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Quantum thermodynamics - Motivation

Thermodynamics 
● temperature, work, heat, entropy 
● 1st law, 2nd law, 3rd law 
● Carnot efficiency, engines

MACROSCOPIC WORLD 
● gases, fluids, solids 
● pistons and weights

MICROSCOPIC WORLD 
● atoms, electrons, photons 

Quantum Mechanics 
● superpositions 
● quantum correlations

1nm/1amu 1m/1kgQuantum thermodynamics 
• include small ensemble sizes  
• include non-equilibrium properties 
• include quantum properties

photon

atom

bio-molecule

micro-meter resonator



he��W i = e���F
extension of classical 
fluctuation relations to 
quantum regime



coherences are a source of work
(or heat, depending on how they are used)
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Noise
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|0⟩
|1⟩
|2⟩
|3⟩

|N⟩

|0⟩

|1⟩

τ

with |α | ≫ 1
⟨0 |α⟩ = e−|α|2/2 ≈ 0so that

|1⟩ = |α⟩ = e−|α|2/2
N

∑
n=0

αn

n!
|n⟩

⟨0 |
|0⟩

⟨1 |

|1⟩

ρ

⟨0 | ⟨1 | ⟨N |
|0⟩
|1⟩

|N⟩

S(τ) ≤ 1 S(ρ) ≤ log2(N + 1)

S( ⋅ ) = −tr[ ⋅ log2 ⋅ ]
von Neumann entropy

e.g.

|0⟩ = |0⟩

 recovery? 

S(τ) ≤ S(ρ)
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Example
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Cottet, …, Huard, PNAS (2017)

Quantum Maxwell demon experiment
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Quantum Maxwell demon experiment
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✦ superconducting transmon qubit = q = S

Ĥ =
q̂
2

2CJ
� EJ cos

�̂

~/2e =
q̂
2

2CJ
+

�̂
2

2LJ
+Hnon�lin(�̂)

Hq ⇡ 0 |gihg|+ ~!q |eihe|

✦ microwave cavity = c = D

Hc ⇡ ~!c a
†
a

Cottet, …, Huard, PNAS (2017)

|0⟩|α⟩

large physical space: 

photon number basis

qubit encoded in large space

Maxwell demon recording information
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Reading the demon’s mind
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Cottet, …, Huard, PNAS (2017)

Tomography of the demon (cavity) state after the feedback protocol.

|0⟩
expected:

|α⟩
expected:

|0⟩ + |α⟩
2

expected: 1
2 |0⟩⟨0 | + 1

2 |α⟩⟨α |

expected:

S = log2 2 = 1

S = 0S = 0

S = 0
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Noise

40

|0⟩
|1⟩
|2⟩
|3⟩

|N⟩

|0⟩

|1⟩

τ

with |α | ≫ 1
⟨0 |α⟩ = e−|α|2/2 ≈ 0so that

|1⟩ = |α⟩ = e−|α|2/2
N

∑
n=0

αn

n!
|n⟩

⟨0 |
|0⟩

⟨1 |

|1⟩

B

A

ρ

⟨0 | ⟨1 | ⟨N |
|0⟩
|1⟩

|N⟩

pA

pA

pB pB

e.g.

|0⟩ = |0⟩
subspace-confined “leakage”
Assume:
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Recovery?
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|0⟩
|1⟩
|2⟩
|3⟩

|N⟩

|0⟩

|1⟩

τ

B

A

ρ
|0⟩

|1⟩

⟨0 |
|0⟩

⟨1 |

|1⟩

⟨0 |
|0⟩

⟨1 |

|1⟩

⟨0 | ⟨1 | ⟨N |
|0⟩
|1⟩

|N⟩

pA

pA

pB pB

pA
pB

σmin

recovery?subspace-confined “leakage”
Assume:
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Formalising the noise
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Experimental state arises from noise acting on initial qubit state:

noise acts on separate subspaces  and ,  
with projectors 

ℋA ℋB

set of (N+1)x2-dimensional Krausoperators

|0⟩
|1⟩
|2⟩
|3⟩

|N⟩

|0⟩

|1⟩

τ

B

A

ρ
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Problem statement
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B

