 -almost all initial conditions x in \mathcal{H} , there exists a (unique) global strong solution (i.e. $u(\cdot) \in C^1(\mathbb{R}, \mathcal{H})$) to (IPFE). Moreover, the set

 $\mathfrak{G} := \{x \in \mathcal{H} : \exists u(\cdot) \text{ a global strong solution of (IPFE) with } u(0) = x\},\$

is **Borel** subset of \mathcal{H} with $\mu_0(\mathfrak{G}) = 1$ and for any time $t \in \mathbb{R}$ the map

$$\begin{array}{cccc} \Phi_t : \mathfrak{G} & \longrightarrow & \mathfrak{G} \\ x & \longmapsto & \Phi_t(x) = u(t). \end{array}$$

is Borel measurable.

Existence of unique global solutions

▶ Apply Theorem 2 with the following choices :

$$- \mu_t \equiv \tilde{\mu}_t;$$

 $- \mathcal{H} \equiv X^{\sigma}.$

 \Rightarrow <u>Almost sure existence</u> of <u>unique</u> **global** solutions for (IPFE) with a generalized global flow $\tilde{\Phi}_t$.

• We have this equivalence : (PFE) $\frac{\Phi_{f-t}}{\Phi_{f}^{t}}$ (IPFE)

 \Rightarrow Almost sure existence of unique global solutions to (PFE) with a generalized global flow

$$\Phi_t = \Phi^f_t \circ \tilde{\Phi}_t.$$

To get rid of almost sureness, we select a special choice of family of density matrices which is coherent states centered at initial data.

Probabilistic representation

The crucial tool that was used for constructing the above generalized global flow for (IPFE) is the following :

Probabilistic representation

There exists
$$\eta \in \mathscr{P}(X^{\sigma} \times \mathcal{C}(\overline{l}, X^{\sigma}))$$
 satisfying :

(i)
$$\eta(\mathcal{F}_l) = 1$$
 where

$$\mathcal{F}_{I} := \left\{ (u_{0}, u(\cdot)) \in X^{\sigma} \times \mathcal{C}(\overline{I}, X^{\sigma}) : u(\cdot) \text{ satisfies (IPFE) on } I \text{ with } u_{0} \right\}$$

(ii) $\tilde{\mu}_t = (e_t)_{\sharp} \eta$, $\forall t \in I$, where the map

$$\begin{array}{cccc} e_t : X^{\sigma} \times \mathcal{C}(\bar{l}, X^{\sigma}) & \longrightarrow & X^{\sigma} \\ (u_0, u(\cdot)) & \longmapsto & e_t(u_0, u(\cdot)) = u(t) \end{array}$$

is the evaluation map.

Generalization : Z. Ammari, S. Farhat and V. Sohinger "Almost sure existence of global solutions for general initial value problems."

Global well-posedness of the particle-field equation

Let u₀ = (z₀, α₀) ∈ X^σ and consider the coherent vectors repectively in the particle and Fock spaces

$$W_1(\frac{\sqrt{2}}{i\hbar}z_0)\psi, \qquad W_2(\frac{\sqrt{2}}{i\hbar}\alpha_0)\Omega$$

- ψ(x) = (πħ)^{-dn/4} e^{-x²/2ħ} ∈ L²(ℝ^{dn}, dx) is the normalized gaussian function on the particles.
- Ω is the **vacuum vector** on the Fock space.

Then, the following projection

$$\mathcal{C}_{\hbar}(u_{0}) = \left| W_{1}(\frac{\sqrt{2}}{i\hbar}z_{0})\psi \otimes W_{2}(\frac{\sqrt{2}}{i\hbar}\alpha_{0})\Omega \right\rangle \left\langle W_{1}(\frac{\sqrt{2}}{i\hbar}z_{0})\psi \otimes W_{2}(\frac{\sqrt{2}}{i\hbar}\alpha_{0})\Omega \right|$$

gives rise to a family of coherent states.

We have

 $\mathcal{M}(\mathcal{C}_{\hbar}(u_0), \hbar \in (0, 1)) = \{\delta_{u_0}\}$: Dirac measure centered on u_0

▶ Since $u_0 \in X^{\sigma}$, this implies

 $(\mathcal{C}_{\hbar}(u_0))_{\hbar}$ satisfies (Q_0) and (Q_1) .

Let $u_0 \in X^{\sigma}$ and let $\varrho_{\hbar} = C_{\hbar}(u_0)$.

▶ Apply Theorem A with the measure $\tilde{\mu}_t$ to get the

GWP of (IPFE) $\tilde{\mu}_0$ -almost all initial data in X^{σ}

with a generalized global flow $\tilde{\Phi}_t$.

