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General introduction The quantum dynamical system Proof of the main results

Purposes

1 Bohr’s correspondence principle :

Quantum dynamic
Nelson model

−→
ℏ→0

Classical dynamic
Particle-field equation

We study the transition by Wigner measure approach.

2 To exhibit the global well-posedness for the
particle-field equation.
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The classical system

Consider n fixed particles in Rd with d ∈ N∗, interacting with scalar meson
field. The particle-field system reads for all j ∈ {1, · · · , n}

∂t pj = −∇qj V (q)−
∫
Rd

2πik
χ(k)√
ω(k)

[
α(k)e2πik·qj − α(k)e−2πik·qj

]
dk ;

∂t qj = ∇fj (pj ) ;

i∂tα = ω(k) α(k) +
n∑

j=1

χ(k)√
ω(k)

e−2πik·qj

(PFE)

▶ qj , pj are positions-momenta and Mj are the masses.

▶ α : Rd → C describes the field, χ : Rd → R is the form factor.

▶ V : Rdn → R is the potential.

▶ fj(pj) =

{√
p2

j + M2
j (relativistic)

p2
j /2Mj (non-relativistic)

.

▶ ω(k) =
√

k2 + mf
2 ≥ mf > 0 is the dispersion relation ;
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The associated Hamiltonian is defined as follows

H(p, q, α) =
n∑

j=1

fj(pj) + V (q1, · · · , qn) +

∫
Rd
α(k) ω(k) α(k) dk

+
n∑

j=1

∫
Rd

χ(k)√
ω(k)

[
α(k)e2πik·qj + α(k)e−2πik·qj

]
dk .

The solution u = (p, q, α) belongs to the classical phase-space :

Xσ := Rdn
p × Rdn

q × Gσ,

where Gσ is the weighted L2 Lebesgue space endowed with the norm :

∥α∥2
Gσ = ⟨α, ω(·)2σ α⟩L2 = ∥ωσ α∥2

L2 .
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The associated Hamiltonian is defined as follows

H(p, q, α) =
n∑

j=1

fj (pj ) + V (q1, · · · , qn) +

∫
Rd
α(k) ω(k) α(k) dk︸ ︷︷ ︸
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χ(k)√
ω(k)

[
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L2 .

The energy space is X 1/2. We will give our main results in the space Xσ with
σ ∈ [ 1

2 , 1].
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The Quantum system : Nelson Hamiltonian

The Nelson Hamiltonian is defined as follows

Ĥ =
n∑

j=1

fj(p̂j) + V (q̂) + dΓ(ω) +
n∑

j=1

(aℏ + a∗
ℏ)(

χ√
ω

e−2πk·q̂j ).

The Hilbert space of the quantized particle-field system is

H := L2(Rdn
x ,C)⊗ Γs(L2(Rd

k ,C)) ,

where Γs is the symmetric Fock space

Γs(L2(Rd
k ,C)) :=

+∞⊕
m=0

L2(Rd ,C)
⊗

s m ≃
+∞⊕
m=0

L2
s(Rdm,C).

We denote by Fm := L2
s(Rdm,C) the symmteric L2 space over Rdm.

Remark : Ĥ is a self adjoint operator.
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▶ p̂j = −iℏ∇xj is the momentum operator ;

▶ q̂j = xj is the position operator ;

▶ dΓ(ω) : H → H is the free field Hamiltonian

dΓ(ω) |Fm= ℏ
m∑

j=1

ω(kj );

▶ aℏ and a∗
ℏ are the generalized ℏ scaled annihilation-creation operators

are defined as follows :

for every ψ = {ψm}m≥0 ∈ H and F (k) :=
n∑

j=1

χ(k)√
ω(k)

e−2πik·q̂j

[aℏ(F )ψ(x)]m(Km) =
√

ℏ(m + 1)
∫
Rd

F (k) ψm+1(x ;Km, k) dk ;

[a∗
ℏ(F )ψ(x)]m(Km) =

√
ℏ

√
m

m∑
j=1

F (kj ) ψ
m−1(x ; k1, ·, k̂j , ·, km).
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Assumptions

• On V and χ :

V ∈ C2
b(Rdn;R) (C0)

ω(·)
3
2 −σχ(·) ∈ L2(Rd ;R), σ ∈ [

1
2
, 1]. (C1)

• Let (ϱℏ)ℏ∈(0,1) be a family of density matrices on H of the particle-field
quantum system. We assume that :

∃C0 > 0, ∀ℏ ∈ (0, 1), Tr[ϱℏ dΓ(ω2σ)] ≤ C0, (Q0)

∃C1 > 0, ∀ℏ ∈ (0, 1), Tr[ϱℏ (q̂2 + p̂2)] ≤ C1. (Q1)

Question : Propagation of estimates (Q0) and (Q1) uniformly in times?
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Global well-posedness of (PFE)

Theorem [S. Farhat, 2023]

Let σ ∈ [ 1
2 , 1] and assume (C0) and (C1) hold true.