A

ρ
|0⟩

|1⟩

σmin

|0⟩
|1⟩
|2⟩
|3⟩

|N⟩

|0⟩

|1⟩

τ

B

A

ρ

S(τ) ≤ S(σmin)

S(σmin) ≤ S(ρ)

condition C4:

we also expect:

S(τ) ≤ S(ρ)
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Recovery map
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any (N+1)x2-dimensional matrix

To reduce dimension, need projection

https://www.technia.us/blog/3rd-angle-projection/

note: coefficients of   
may depend on  (nonlinear map)

M
ρ

candidate qubit matrix

Obtain qubit state

Expand in qubit basis

can only map to ⟨0 |
can only map to one, arbitrary 
direction in subspace ⟨ψM | ℋB

with weight so that ⟨1 |σM |1⟩ = pB

with coherence
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Minimising entropy
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Have qubit state

with coherence

Entropy

S(σM) = − λ1 log2 λ1 − λ2 log2 λ2

where eigenvalues are λ1 + λ2 = 1
λ1 λ2 = pA pB − |cM |2

depends on |coherence|,  
which depends on |ψM⟩

! Find candidate state with minimum entropy

https://www.technia.us/blog/3rd-angle-projection/
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Minimising entropy
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Answer

and

with

and

where

with

is the diagonal, trace one, density matrix in ℋB

is a normalised state in ℋB

⟨0 | ⟨1 | ⟨N |
|0⟩
|1⟩

|N⟩

rBApA

pB
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Problem statement
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B

A

ρ
|0⟩

|1⟩

σmin

|0⟩
|1⟩
|2⟩
|3⟩

|N⟩

|0⟩

|1⟩

τ

B

A

ρ

S(τ) ≤ S(σmin)

S(σmin) ≤ S(ρ)

condition C4:

we also expect:

?

?

?
✔

✔

✔

✔

✔

S(τ) ≤ S(ρ)
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Example: Random samples
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generate  random initial qubit states L = 500 τ
generate  random sets of subspace-confining Krausoperators L {Kk}κ=6

k=1
construct  noisy states L ρ = ∑

k
Kk τ K†

k

apply recovery method to each  to obtain  recovered qubit states ρ L σmin

S(τ) ≤ S(σmin)

S(σmin) ≤ S(ρ)

condition C4:

we also expect:
✔

✔

S(τ) ≤ S(ρ)
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Example: Random samples
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generate  random initial qubit states L = 500 τ
generate  random sets of subspace-confining Krausoperators L {Kk}κ=6

k=1
construct  noisy states L ρ = ∑

k
Kk τ K†

k

apply recovery method to each  to obtain  recovered qubit states ρ L σmin



Janet Anders    janet@qipc.org

Outline
103

• Example: Maxwell demon data

• Physical encoding and noise

• Formalising the noise

• Problem statement

• Recovery map

• Minimising entropy

• Example: Random samples entropy

• Reading the demon’s mind

• Summary



Janet Anders    janet@qipc.org

Reading the demon’s mind
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|0⟩
expected:

|α⟩
expected:

|0⟩ + |α⟩
2

expected: 1
2 |0⟩⟨0 | + 1

2 |α⟩⟨α |

expected:

S = log2 2 = 1

S = 0S = 0

S = 0

Cottet, …, Huard, PNAS (2017) converting to entropy to base-2

Tomography of the demon (cavity) state ρ
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Reading the demon’s mind
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|0⟩
expected:

|α⟩
expected:

|0⟩ + |α⟩
2

expected: 1
2 |0⟩⟨0 | + 1

2 |α⟩⟨α |

expected:

S = log2 2 = 1

S = 0S = 0

S = 0

SD = S(ρ) = 0.08SD = S(ρ) = 1.34

SD = S(ρ) = 1.73SD = S(ρ) = 1.50

actual, noisy: actual, noisy:

actual, noisy: actual, noisy:

Cottet, …, Huard, PNAS (2017) converting to entropy to base-2

Tomography of the demon (cavity) state ρ
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Reading the demon’s mind
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Tomography of the demon (cavity) state ρ

|0⟩
expected:

|α⟩
expected:

|0⟩ + |α⟩
2

expected: 1
2 |0⟩⟨0 | + 1

2 |α⟩⟨α |

expected:

