Leading-order term expansion for the Teukolsky equation on subextremal Kerr black holes

Pascal Millet

Ecole Polytechnique, CMLS

Conference of the GDR DynQua, CY Advanced Studies Neuville-sur-Oise
01-02-2024

Classical field equations on a Kerr black hole

Equations of linearized gravity

$$
D_{g_{M, a}} \operatorname{Ric}(g)=0
$$

Equation of massless neutrino
 $\nabla^{A A^{\prime}} \phi_{A}=0$

Maxwell's equations
$\left\{\begin{array}{l}\nabla^{\mu} F_{\mu, \nu}=0 \\ \mathrm{~d} F=0\end{array}\right.$

Scalar wave equation $\square \phi=0$

Classical field equations on a Kerr black hole

Equations of linearized gravity

$$
D_{g_{M, a}} \operatorname{Ric}(g)=0
$$

Equation of massless neutrino
$\nabla^{A A^{\prime}} \phi_{A}=0$

Introduction

Let g be a Lorentzian metric of signature (+---) on a smooth 4-dimensional manifold \mathcal{M}.

Einstein vacuum equations:

$$
\operatorname{Ric}(g)_{\mu, \nu}=\Lambda g_{\mu, \nu}
$$

Introduction

Let g be a Lorentzian metric of signature (+---) on a smooth 4-dimensional manifold \mathcal{M}.

Einstein vacuum equations:

$$
\operatorname{Ric}(g)_{\mu, \nu}=\Lambda g_{\mu, \nu}
$$

Here we focus on the case $\Lambda=0$.

Black hole solutions

Kerr solutions

Kerr (1963): $\mathcal{M}=\mathbb{R}_{t} \times\left(r_{+},+\infty\right) \times \mathbb{S}^{2}$, metric $g_{M, a}$ Model for a rotating black hole.
Subextremal: $|a|<M$.

$$
\begin{aligned}
g_{M, a}:= & \frac{\Delta_{r}-a^{2} \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} t^{2}+\frac{4 M a r \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} t \mathrm{~d} \phi-\frac{\rho^{2}}{\Delta_{r}} \mathrm{~d} r^{2} \\
& -\rho^{2} \mathrm{~d} \theta^{2}-\frac{\sin ^{2} \theta}{\rho^{2}}\left(\left(a^{2}+r^{2}\right)^{2}-a^{2} \Delta_{r} \sin ^{2} \theta\right) \mathrm{d} \phi^{2} \\
\Delta_{r}:= & a^{2}+r^{2}-2 M r \\
\rho^{2}:= & r^{2}+a^{2} \cos ^{2} \theta
\end{aligned}
$$

Black hole solutions

Kerr solutions

Kerr (1963): $\mathcal{M}=\mathbb{R}_{t} \times\left(r_{+},+\infty\right) \times \mathbb{S}^{2}$, metric $g_{M, a}$ Model for a rotating black hole.
Subextremal: $|a|<M$.

$$
\begin{aligned}
g_{M, a}:= & \frac{\Delta_{r}-a^{2} \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} t^{2}+\frac{4 M a r \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} t \mathrm{~d} \phi-\frac{\rho^{2}}{\Delta_{r}} \mathrm{~d} r^{2} \\
& -\rho^{2} \mathrm{~d} \theta^{2}-\frac{\sin ^{2} \theta}{\rho^{2}}\left(\left(a^{2}+r^{2}\right)^{2}-a^{2} \Delta_{r} \sin ^{2} \theta\right) \mathrm{d} \phi^{2} \\
\Delta_{r}:= & a^{2}+r^{2}-2 M r \\
\rho^{2}:= & r^{2}+a^{2} \cos ^{2} \theta
\end{aligned}
$$

Black hole solutions

Kerr solutions

Kerr (1963): $\mathcal{M}=\mathbb{R}_{t} \times\left(r_{+},+\infty\right) \times \mathbb{S}^{2}$, metric $g_{M, a}$ Model for a rotating black hole.
Subextremal: $|a|<M$.