Then, for any initial data u0 ∈ Xσ, there exists a unique global strong solution
u(·) ∈ C(R,Xσ) ∩ C1(R,Xσ−1) of the particle-field equation (PFE). Moreover,
the generalized global flow

Φt : Xσ −→ Xσ

u0 7−→ u(t).

is Borel measurable.

▶ The proof of the above result still require some classical properties : for
example uniqueness of solutions to the particle-field equation and so on.

▶ Assumptions (C0) and (C1) amount to these properties.
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Wigner measures

Definition [Weyl operator]

The Weyl operator over the entire interacting Hilbert space H

ξ = (p, q, α) ∈ X 0 7−→ W(ξ) := ei(p·q̂−q·p̂) ⊗ e
i√
2
(aℏ(α)+a∗ℏ(α))

Definition [Wigner measure]

A Borel probability measure µ over X 0 is a Wigner measure of a family of density
matrices (ϱℏ)ℏ∈(0,1) on the Hilbert space H if and only if there exists a subset
E ⊂ (0, 1) with 0 ∈ E such that for any ξ = (p0, q0, α0), ξ̃ = (2πq0,−2πp0,

√
2πα0) ∈ X 0 :

lim
ℏ→0,ℏ∈E

Tr

[
W(ξ̃) ϱh

]
=

∫
X0

e2πiℜe⟨ξ,u⟩X0 dµ(u) = F−1[µ](ξ).

▶ Denote by M(ϱℏ, ℏ ∈ E) the set of all Wigner measures of (ϱℏ)ℏ∈E .

▶ M(ϱℏ, ℏ ∈ E) ̸= ϕ if some assumptions on (ϱℏ)ℏ are imposed.

▶ In our approach, we need to prove M(ϱℏ, ℏ ∈ E) = {Singleton} up to extraction
of subsequence?
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Classical limit : Bohr Correspondence principle

Theorem [S. Farhat, 2023]

Let σ ∈ [ 1
2 , 1] and assume (C0) and (C1) hold true. Let (ϱℏ)ℏ∈(0,1) be a family of density matrices

on H satisfying (Q0) and (Q1). Assume that

M(ϱℏℓ
, ℓ ∈ N) = {µ0}.

Then for all times t ∈ R, we have

M(e
−i t

ℏℓ
Ĥ
ϱℏℓ

e
i t
ℏℓ

Ĥ︸ ︷︷ ︸
:=ϱℏℓ

(t)

, ℓ ∈ N) = {µt},

where µt ∈ P(X 0) satisfies

(i) µt (Xσ) = 1.

(ii) µt = (Φt )♯µ0, where Φt is the global flow of the particle-field equation.

The convergence is rephrased according to the following commutative diagram :

ϱℏ
e−i t

ℏ Ĥℏ ( · ) ei t
ℏ Ĥℏ

−−−−−−−−−−−−−→ ϱℏ(t)yℏ→0
yℏ→0

µ0 −−−−−−−−−−−→
(Φt ) ♯ ( · )

µt
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General introduction The quantum dynamical system Proof of the main results

The quantum dynamical system

▶ We work with the interaction representation with

ϱ̃ℏ(t) := ei t
ℏ dΓ(ω)ϱℏ(t) e−i t

ℏ dΓ(ω)

▶ The Wigner measures of ϱ̃ℏ(t) are the limits of the map

lim
ℏ→0

Tr
[
W(ξ̃) ϱ̃ℏ(t)

]︸ ︷︷ ︸
(1)

=

∫
X0

e2πiℜe⟨ξ,u⟩d µ̃t (u). (1)

▶ For all ξ = (p0, q0, α0) ∈ X 1/2, for all ℏ ∈ (0, 1) and for all t , t0 ∈ R, the quantum
dynamical system of (1) is

Tr

[
W(ξ)ϱ̃ℏ(t)

]
= Tr

[
W(ξ)ϱ̃ℏ(t0)

]
− i

∫ t

t0
Tr

(1
ℏ
[
W(ξ), Ĥk (s)

]
ϱ̃ℏ(s)

)
ds
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General introduction The quantum dynamical system Proof of the main results

The commutator expansion

The commutator in the Duhamel formula can be expanded as follows :

1
ℏ
[
W(ξ), Ĥk (s)

]
=

[
B0(s, ℏ, ξ)

↑
Main
term

+ ℏ B1(s, ℏ, ξ)
↑

Remainder
term

]
W(ξ).