S = log2 2 = 1

S = 0S = 0

S = 0

SD = S(ρ) = 0.08SD = S(ρ) = 1.34

SD = S(ρ) = 1.73SD = S(ρ) = 1.50

actual, noisy: actual, noisy:

actual, noisy: actual, noisy:

entropy to base-2
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Reading the demon’s mind
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|0⟩
expected:

|α⟩
expected:

|0⟩ + |α⟩
2

expected: 1
2 |0⟩⟨0 | + 1

2 |α⟩⟨α |

expected:

S = log2 2 = 1

S = 0S = 0

S = 0

SD = S(ρ) = 0.08SD = S(ρ) = 1.34

SD = S(ρ) = 1.73SD = S(ρ) = 1.50

actual, noisy: actual, noisy:

actual, noisy: actual, noisy:

entropy to base-2

S(σmin) = 0.00S(σmin) = 0.00

S(σmin) = 0.00 ⟨0 |
|0⟩

⟨1 |

|1⟩
pA

pB

S(σmin) = 0.98

Tomography of the demon (cavity) state ρ
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Work in the quantum regime
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Harry Miller 
Exeter -> Manchester

HJD Miller, J Anders,  
New J. Phys. 19, 062001 (2017)

Einstein’s enquiry to Bohr if ‘the Moon does 
not exist if nobody is looking at it’ questions 
the indeterminate nature of a quantum state 
when it is not measured [1]. 
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Work in the quantum regime
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Fluctuating work performed on an undisturbed 
quantum system is described by a quasi-probability 
distribution rather than a probability distribution.

Harry Miller 
Exeter -> Manchester
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Gibbs state

t

ρ(t)

0

dynamical steady state

ρss

τ ∝ e−βHS

equilibration

Steady state
117

[2] Trushechkin, Merkli, Cresser, Anders, AVS Quantum Sci. 4, 012301 (2022)

James (Jim) 
Cresser

Anton 
Trushechkin

Marco Merkli
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Gibbs state

t

ρ(t)

0

dynamical steady state

ρss

τ ∝ e−βHS

equilibration

system with 
Hamiltonian HS

bath with inverse 
temperature β

Steady state
118

[2] Trushechkin, Merkli, Cresser, Anders, AVS Quantum Sci. 4, 012301 (2022)
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mean force Gibbs state

t

ρ(t)

0

dynamical steady state

ρss

τMF ∝ trB[e−βHtot]

equilibration

system with 
Hamiltonian HS

bath with inverse 
temperature β

Htot = HS + HB + λ Vint

(MFGS)

system-bath 
coupling λ

Steady state
123

≈ trB[e−βHS e−βHB] ∝ e−βHS

for λ → 0

[2] Trushechkin, Merkli, Cresser, Anders, AVS Quantum Sci. 4, 012301 (2022)
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mean force Gibbs state

t

ρ(t)

0

dynamical steady state

ρss

τMF ∝ trB[e−βHtot]

equilibration

system with 
Hamiltonian HS

bath with inverse 
temperature β

Htot = HS + HB + λ Vint

(MFGS)

system-bath 
coupling λ

Steady state
124

can one give the MFGS in terms of 
system operators alone? 

and is it the steady state?

[2] Trushechkin, Merkli, Cresser, Anders, AVS Quantum Sci. 4, 012301 (2022)
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Htot = HS + HB + λ Vint

most master 
equations

1
λ

→ 0

λ → 0

general analyt. expression  
for quantum mean force state

Coupling regimes
128

[1] Cresser, Anders, PRL 127, 250601 (2021)
[2] Trushechkin, Merkli, Cresser, Anders, AVS Quantum Sci. 4, 012301 (2022)
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Weak coupling limit
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( )λ ≪ 1

 
τ(2)
MF = τS + λ2β∑

n
τS (XnX†

n − trS [τS XnX†
n]) ,β(ωn)

standard 
Gibbs state

corrections to second order in  λ

 

τMF ∝ trR e
−β(H′ S + ∫∞

0 dω ω (b†
ωbω + 1

2 ) + λ XS ⊗ ∫∞
0 dω J(ω)(bω + b†

ω))
bosonic 
bath

coupling: system operator   
to bath osci positions

XSgeneral 
system

[1] Cresser, Anders, PRL 127, 250601 (2021)
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Weak coupling limit
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( )λ ≪ 1