$$
\begin{aligned}
g_{M, a}:= & \frac{\Delta_{r}-a^{2} \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} t^{2}+\frac{4 M a r \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} t \mathrm{~d} \phi-\frac{\rho^{2}}{\Delta_{r}} \mathrm{~d} r^{2} \\
& -\rho^{2} \mathrm{~d} \theta^{2}-\frac{\sin ^{2} \theta}{\rho^{2}}\left(\left(a^{2}+r^{2}\right)^{2}-a^{2} \Delta_{r} \sin ^{2} \theta\right) \mathrm{d} \phi^{2} \\
\Delta_{r}:= & a^{2}+r^{2}-2 M r \\
\rho^{2}:= & r^{2}+a^{2} \cos ^{2} \theta
\end{aligned}
$$

- Asymptotically flat:

$$
g_{M, a}=\mathrm{d} t^{2}-\mathrm{d} r^{2}-r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)+O\left(r^{-1}\right)
$$

Black hole solutions

Kerr solutions

Kerr (1963): $\mathcal{M}=\mathbb{R}_{t} \times\left(r_{+},+\infty\right) \times \mathbb{S}^{2}$, metric $g_{M, a}$ Model for a rotating black hole.
Subextremal: $|a|<M$.

$$
\begin{aligned}
g_{M, a}:= & \frac{\Delta_{r}-a^{2} \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} t^{2}+\frac{4 M a r \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} t \mathrm{~d} \phi-\frac{\rho^{2}}{\Delta_{r}} \mathrm{~d} r^{2} \\
& -\rho^{2} \mathrm{~d} \theta^{2}-\frac{\sin ^{2} \theta}{\rho^{2}}\left(\left(a^{2}+r^{2}\right)^{2}-a^{2} \Delta_{r} \sin ^{2} \theta\right) \mathrm{d} \phi^{2} \\
\Delta_{r}:= & a^{2}+r^{2}-2 M r \\
\rho^{2}:= & r^{2}+a^{2} \cos ^{2} \theta
\end{aligned}
$$

- Asymptotically flat:

$$
g_{M, a}=\mathrm{d} t^{2}-\mathrm{d} r^{2}-r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)+O\left(r^{-1}\right)
$$

- Contains trapped null geodesics.

Diagram of the Kerr spacetime

Teukolsky scalars

Linearized Cauchy problem

$$
\left\{\begin{array}{l}
D_{g_{M, a}} R i c(\dot{g})=0 \\
D_{g_{M, a}} G C(\dot{g})=0 \\
(I C)
\end{array}\right.
$$

(LEVE)

Teukolsky scalars

Linearized Cauchy problem

$$
\left\{\begin{array}{l}
D_{g_{M, a}} \operatorname{Ric}(\dot{g})=0 \tag{LEVE}\\
D_{g_{M, a}} G C(\dot{g})=0 \\
(I C)
\end{array}\right.
$$

Let $W\left(g_{M, a}\right)$ be the Weyl tensor and $D_{g_{M, a}} W(\dot{g})$ the linearized Weyl tensor.

Teukolsky scalars

Linearized Cauchy problem

$$
\left\{\begin{array}{l}
D_{g_{M, a}} R i c(\dot{g})=0 \tag{LEVE}\\
D_{g_{M, a}} G C(\dot{g})=0 \\
(I C)
\end{array}\right.
$$

Let $W\left(g_{M, a}\right)$ be the Weyl tensor and $D_{g_{M, a}} W(\dot{g})$ the linearized Weyl tensor. Newman-Penrose Tetrad (l, n, m, \bar{m}) :

Teukolsky scalars

Linearized Cauchy problem

$$
\left\{\begin{array}{l}
D_{g_{M, a}} \operatorname{Ric}(\dot{g})=0 \tag{LEVE}\\
D_{g_{M, a}} G C(\dot{g})=0 \\
(I C)
\end{array}\right.
$$

Let $W\left(g_{M, a}\right)$ be the Weyl tensor and $D_{g_{M, a}} W(\dot{g})$ the linearized Weyl tensor. Newman-Penrose Tetrad (l, n, m, \bar{m}) :

- l, n real vector fields, m complex vector field.