We have with Ĥ0 = dΓ(ω) +
n∑

j=1

fj(p̂j) and S = (Ĥ0 + 1)1/2

∥S−1B0(s, ℏ, ξ)S−1∥L(H) ≤ ∥ξ∥X0 ∥χ∥L2 ;

∥S−1B1(s, ℏ, ξ)S−1∥L(H) ≤ ∥ξ∥2
X0 ∥ω1/2χ∥L2 .

Globally well-defined quantum dynamic : Plugging the above expansion
and exploiting the uniform estimates in the last part of the Duhamel formula.
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General introduction The quantum dynamical system Proof of the main results

A single Wigner measure for all times

The next step is to prove that we can extract a subsequence (ℏℓ)ℓ∈N and a
family of Borel probability measures (µ̃t)t∈R such that for all t ∈ R

M(ϱ̃ℏℓ(t), ℓ ∈ N) = {µ̃t}

Ideas of proof :

▶ Propagation of quantum estimates : (Q0) and (Q1)

▶ Tr
[
ϱ̃ℏ(t) dΓ(ω2σ)

]
≤ C1 Tr

[
ϱℏ (dΓ(ω2σ) + 1)

]
eC2|t| ≤ C3.

▶ Tr
[
ϱ̃ℏ(t) (p̂2 + q̂2)

]
≤ C1 Tr

[
ϱℏ (Ĥ0 + p̂2 + q̂2 + 1)

]
eC2|t| ≤ C3,

▶ Diagonal extraction method and Prokhorov theorem to get uniformity in time.
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General introduction The quantum dynamical system Proof of the main results

Convergence

lim
ℓ→∞

Tr[W(ξ) ϱ̃ℏℓ (t)] = lim
ℓ→∞

Tr[W(ξ) ϱ̃ℏℓ (t0)]

− i
∫ t

t0
lim

ℓ→∞
Tr[B0(s, ℏℓ, ξ) W(ξ) ϱ̃ℏℓ (s)] ds

Tr[B0(s, ℏℓ, ξ) W(ξ) ϱ̃ℏℓ (s)] = Non-interacting terms + Interacting terms.

▶ Non-interacting terms

= −
n∑

j=1

[
Tr[∇qj V (q̂) · q0j W(ξ) ϱ̃ℏℓ (s)] + Tr[∇fj (p̂j ) · p0j W(ξ) ϱ̃ℏℓ (s)]

]
.

▶ Interacting terms

= +
n∑

j=1

Tr[(aℏℓ + a∗
ℏℓ )(e

−2πik·q̂j F̃j (ℏℓ, k)) W(ξ) ϱ̃ℏℓ (s)]

+
n∑

j=1

i
√

2

(
Tr[(⟨α0, e−2πik·q̂j Fj ⟩L2 − ⟨e−2πik·q̂j Fj , α0⟩L2 ) W(ξ) ϱ̃ℏℓ (s)]

with F̃j (ℏℓ, k) =
( e

(2πik·q0j ) ℏℓ−1
ℏℓ

)
Fj (k).
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General introduction The quantum dynamical system Proof of the main results

The characteristic equations
▶ The limit of the Duhamel is formulated as follows for all t , t0 ∈ R and y ∈ Xσ

∫
X0

e2πiℜe⟨y,u⟩Xσ dµ̃t (u) =
∫

X0
e2πiℜe⟨y,u⟩Xσ dµ̃t0 (u)

+ 2πi
∫ t

t0

∫
X0

e2πiℜe⟨y,u⟩Xσ ℜe⟨v(s, u), y⟩Xσ dµ̃s(u) ds,
(C)

(IPFE) : the interaction representation of (PFE)
du
dt

= v(t , u(t)) = Φf
−t ◦ N︸︷︷︸

Non-linearity of (PFE)

◦Φf
t (u(t)),

u(0) = u0 ∈ Xσ .

(IPFE)

▶ Φf
t : Xσ −→ Xσ is the free flow defined as follows

Φf
t (p, q, α) = (p, q, e−itω(k)α).