We have also

$$\tilde{\mu}_0(\mathfrak{G}) = \delta_{u_0}(\mathfrak{G}) = 1.$$

This implies $u_0 \in \mathfrak{G}$.

▶ GWP of (PFE) with a generalized global flow

$$\Phi_t(u_0) = \Phi_t^f \circ \tilde{\Phi}_t(u_0),$$

The classical limit : Validity of Bohr's correspondance

Goal

To prove the second property : $\mu_t = (\Phi_t)_{\sharp} \mu_0$, $\Phi_t = \Phi_t^f \circ \tilde{\Phi}_t$.

We have, by probabilistic representation, that

$$\tilde{\mu}_t = (\tilde{\Phi}_t)_{\sharp} \tilde{\mu}_0.$$

The important tool to do that is the following link :

 $\mathcal{M}(\varrho_{\hbar}(t), \hbar \in (0, 1)) = \left\{ (\Phi^{f}_{t})_{\sharp} \tilde{\mu}_{t}, \ \tilde{\mu}_{t} \in \mathcal{M}(\tilde{\varrho}_{\hbar}(t), \ \hbar \in (0, 1)) \right\} = _{\{\tilde{\mu}_{t}\}}$

This implies using the two boxes :

$$\mu_t = (\Phi_t^f)_{\sharp} \tilde{\mu}_t = (\Phi_t^f \circ \tilde{\Phi}_t)_{\sharp} \tilde{\mu}_0$$
$$= (\Phi_t)_{\sharp} \tilde{\mu}_0 = (\Phi_t)_{\sharp} \mu_0$$

and where we have used $\tilde{\mu}_0 = \mu_0$ as a consequence of

$$\tilde{\varrho}_{\hbar}(0) = \varrho_{\hbar}(0) = \varrho_{\hbar}$$

Globally defined quantum dynamical system

The last part of the Duhamel formula is well-defined :

$$\begin{aligned} &\operatorname{Tr}\left(\frac{1}{\hbar}\left[\mathcal{W}(\xi),\hat{H}_{k}(\boldsymbol{s})\right]\tilde{\varrho}_{\hbar}(\boldsymbol{s})\right) \\ &=\operatorname{Tr}\left[\underbrace{\mathcal{S}^{-1} \ B_{0}(\boldsymbol{s},\hbar,\xi) \ \mathcal{S}^{-1}}_{\in\mathcal{L}(\mathcal{H})}\underbrace{\mathcal{S} \ \mathcal{W}(\xi) \ \mathcal{S}^{-1}}_{\in\mathcal{L}(\mathcal{H})}\underbrace{\mathcal{S} \ \tilde{\rho}_{\hbar}(\boldsymbol{s}) \ \mathcal{S}}_{\in\mathcal{L}^{1}(\mathcal{H})}\right] \\ &+\hbar\operatorname{Tr}\left[\underbrace{\mathcal{S}^{-1} \ B_{1}(\hbar,\boldsymbol{s},\xi) \ \mathcal{S}^{-1}}_{\in\mathcal{L}(\mathcal{H})}\underbrace{\mathcal{S} \ \mathcal{W}(\xi) \ \mathcal{S}^{-1}}_{\in\mathcal{L}(\mathcal{H})}\underbrace{\mathcal{S} \ \tilde{\rho}_{\hbar}(\boldsymbol{s}) \ \mathcal{S}}_{\in\mathcal{L}^{1}(\mathcal{H})}\right] \end{aligned}$$

- \rightarrow The second term in the last two lines is a consequence of Weyl -Heisenberg operator estimates;
- → The last term is a consequence of Assumption (Q_0) and (Q_1) together with equivalence between \hat{H} and \hat{H}_0 .

The next step is to pass to the limit in the Duhamel formula as \hbar tends to zero. So that, we prove that there exists a subsequence $(\hbar_\ell)_{\ell \in \mathbb{N}}$ such that

 $\mathcal{M}(\tilde{\varrho}_{\hbar_{\ell}}(t), \ \ell \in \mathbb{N}) = \{ \text{Singelton} \}$

Proposition. (Wigner measure for all times)

Let $(\varrho_{\hbar})_{\hbar}$ be a family of density matrices satisfying (Q_0) and (Q_1) . Then, for any sequence $(\hbar_n)_{n\in\mathbb{N}}$ such that $\hbar_n \xrightarrow[h\to\infty]{} 0$, we can extract a subsequence $(\hbar_\ell)_{\ell\in\mathbb{N}}$ such that $\hbar_\ell \xrightarrow[\ell\to\infty]{} 0$ and a family of Borel probability measures $(\tilde{\mu}_t)_{t\in\mathbb{R}}$ such that for all $t\in\mathbb{R}$,