Teukolsky scalars

Linearized Cauchy problem

$$
\left\{\begin{array}{l}
D_{g_{M, a}} \operatorname{Ric}(\dot{g})=0 \tag{LEVE}\\
D_{g_{M, a}} G C(\dot{g})=0 \\
(I C)
\end{array}\right.
$$

Let $W\left(g_{M, a}\right)$ be the Weyl tensor and $D_{g_{M, a}} W(\dot{g})$ the linearized Weyl tensor. Newman-Penrose Tetrad (l, n, m, \bar{m}) :

- l, n real vector fields, m complex vector field.
- Normalization: $g(l, n)=1, g(m, \bar{m})=-1$, other products are zero.

Teukolsky scalars

Linearized Cauchy problem

$$
\left\{\begin{array}{l}
D_{g_{M, a}} \operatorname{Ric}(\dot{g})=0 \tag{LEVE}\\
D_{g_{M, a}} G C(\dot{g})=0 \\
(I C)
\end{array}\right.
$$

Let $W\left(g_{M, a}\right)$ be the Weyl tensor and $D_{g_{M, a}} W(\dot{g})$ the linearized Weyl tensor. Newman-Penrose Tetrad (l, n, m, \bar{m}) :

- l, n real vector fields, m complex vector field.
- Normalization: $g(l, n)=1, g(m, \bar{m})=-1$, other products are zero.
- $\forall v_{1}, v_{2} \in l^{\perp}, W\left(g_{M, a}\right)\left(l, v_{1}, l, v_{2}\right)=0$ and similarly for n.

Teukolsky scalars

Linearized Cauchy problem

$$
\left\{\begin{array}{l}
D_{g_{M, a}} \operatorname{Ric}(\dot{g})=0 \tag{LEVE}\\
D_{g_{M, a}} G C(\dot{g})=0 \\
(I C)
\end{array}\right.
$$

Let $W\left(g_{M, a}\right)$ be the Weyl tensor and $D_{g_{M, a}} W(\dot{g})$ the linearized Weyl tensor. Newman-Penrose Tetrad (l, n, m, \bar{m}) :

- l, n real vector fields, m complex vector field.
- Normalization: $g(l, n)=1, g(m, \bar{m})=-1$, other products are zero.
- $\forall v_{1}, v_{2} \in l^{\perp}, W\left(g_{M, a}\right)\left(l, v_{1}, l, v_{2}\right)=0$ and similarly for n.

$$
\begin{aligned}
\Psi_{2} & =D_{g_{M, a}} W(\dot{g})(l, m, l, m) \\
\Psi_{-2} & =(r-i a \cos \theta)^{4} D_{g_{M, a}} W(\dot{g})(n, \bar{m}, n, \bar{m})
\end{aligned}
$$

Teukolsky equation

Proposition (Teukolsky)

$D_{g_{M, a}} \operatorname{Ric}(\dot{g})=0 \Rightarrow T_{s} \Psi_{s}=0$ for $s= \pm 2$.
T_{s} linear scalar operator, of order 2 with the same principal symbol as $\rho^{2} \square_{g_{M, a}}$.

Teukolsky equation

> Proposition (Teukolsky)
> $D_{g_{M, a}} \operatorname{Ric}(\dot{g})=0 \Rightarrow T_{s} \Psi_{s}=0$ for $s= \pm 2$.
> T_{s} linear scalar operator, of order 2 with the same principal symbol as $\rho^{2} \square_{g_{M, a}}$.
> Ψ_{-2} and Ψ_{2} are gauge invariant.