▶ The non-autonomous vector field v is as follows v : R× Xσ → Xσ satisfying∫
I

∫
Xσ

∥v(t , u)∥Xσ d µ̃t (u) dt < +∞. (Int)
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General introduction The quantum dynamical system Proof of the main results

Equivalence between characteristic and Liouville equation

Definition : Liouville equation

A family of Borel probability measures {µ̃t}t∈I on Xσ is a measure-valued
solution of the Liouville equation associated to the vector field
v : R× Xσ → Xσ if and only if for all ϕ ∈ C∞

0,cyl(I × Xσ) :∫
I

∫
Xσ

{∂tϕ(t , u) + ℜe⟨v(t , u),∇ϕ(t , u)⟩Xσ}d µ̃t(u) dt = 0, (L)

C∞
0,cyl(I × Xσ) is the cylindrical functional space.

Then, thanks to the regular properties of µ̃t and of the vector field v(t , u), we
have the following are equivalent :

Equivalence between Liouville equation and Characteristic equation

{µ̃t}t∈I solves the Liouville equation (L) ⇔{µ̃t}t∈I solves the characteristic equation (C).
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Proof of the main results

▶ Using measure theoretical techniques, we have :
⇒ Almost sure existence of unique global solutions to (PFE) with a
generalized global flow

Φt = Φf
t ◦ Φ̃t .

▶ To get rid of almost sureness, we select a special choice of family of
density matrices which is coherent states centered at initial data.
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Almost sure existence result

Theorem 2 [Z. Ammari, M. Falconi and F. Hiroshima, 2022]

In a separable Hilbert space H, consider the initial value problem (IPFE) with a vector
field v : R×H → H continuous and bounded on bounded sets. Let I ∋ 0 be a bounded
open interval and assume

(i) ∃t ∈ R → µt ∈ P(H) a weakly narrowly continuous solution to (L) satisfying∫
I

∫
H

∥v(t , u)∥H dµt (u) dt < +∞. (Int)

(ii) Uniqueness of the solutions to (IPFE) over any I.
Then for µ0-almost all initial conditions x in H, there exists a (unique) global strong
solution (i.e. u(·) ∈ C1(R,H)) to (IPFE). Moreover, the set

G := {x ∈ H : ∃u(·) a global strong solution of (IPFE) with u(0) = x},

is Borel subset of H with µ0(G) = 1 and for any time t ∈ R the map

Φt : G −→ G
x 7−→ Φt (x) = u(t).

is Borel measurable.
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Existence of unique global solutions

▶ Apply Theorem 2 with the following choices :
− µt ≡ µ̃t ;
− H ≡ Xσ .

⇒ Almost sure existence of unique global solutions for (IPFE) with a
generalized global flow Φ̃t .

▶ We have this equivalence : (PFE)
Φf

−t−−−⇀↽−−−
Φf

t

(IPFE)

⇒ Almost sure existence of unique global solutions to (PFE) with a
generalized global flow

Φt = Φf
t ◦ Φ̃t .

▶ To get rid of almost sureness, we select a special choice of family of
density matrices which is coherent states centered at initial data.
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Probabilistic representation

The crucial tool that was used for constructing the above generalized global
flow for (IPFE) is the following :

Probabilistic representation

There exists η ∈ P(Xσ × C(I,Xσ)) satisfying :

(i) η(FI) = 1 where

FI :=
{
(u0, u(·)) ∈ Xσ × C(I,Xσ) : u(·) satisfies (IPFE) on I with u0

}
(ii) µ̃t = (et)♯η, ∀t ∈ I, where the map

et : Xσ × C(I,Xσ) −→ Xσ

(u0, u(·)) 7−→ et(u0, u(·)) = u(t).

is the evaluation map.

Generalization : Z. Ammari, S. Farhat and V. Sohinger "Almost sure exis-
tence of global solutions for general initial value problems."
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Global well-posedness of the particle-field equation
▶ Let u0 = (z0, α0) ∈ Xσ and consider the coherent vectors repectively in

the particle and Fock spaces

W1(

√
2

iℏ
z0)ψ, W2(

√
2

iℏ
α0)Ω

▶ ψ(x) = (πℏ)−dn/4 e−x2/2ℏ ∈ L2(Rdn, dx) is the normalized gaussian
function on the particles.

▶ Ω is the vacuum vector on the Fock space.

Then, the following projection

Cℏ(u0) =
∣∣∣W1(

√
2

iℏ z0)ψ ⊗ W2(
√

2
iℏ α0)Ω

〉〈
W1(

√
2

iℏ z0)ψ ⊗ W2(
√

2
iℏ α0)Ω

∣∣∣
gives rise to a family of coherent states.