 $\mathcal{M}(\tilde{\varrho}_{\hbar_{\ell}}(t); \ \ell \in \mathbb{N}) = {\tilde{\mu}_t}.$

Moreover, for any compact interval, there exists C > 0 such that for $t \in J$:

$$\int_{X^0} \|u\|_{X^{\sigma}}^2 d\tilde{\mu}_t(u) \leq C.$$

 To prove the above proposition, we have to use the following result [Z. Ammari, F. Nier (2008)]

Let $(\varrho_{\hbar})_{\hbar \in (0,1)}$ satisfies : $\exists C > 0$, $\forall \hbar \in (0,1)$, $\operatorname{Tr}[\varrho_{\hbar} (\hat{\rho}^2 + \hat{q}^2 + \hat{N}_{\hbar})] < C$. Then : $\forall \hbar_n \xrightarrow[n \to \infty]{} 0$, $\exists \hbar_\ell \xrightarrow[\ell \to \infty]{} 0$; $\mathcal{M}(\varrho_{\hbar_\ell}, \ell \in \mathbb{N}) = \{\mu\}$.

Sketch of the proof :

Recall that

$$\exists C_0 > 0, \ \forall \hbar \in (0,1), \quad \operatorname{Tr}[\varrho_\hbar \ d\Gamma(\omega^{2\sigma})] \le C_0, \tag{Q}_0$$

$$\exists C_1 > 0, \ \forall \hbar \in (0,1), \quad \mathrm{Tr}[\varrho_\hbar \ (\hat{q}^2 + \hat{p}^2)] \leq C_1. \tag{Q}_1$$

▶ Let $(\varrho_{\hbar})_{\hbar \in (0,1)}$ satisfies (Q_0) and (Q_1) . Then, the family of states

 $(\tilde{\varrho}_h(t))_{\hbar\in(0,1)}$

satisfy (Q_0) and (Q_1) uniformly for any $t \in \mathbb{R}$ in every arbitrary compact time interval.

Indeed, we have the following inequalities with some C_1 , C_2 , $C_3 > 0$

- $\blacktriangleright \ \mathrm{Tr}\big[\frac{\tilde{\varrho}_{\hbar}(t)}{\tilde{\varrho}_{\hbar}(t)} \, d\Gamma(\omega^{2\sigma}) \big] \leq C_1 \ \mathrm{Tr}\big[\frac{\varrho_{\hbar}}{\ell} \left(d\Gamma(\omega^{2\sigma}) + 1 \right) \big] e^{C_2 |t|} \leq C_3.$
- $\blacktriangleright \operatorname{Tr} \big[\frac{\tilde{\varrho}_{\hbar}(t)}{\tilde{\varrho}_{\hbar}(t)} \left(\hat{p}^2 + \hat{q}^2 \right) \big] \leq C_1 \operatorname{Tr} \big[\frac{\varrho_{\hbar}}{\ell_{\hbar}} \left(\hat{H}_0 + \hat{p}^2 + \hat{q}^2 + 1 \right) \big] e^{C_2 |t|} \leq C_3,$

For each fixed $t_0 \in \mathbb{R}$:

$$\mathcal{M}(\tilde{\varrho}_{h_\ell}(\underline{\mathfrak{l}}_0);\ \ell\in\mathbb{N})=\{\tilde{\mu}_{\underline{\mathfrak{l}}_0}\},\quad \int_{X^0}\underbrace{\|u\|_{X^\sigma}^2}_{=\rho^2+q^2+\|\alpha\|_{G^\sigma}^2}d\tilde{\mu}_{\underline{\mathfrak{l}}_0}(u)\leq C.$$

For all $\mu \in \mathcal{M}(\varrho_{\hbar}, \hbar \in (0, 1))$, we have the implications below

$$\blacktriangleright \quad \mathrm{Tr}[\varrho_{\hbar}(\hat{\rho}^2 + \hat{q}^2)] \leq C \Rightarrow \quad \int_{X^0} (\rho^2 + q^2) \ d\mu(u) \leq C;$$

•
$$\operatorname{Tr}[\varrho_{\hbar} \hat{N}_{\hbar}] \leq C \Rightarrow \int_{X^0} \|\alpha\|_{L^2}^2 d\mu(u) \leq C;$$

►
$$\operatorname{Tr}[\varrho_{\hbar} d\Gamma(\omega^{2\sigma})] \leq C \Rightarrow \int_{X^0} \|\alpha\|_{\mathcal{G}^{\sigma}}^2 d\mu(u) \leq C.$$

We use the above localization estimates, the diagonal extraction method and the prokhorov's theorem to prove for all times.