Teukolsky equation

Proposition (Teukolsky)

$D_{g_{M, a}} \operatorname{Ric}(\dot{g})=0 \Rightarrow T_{s} \Psi_{s}=0$ for $s= \pm 2$.
T_{s} linear scalar operator, of order 2 with the same principal symbol as $\rho^{2} \square_{g_{M, a}}$.
Ψ_{-2} and Ψ_{2} are gauge invariant.
Proposition (Teukolsky)

$$
\begin{array}{rr}
\mathrm{d} F=0 & \Psi_{1}:=F(l, m) \\
\operatorname{div} F=0 & \Psi_{-1}:=(r-i a \cos \theta)^{2} F(\bar{m}, n) \\
& \Rightarrow T_{ \pm 1} \Psi_{ \pm 1}=0
\end{array}
$$

Teukolsky equation

Proposition (Teukolsky)

$D_{g_{M, a}} \operatorname{Ric}(\dot{g})=0 \Rightarrow T_{s} \Psi_{s}=0$ for $s= \pm 2$.
T_{s} linear scalar operator, of order 2 with the same principal symbol as $\rho^{2} \square_{g_{M, a}}$.
Ψ_{-2} and Ψ_{2} are gauge invariant.
Proposition (Teukolsky)

$$
\begin{array}{rr}
\mathrm{d} F=0 & \Psi_{1}:=F(l, m) \\
\operatorname{div} F=0 & \Psi_{-1}:=(r-i a \cos \theta)^{2} F(\bar{m}, n) \\
& \Rightarrow T_{ \pm 1} \Psi_{ \pm 1}=0
\end{array}
$$

In coordinates:

$$
\begin{aligned}
T_{s}= & \rho^{2} \square_{g_{M, a}}-\frac{2 s(r-M)}{r^{2}+a^{2} \cos ^{2} \theta} \partial_{r}-2 s\left(\frac{a(r-M)}{\Delta_{r}}+\frac{i \cos \theta}{\sin ^{2} \theta}\right) \partial_{\phi} \\
& -2 s\left(\frac{M\left(r^{2}-a^{2}\right)}{\Delta_{r}}-r-i a \cos \theta\right) \partial_{t}+\left(s^{2} \cot ^{2} \theta-s\right)
\end{aligned}
$$

Decay result

Theorem (M., 2023)

We consider a subextremal Kerr spacetime $(|a|<M)$. We fix $s \in \frac{1}{2} \mathbb{Z}$. Let u_{0}, u_{1} smooth and compactly supported on Σ_{0}. The solution u of the Cauchy problem

$$
\left\{\begin{array}{l}
T_{s} u=0 \\
u(t=0)=u_{0} \\
\frac{\partial}{\partial t} u(t=0)=u_{1}
\end{array}\right.
$$

satisfies:

$\left|u(r, \mathfrak{t}, \theta, \phi)-\mathfrak{p}_{u_{0}, u_{1}}(r, \mathfrak{t}, \theta, \phi)\right| \leq C r^{-1+} \mathfrak{t}^{-2-|s|+s-\epsilon}\left(\frac{\mathfrak{t}}{r}+1\right)^{-1-s-|s|}$
where $\epsilon>0$.

Details

Related results on Teukolsky

Ma-Zhang ('21): case $|a| \ll M, s= \pm 1, \pm 2$.
Shlapentokh-Rothman-Teixeira da Costa ('20, '23): Boundedness of energy flux and integrated local energy decay for $|a|<M$, $s= \pm 1, \pm 2$.

Details

Related results on Teukolsky

Ma-Zhang ('21): case $|a| \ll M, s= \pm 1, \pm 2$.
Shlapentokh-Rothman-Teixeira da Costa ('20, '23): Boundedness of energy flux and integrated local energy decay for $|a|<M$, $s= \pm 1, \pm 2$.

$$
\mathfrak{p}=\mathfrak{t}^{-3-2|s|} \frac{(2|s|+2)\left(\frac{\mathfrak{t}}{r}\right)^{2+|s|+s}+2(|s|-s+1)\left(\frac{\mathfrak{t}}{r}\right)^{1+|s|+s}}{\left(\frac{\mathfrak{t}}{r}+2\right)^{2+|s|+s}} F_{u_{0}, u_{1}}
$$

Details

Related results on Teukolsky

Ma-Zhang ('21): case $|a| \ll M, s= \pm 1, \pm 2$.
Shlapentokh-Rothman-Teixeira da Costa ('20, '23): Boundedness of energy flux and integrated local energy decay for $|a|<M$, $s= \pm 1, \pm 2$.

$$
\mathfrak{p}=\mathfrak{t}^{-3-2|s|} \frac{(2|s|+2)\left(\frac{\mathfrak{t}}{r}\right)^{2+|s|+s}+2(|s|-s+1)\left(\frac{\mathfrak{t}}{r}\right)^{1+|s|+s}}{\left(\frac{\mathfrak{t}}{r}+2\right)^{2+|s|+s}} F_{u_{0}, u_{1}}
$$

where $F_{u_{0}, u_{1}}(r, \theta, \phi)$ can be expressed with hypergeometric functions and spin weighted spherical harmonics.