▶ We have

M(Cℏ(u0), ℏ ∈ (0, 1)) = {δu0} : Dirac measure centered on u0

▶ Since u0 ∈ Xσ, this implies

(Cℏ(u0))ℏ satisfies (Q0) and (Q1).
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Let u0 ∈ Xσ and let ϱℏ = Cℏ(u0).

▶ Apply Theorem A with the measure µ̃t to get the

GWP of (IPFE) µ̃0-almost all initial data in Xσ

with a generalized global flow Φ̃t .

▶ We have also

µ̃0(G) = δu0(G) = 1.

This implies u0 ∈ G.

▶ GWP of (PFE) with a generalized global flow

Φt(u0) = Φf
t ◦ Φ̃t(u0),
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The classical limit : Validity of Bohr’s correspondance

Goal

To prove the second property : µt = (Φt)♯µ0, Φt = Φf
t ◦ Φ̃t .

We have, by probabilistic representation, that

µ̃t = (Φ̃t)♯µ̃0.

The important tool to do that is the following link :

M(ϱℏ(t), ℏ ∈ (0, 1))
={µt}

=
{
(Φf

t )♯µ̃t , µ̃t ∈ M(ϱ̃ℏ(t), ℏ ∈ (0, 1))
={µ̃t}

}
This implies using the two boxes :

µt = (Φf
t )♯µ̃t = (Φf

t ◦ Φ̃t)♯µ̃0

= (Φt)♯µ̃0 = (Φt)♯µ0

and where we have used µ̃0 = µ0 as a consequence of

ϱ̃ℏ(0) = ϱℏ(0) = ϱℏ.
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Globally defined quantum dynamical system

The last part of the Duhamel formula is well-defined :

Tr

(1
ℏ
[
W(ξ), Ĥk (s)

]
ϱ̃ℏ(s)

)
= Tr

[
S−1 B0(s, ℏ, ξ) S−1︸ ︷︷ ︸

∈L(H)

S W(ξ) S−1︸ ︷︷ ︸
∈L(H)

S ρ̃ℏ(s) S︸ ︷︷ ︸
∈L1(H)

]
+ ℏTr

[
S−1 B1(ℏ, s, ξ) S−1︸ ︷︷ ︸

∈L(H)

S W(ξ) S−1︸ ︷︷ ︸
∈L(H)

S ρ̃ℏ(s) S︸ ︷︷ ︸
∈L1(H)

]

→ The second term in the last two lines is a consequence of Weyl
-Heisenberg operator estimates ;

→ The last term is a consequence of Assumption (Q0) and (Q1) together
with equivalence between Ĥ and Ĥ0.

The next step is to pass to the limit in the Duhamel formula as ℏ tends to
zero. So that, we prove that there exists a subsequence (ℏℓ)ℓ∈N such that

M(ϱ̃ℏℓ(t), ℓ ∈ N) = {Singelton}
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A single Wigner measure for all times

Proposition. (Wigner measure for all times)

Let (ϱℏ)ℏ be a family of density matrices satisfying (Q0) and (Q1). Then, for any
sequence (ℏn)n∈N such that ℏn −→ 0

n→∞
, we can extract a subsequence (ℏℓ)ℓ∈N such

that ℏℓ −→ 0
ℓ→∞

and a family of Borel probability measures (µ̃t )t∈R such that for all t ∈ R,

M(ϱ̃ℏℓ (t); ℓ ∈ N) = {µ̃t}.

Moreover, for any compact interval, there exists C > 0 such that for t ∈ J :∫
X0

∥u∥2
Xσd µ̃t (u) ≤ C.

▶ To prove the above proposition, we have to use the following result [Z.
Ammari, F. Nier (2008)]

Let (ϱℏ)ℏ∈(0,1) satisfies : ∃C > 0, ∀ℏ ∈ (0, 1), Tr[ϱℏ (p̂2 + q̂2 + N̂ℏ)] < C.

Then : ∀ ℏn −→ 0
n→∞

, ∃ℏℓ −→ 0
ℓ→∞

; M(ϱℏℓ , ℓ ∈ N) = {µ}.
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Sketch of the proof :

Recall that

∃C0 > 0, ∀ℏ ∈ (0, 1), Tr[ϱℏ dΓ(ω2σ)] ≤ C0, (Q0)

∃C1 > 0, ∀ℏ ∈ (0, 1), Tr[ϱℏ (q̂2 + p̂2)] ≤ C1. (Q1)

▶ Let (ϱℏ)ℏ∈(0,1) satisfies (Q0) and (Q1). Then, the family of states

(ϱ̃h(t))ℏ∈(0,1)

satisfy (Q0) and (Q1) uniformly for any t ∈ R in every arbitrary compact
time interval.