Convergence of the interacting terms

Let
$$\varphi(k) := 2\pi i k. q_{0j} F_j(k)$$
, we have for $u = (p, q, \alpha) \in X^0$
 $\left| \operatorname{Tr}[a^*_{\hbar_\ell}(e^{-2\pi i k \cdot \hat{q}_j} \tilde{F}_j(\hbar_\ell, k)) \mathcal{W}(\xi) \tilde{\varrho}_{\hbar_\ell}(s) \right| - \int_{X^0} \langle \alpha, e^{-2\pi i k \cdot q_j} \varphi(.) \rangle e^{Q(\xi, u)} d\tilde{\mu}_s(u) \right|$

$$+ \left| \operatorname{Tr}[\boldsymbol{a}_{\hbar_{\ell}}^{*}(\boldsymbol{e}^{-2\pi i \boldsymbol{k} \cdot \hat{\boldsymbol{q}}_{j}} \boldsymbol{\varphi}(\boldsymbol{\cdot})) \mathcal{W}(\xi) \, \tilde{\varrho}_{\hbar_{\ell}}(\boldsymbol{s})] - \int_{\boldsymbol{X}^{0}} \langle \boldsymbol{\alpha}, \boldsymbol{e}^{-2\pi i \boldsymbol{k} \cdot \boldsymbol{q}_{j}} \boldsymbol{\varphi}(\boldsymbol{\cdot}) \rangle \, \boldsymbol{e}^{\boldsymbol{Q}(\xi, \boldsymbol{u})} d\tilde{\mu}_{\boldsymbol{s}}(\boldsymbol{u}) \right| \, \cdots \, (\boldsymbol{2}) \to \boldsymbol{0}$$

- \blacktriangleright (1) goes to zero as $\ell \to \infty$ by lebesgue dominated convergence theorem.
- ▶ (2) goes to zero as $\ell \to \infty$ by exploiting the following convergence for all $\varphi \in L^2(\mathbb{R}^d_k)$:

$$\lim_{\ell \to \infty} \operatorname{Tr} \left[a_{\hbar_{\ell}} (e^{-2\pi i k \cdot \hat{q}_{j}} \varphi) \mathcal{W}(\xi) \varrho_{\hbar_{\ell}} \right] = \int_{X^{0}} \langle e^{-2\pi i k \cdot q_{j}} \varphi, \alpha \rangle_{L^{2}(\mathbb{R}^{d}_{k})} e^{\mathcal{Q}(\xi, u)} d\mu(u)$$
$$\lim_{\ell \to \infty} \operatorname{Tr} \left[a_{\hbar_{\ell}}^{*} (e^{-2\pi i k \cdot \hat{q}_{j}} \varphi) \mathcal{W}(\xi) \varrho_{\hbar_{\ell}} \right] = \int_{X^{0}} \langle \alpha, e^{-2\pi i k \cdot q_{j}} \varphi \rangle_{L^{2}(\mathbb{R}^{d}_{k})} e^{\mathcal{Q}(\xi, u)} d\mu(u)$$

Equivalence between characteristic and Liouville equation

 $\mathcal{M}(\tilde{\varrho}_{\hbar_{\ell}}(t), \ \ell \in \mathbb{N}) = {\tilde{\mu}_t}.$

Lemma [Regular properties of the Wigner Measure $\tilde{\mu}_t$]

The Wigner measures $(\tilde{\mu}_t)_{t \in \mathbb{R}}$ extracted in above arguments satisfy

- (i) $\tilde{\mu}_t(X^{\sigma}) = 1$ i.e. $\tilde{\mu}_t$ concentrates on X^{σ} .
- (ii) $\mathbb{R} \ni t \mapsto \tilde{\mu}_t \in \mathcal{P}(X^{\sigma})$ is weakly narrowly continuous.

Lemma [Continuity, integrability and boundedness]

Assume (C_0) and (C_1) are satisfied.

Then, the vector field $v : \mathbb{R} \times X^{\sigma} \longrightarrow X^{\sigma}$ is **continuous** and **bounded** on bounded subsets of $\mathbb{R} \times X^{\sigma}$. Moreover, for any bounded open interval *I*,

$$\int_{I}\int_{X^{\sigma}}\|\boldsymbol{v}(t,\boldsymbol{u})\|_{X^{\sigma}} \ d\tilde{\mu}_{t}(\boldsymbol{u}) \ dt < +\infty. \tag{Int}$$

Equivalence between Liouville equation and Characteristic equation

 $\{\tilde{\mu_t}\}_{t \in I}$ solves the Liouville equation (L) $\Leftrightarrow \{\tilde{\mu_t}\}_{t \in I}$ solves the characteristic equation (C).