Details

Related results on Teukolsky

Ma-Zhang ('21): case $|a| \ll M, s= \pm 1, \pm 2$.
Shlapentokh-Rothman-Teixeira da Costa ('20, '23): Boundedness of energy flux and integrated local energy decay for $|a|<M$, $s= \pm 1, \pm 2$.

$$
\mathfrak{p}=\mathfrak{t}^{-3-2|s|} \frac{(2|s|+2)\left(\frac{\mathfrak{t}}{r}\right)^{2+|s|+s}+2(|s|-s+1)\left(\frac{\mathfrak{t}}{r}\right)^{1+|s|+s}}{\left(\frac{\mathfrak{t}}{r}+2\right)^{2+|s|+s}} F_{u_{0}, u_{1}}
$$

where $F_{u_{0}, u_{1}}(r, \theta, \phi)$ can be expressed with hypergeometric functions and spin weighted spherical harmonics.

- We can assume H^{N} regularity with N large instead of smooth.

Details

Related results on Teukolsky

Ma-Zhang ('21): case $|a| \ll M, s= \pm 1, \pm 2$.
Shlapentokh-Rothman-Teixeira da Costa ('20, '23): Boundedness of energy flux and integrated local energy decay for $|a|<M$, $s= \pm 1, \pm 2$.

$$
\mathfrak{p}=\mathfrak{t}^{-3-2|s|} \frac{(2|s|+2)\left(\frac{\mathfrak{t}}{r}\right)^{2+|s|+s}+2(|s|-s+1)\left(\frac{\mathfrak{t}}{r}\right)^{1+|s|+s}}{\left(\frac{\mathfrak{t}}{r}+2\right)^{2+|s|+s}} F_{u_{0}, u_{1}}
$$

where $F_{u_{0}, u_{1}}(r, \theta, \phi)$ can be expressed with hypergeometric functions and spin weighted spherical harmonics.

- We can assume H^{N} regularity with N large instead of smooth.
- We get a precise decay estimate (without leading order term) when initial data only have inverse polynomial decay.

Ideas of the proof

In the line of works by Häfner-Hintz-Vasy (2019) and Hintz (2020).

Ideas of the proof

In the line of works by Häfner-Hintz-Vasy (2019) and Hintz (2020).

- Cauchy problem \rightarrow forcing problem:

$$
\begin{aligned}
v & =\chi(\mathfrak{t}) u \\
T_{s} v & =f \in C_{c}^{\infty}(\mathcal{M})
\end{aligned}
$$

Ideas of the proof

In the line of works by Häfner-Hintz-Vasy (2019) and Hintz (2020).

- Cauchy problem \rightarrow forcing problem:

$$
\begin{aligned}
v & =\chi(\mathfrak{t}) u \\
T_{s} v & =f \in C_{c}^{\infty}(\mathcal{M})
\end{aligned}
$$

- t-Fourier-Laplace transform: $\hat{T}_{s}(\sigma) \hat{v}=\hat{f}$

Ideas of the proof

In the line of works by Häfner-Hintz-Vasy (2019) and Hintz (2020).

- Cauchy problem \rightarrow forcing problem:

$$
\begin{aligned}
v & =\chi(\mathfrak{t}) u \\
T_{s} v & =f \in C_{c}^{\infty}(\mathcal{M})
\end{aligned}
$$

- t-Fourier-Laplace transform: $\hat{T}_{s}(\sigma) \hat{v}=\hat{f}$
- Existence, regularity and estimates on the resolvent $R(\sigma)=\hat{T}_{s}(\sigma)^{-1}$.