 
τ(2)
MF = τS + λ2β∑

n
τS (XnX†

n − trS [τS XnX†
n]) ,β(ωn)

standard 
Gibbs state

 

+λ2 ∑
n

[X†
n , τSXn]

∂,β(ωn)
∂ωn

+ λ2 ∑
m≠n

([Xm, X†
n τS] + h . c . )

,β(ωn)
ωm − ωn

corrections to second order in  λ

valid for small , i.e.:λ

➠ validity range depends on temperature
(higher temperature = easier to fulfil)

 

τMF ∝ trR e
−β(H′ S + ∫∞

0 dω ω (b†
ωbω + 1

2 ) + λ XS ⊗ ∫∞
0 dω J(ω)(bω + b†

ω))
bosonic 
bath

coupling: system operator   
to bath osci positions

XSgeneral 
system

[1] Cresser, Anders, PRL 127, 250601 (2021)
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Htot = HS + HB + λ Vint

most master 
equations

1
λ

→ 0

λ → 0

general analyt. expression  
for quantum mean force state

Coupling regimes
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[1] Cresser, Anders, PRL 127, 250601 (2021)
[2] Trushechkin, Merkli, Cresser, Anders, AVS Quantum Sci. 4, 012301 (2022)
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Ultrastrong coupling limit

projectors: Pn = |xn⟩⟨xn |

XS |xn⟩ = xn |xn⟩eigenstates of  :XS

132

 ρss
?= ∑

n
Pn τS Pn

Goyal, Kawai, Phys. Rev. Res. 1, 033018 (2019)

conjectured 
steady state: 

1
λ

→ 0

 

τMF ∝ trR e
−β(H′ S + ∫∞

0 dω ω (b†
ωbω + 1

2 ) + λ XS ⊗ ∫∞
0 dω J(ω)(bω + b†

ω))
bosonic 
bath

coupling: system operator   
to bath osci positions

XSgeneral 
system

[1] Cresser, Anders, PRL 127, 250601 (2021)
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Ultrastrong coupling limit

 τMF = e−β∑n Pn HS Pn

tr[e−β∑n Pn HS Pn]

projectors: Pn = |xn⟩⟨xn |

XS |xn⟩ = xn |xn⟩eigenstates of  :XS

133

quantum  
ultrastrong MF state

 ρss
?= ∑

n
Pn τS Pn

Goyal, Kawai, Phys. Rev. Res. 1, 033018 (2019)

conjectured 
steady state: 

≠

1
λ

→ 0

 

τMF ∝ trR e
−β(H′ S + ∫∞

0 dω ω (b†
ωbω + 1

2 ) + λ XS ⊗ ∫∞
0 dω J(ω)(bω + b†

ω))
bosonic 
bath

coupling: system operator   
to bath osci positions

XSgeneral 
system

[1] Cresser, Anders, PRL 127, 250601 (2021)
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Ultrastrong coupling limit

 τMF = e−β∑n Pn HS Pn

tr[e−β∑n Pn HS Pn]

projectors: Pn = |xn⟩⟨xn |

XS |xn⟩ = xn |xn⟩eigenstates of  :XS
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quantum  
ultrastrong MF state

1
λ

→ 0

 

τMF ∝ trR e
−β(H′ S + ∫∞

0 dω ω (b†
ωbω + 1

2 ) + λ XS ⊗ ∫∞
0 dω J(ω)(bω + b†

ω))
bosonic 
bath

coupling: system operator   
to bath osci positions

XSgeneral 
system

[1] Cresser, Anders, PRL 127, 250601 (2021)

Trushechkin, arXiv:2109.01888 (2021)

Now proven to be the steady state of an 
ultrastrong coupling master equation
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Summary
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Formalised common problem in quantum experiments 
and technology: noise is always there,  
but often has subspace structure. 

Have provided a formula of how to compute the       
|coherence| for the absolute best guess qubit state 

 compatible with a given noisy state . σmin ρ

Proof of two entropy bounds.

Solved recovery problem. 

Provided numerical illustration of 
recovery method on random samples.

Uncovered “buried” experimental 
Maxwell demon qubit states.
our paper will be on arxiv this March - talk to me for more information 

Thank you!