Indeed, we have the following inequalities with some C1, C2, C3 > 0

▶ Tr
[
ϱ̃ℏ(t) dΓ(ω2σ)

]
≤ C1 Tr

[
ϱℏ (dΓ(ω2σ) + 1)

]
eC2|t| ≤ C3.

▶ Tr
[
ϱ̃ℏ(t) (p̂2 + q̂2)

]
≤ C1 Tr

[
ϱℏ (Ĥ0 + p̂2 + q̂2 + 1)

]
eC2|t| ≤ C3,
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▶ For each fixed t0 ∈ R :

M(ϱ̃ℏℓ(t0); ℓ ∈ N) = {µ̃t0},
∫

X0
∥u∥2

Xσ︸ ︷︷ ︸
=p2+q2+∥α∥2

Gσ

d µ̃t0(u) ≤ C.

For all µ ∈ M(ϱℏ, ℏ ∈ (0, 1)), we have the implications below

▶ Tr[ϱℏ(p̂2 + q̂2)] ≤ C ⇒
∫

X0 (p2 + q2) dµ(u) ≤ C;

▶ Tr[ϱℏ N̂ℏ] ≤ C ⇒
∫

X0 ∥α∥2
L2 dµ(u) ≤ C;

▶ Tr[ϱℏ dΓ(ω2σ)] ≤ C ⇒
∫

X0 ∥α∥2
Gσdµ(u) ≤ C.

▶ We use the above localization estimates, the diagonal extraction method
and the prokhorov’s theorem to prove for all times.
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Convergence of the interacting terms

Let φ(k) := 2πik .q0j Fj (k), we have for u = (p, q, α) ∈ X 0∣∣∣Tr[a∗
ℏℓ (e

−2πik·q̂j F̃j (ℏℓ, k)) W(ξ) ϱ̃ℏℓ (s)]−
∫

X0
⟨α, e−2πik·qj φ(.)⟩ eQ(ξ,u)d µ̃s(u)

∣∣∣
+

∣∣∣Tr[a∗
ℏℓ (e

−2πik·q̂j φ(.)) W(ξ) ϱ̃ℏℓ (s)]−
∫

X0
⟨α, e−2πik·qj φ(.)⟩ eQ(ξ,u)d µ̃s(u)

∣∣∣ · · · (2) → 0

▶ (1) goes to zero as ℓ→ ∞ by lebesgue dominated convergence
theorem.

▶ (2) goes to zero as ℓ→ ∞ by exploiting the following convergence for all
φ ∈ L2(Rd

k ) :

lim
ℓ→∞

Tr

[
aℏℓ(e

−2πik·q̂jφ)W(ξ) ϱℏℓ

]
=

∫
X0
⟨e−2πi k·qjφ, α⟩L2(Rd

k )
eQ(ξ,u)dµ(u)

lim
ℓ→∞

Tr

[
a∗
ℏℓ(e

−2πik·q̂jφ)W(ξ) ϱℏℓ

]
=

∫
X0
⟨α, e−2πi k·qjφ⟩L2(Rd

k )
eQ(ξ,u)dµ(u)
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Equivalence between characteristic and Liouville equation

M(ϱ̃ℏℓ
(t), ℓ ∈ N) = {µ̃t}.

Lemma [Regular properties of the Wigner Measure µ̃t ]

The Wigner measures (µ̃t )t∈R extracted in above arguments satisfy

(i) µ̃t (Xσ) = 1 i.e. µ̃t concentrates on Xσ .

(ii) R ∋ t 7−→ µ̃t ∈ P(Xσ) is weakly narrowly continuous.

Lemma [Continuity, integrability and boundedness]

Assume (C0) and (C1) are satisfied.

Then, the vector field v : R × Xσ −→ Xσ is continuous and bounded on bounded subsets of
R × Xσ . Moreover, for any bounded open interval I,∫

I

∫
Xσ

∥v(t, u)∥Xσ dµ̃t (u) dt < +∞. (Int)

Equivalence between Liouville equation and Characteristic equation

{µ̃t}t∈I solves the Liouville equation (L) ⇔{µ̃t}t∈I solves the characteristic equation (C).
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