Ideas of the proof

In the line of works by Häfner-Hintz-Vasy (2019) and Hintz (2020).

- Cauchy problem \rightarrow forcing problem:

$$
\begin{aligned}
v & =\chi(\mathfrak{t}) u \\
T_{s} v & =f \in C_{c}^{\infty}(\mathcal{M})
\end{aligned}
$$

- t-Fourier-Laplace transform: $\hat{T}_{s}(\sigma) \hat{v}=\hat{f}$
- Existence, regularity and estimates on the resolvent $R(\sigma)=\hat{T}_{s}(\sigma)^{-1}$.
- Inverse Fourier transform:

$$
v(\mathfrak{t})=\int_{\mathbb{R}+i C} e^{-i \sigma \mathfrak{t}} R(\sigma) \hat{f}(\sigma) \mathrm{d} \sigma
$$

Formally

$$
|v(\mathfrak{t})| \leq \mathfrak{t}^{-k} \int_{\mathbb{R}}\left|\partial_{\sigma}^{k} R(\sigma) \hat{f}(\sigma)\right| \mathrm{d} \sigma
$$

Formally

$$
|v(\mathfrak{t})| \leq \mathfrak{t}^{-k} \int_{\mathbb{R}}\left|\partial_{\sigma}^{k} R(\sigma) \hat{f}(\sigma)\right| \mathrm{d} \sigma
$$

Main steps

(1) Invertibility of $\hat{T}_{s}(\sigma)$ on the closed upper half-plane.

- Fredholm estimates based on Vasy ('11), Melrose('94), Vasy('19)
- Trivial Kernel: Whiting ('89)

Formally

$$
|v(\mathfrak{t})| \leq \mathfrak{t}^{-k} \int_{\mathbb{R}}\left|\partial_{\sigma}^{k} R(\sigma) \hat{f}(\sigma)\right| \mathrm{d} \sigma
$$

Main steps

(1) Invertibility of $\hat{T}_{s}(\sigma)$ on the closed upper half-plane.

- Fredholm estimates based on Vasy ('11), Melrose('94), Vasy('19)
- Trivial Kernel: Whiting ('89)
(2) Bound for $R(\sigma)$ when $|\sigma| \rightarrow+\infty$.
- Semiclassical estimates near radial points Vasy ('11, '19)
- Semiclassical estimate at the trapped set: Wunsch-Zworski ('14), Dyatlov ('13, '14)

Formally

$$
|v(\mathfrak{t})| \leq \mathfrak{t}^{-k} \int_{\mathbb{R}}\left|\partial_{\sigma}^{k} R(\sigma) \hat{f}(\sigma)\right| \mathrm{d} \sigma
$$

Main steps

(1) Invertibility of $\hat{T}_{s}(\sigma)$ on the closed upper half-plane.

- Fredholm estimates based on Vasy ('11), Melrose('94), Vasy('19)
- Trivial Kernel: Whiting ('89)
(2) Bound for $R(\sigma)$ when $|\sigma| \rightarrow+\infty$.
- Semiclassical estimates near radial points Vasy ('11, '19)
- Semiclassical estimate at the trapped set: Wunsch-Zworski ('14), Dyatlov ('13, '14)
(3) Holomorphy of $R(\sigma)$ and continuity up to the real axis. Regularity away from zero.

Formally

$$
|v(\mathfrak{t})| \leq \mathfrak{t}^{-k} \int_{\mathbb{R}}\left|\partial_{\sigma}^{k} R(\sigma) \hat{f}(\sigma)\right| \mathrm{d} \sigma
$$

Main steps

(1) Invertibility of $\hat{T}_{s}(\sigma)$ on the closed upper half-plane.

- Fredholm estimates based on Vasy ('11), Melrose('94), Vasy('19)
- Trivial Kernel: Whiting ('89)
(2) Bound for $R(\sigma)$ when $|\sigma| \rightarrow+\infty$.
- Semiclassical estimates near radial points Vasy ('11, '19)
- Semiclassical estimate at the trapped set: Wunsch-Zworski ('14), Dyatlov ('13, '14)
(3) Holomorphy of $R(\sigma)$ and continuity up to the real axis. Regularity away from zero.
(3) Regularity of $R(\sigma)$ near zero. Principal term in the development \Leftrightarrow highest order singularity (here at zero).

2: High frequency bound

$\|R(\sigma)\|_{\mathcal{L}(\mathcal{Y}, \mathcal{X})} \leq C$ when $|\operatorname{Re}(\sigma)| \rightarrow+\infty, \Im(\sigma)$ bounded. small parameter: $h=\frac{1}{|\sigma|}, \sigma=h^{-1} z$

2: High frequency bound

$\|R(\sigma)\|_{\mathcal{L}(\mathcal{Y}, \mathcal{X})} \leq C$ when $|\operatorname{Re}(\sigma)| \rightarrow+\infty, \Im(\sigma)$ bounded.
small parameter: $h=\frac{1}{|\sigma|}, \sigma=h^{-1} z$
$\underline{\text { Rescaled operator: } \hat{T}_{h}(z):=|\sigma|^{-2} \hat{T}(\sigma)}$

2: High frequency bound

$\|R(\sigma)\|_{\mathcal{L}(\mathcal{Y}, \mathcal{X})} \leq C$ when $|\operatorname{Re}(\sigma)| \rightarrow+\infty, \Im(\sigma)$ bounded.
small parameter: $h=\frac{1}{|\sigma|}, \sigma=h^{-1} z$
Rescaled operator: $\hat{T}_{h}(z):=|\sigma|^{-2} \hat{T}(\sigma)$ Goal:

$$
\|u\|_{\mathcal{X}} \lesssim h^{-2}\left\|\hat{T}_{h}(z) u\right\|_{\mathcal{Y}}+h\|u\|_{\mathcal{X}}
$$

2: High frequency bound

$\|R(\sigma)\|_{\mathcal{L}(\mathcal{Y}, \mathcal{X})} \leq C$ when $|\operatorname{Re}(\sigma)| \rightarrow+\infty, \Im(\sigma)$ bounded.
small parameter: $h=\frac{1}{|\sigma|}, \sigma=h^{-1} z$
Rescaled operator: $\hat{T}_{h}(z):=|\sigma|^{-2} \hat{T}(\sigma)$ Goal:

$$
\|u\|_{\mathcal{X}} \lesssim h^{-2}\left\|\hat{T}_{h}(z) u\right\|_{\mathcal{Y}}+h\|u\|_{\mathcal{X}}
$$

$u=\sum_{i=1}^{N} \chi_{i}(x, h D) u, \chi_{i}$ microlocalizers.

2: High frequency bound (continuation)

- Detailed study of the semiclassical Hamiltonian flow.

2: High frequency bound (continuation)

- Detailed study of the semiclassical Hamiltonian flow.

- Semiclassical version of the radial points estimates (Vasy '13, '19)
- Estimates at the normally hyperbolic trapped set (Wunsch-Zworski '14, Dyatlov '14)

Conclusion

Perspectives

- Improve the result for higher mode initial data

$$
\oplus_{|m| \geq|s|+j+\mathbb{N}} \operatorname{Ker}\left(D_{\phi}-m\right) .
$$

Conclusion

Perspectives

- Improve the result for higher mode initial data $\oplus_{|m| \geq|s|+j+\mathbb{N}} \operatorname{Ker}\left(D_{\phi}-m\right)$.
- More precise result in the case of non compact support.

Conclusion

Perspectives

- Improve the result for higher mode initial data $\oplus_{|m| \geq|s|+j+\mathbb{N}} \operatorname{Ker}\left(D_{\phi}-m\right)$.
- More precise result in the case of non compact support.
- Use the result to study Maxwell and linearized gravity (decay and scattering theory) in the case $|a|<M$.

Conclusion

Perspectives

- Improve the result for higher mode initial data $\oplus_{|m| \geq|s|+j+\mathbb{N}} \operatorname{Ker}\left(D_{\phi}-m\right)$.
- More precise result in the case of non compact support.
- Use the result to study Maxwell and linearized gravity (decay and scattering theory) in the case $|a|<M$.

Thank you for your attention!

