Entropic fluctuations in quantum two-time measurement framework joint work in progress with T.Benoist, L.Bruneau, V.Jakšić, C.-A.Pillet

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

16th meeting of GdR Quantum Dynamics , CY Advanced Studies, CY Cergy Paris Université, January 2024 Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting Results

Additional

◆□ > ◆母 > ◆臣 > ◆臣 > ○臣 - 釣�?

Classical non equilibrium SM

Transient Fluctuation relation Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics Quantum steady functional Results

Summary

Indirect measurement: setting Results

Additional comments

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�(♡

Classical System $(\mathcal{M}, \phi_t, \omega)$ dynamical system ω reference state= probability measure on \mathcal{M} $\omega_t = \omega \circ \phi_{-t}$

Relative entropy: $Ent(\nu|\mu) = -\nu(\log \frac{d\nu}{d\mu})$ (if ν and μ are absolutely continuous)

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Classical System $(\mathcal{M}, \phi_t, \omega)$ dynamical system ω reference state= probability measure on \mathcal{M} $\omega_t = \omega \circ \phi_{-t}$

Relative entropy: $Ent(\nu|\mu) = -\nu(\log \frac{d\nu}{d\mu})$ (if ν and μ are absolutely continuous)

$$\begin{split} \Sigma_t &:= Ent(\omega_t | \omega) - Ent(\omega | \omega) = -\int_0^t \omega_s(\sigma) \mathrm{d}s \\ \Sigma_t \text{ entropy production} \\ \sigma \text{ entropy production observable} \end{split}$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□ ▶ ◆□ ▶ ◆ 目 ▶ ◆ 目 ● の Q @ ♪

Classical System $(\mathcal{M}, \phi_t, \omega)$ dynamical system ω reference state= probability measure on \mathcal{M} $\omega_t = \omega \circ \phi_{-t}$

Relative entropy: $Ent(\nu|\mu) = -\nu(\log \frac{d\nu}{d\mu})$ (if ν and μ are absolutely continuous)

$$\begin{split} \Sigma_t &:= \textit{Ent}(\omega_t | \omega) - \textit{Ent}(\omega | \omega) = -\int_0^t \omega_s(\sigma) ds \\ \Sigma_t \text{ entropy production} \\ \sigma \text{ entropy production observable} \end{split}$$

 Σ_t can be viewed as a random variable on (\mathcal{M}, ω) We denote its law by $\mathbb{P}_{\Sigma_t, \omega}$ Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summar

Indirect measurement: setting

Results

Additional

[Evans-Cohen-Morris '93] numerical experiments [Evans-Searls '94] [Gallavotti Cohen '94] theoretical explanation Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

[Evans-Cohen-Morris '93] numerical experiments [Evans-Searls '94] [Gallavotti Cohen '94] theoretical explanation Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

[Evans-Cohen-Morris '93] numerical experiments [Evans-Searls '94] [Gallavotti Cohen '94] theoretical explanation

(work in driven system [Bochkov-Kuzovlev '70s], [Jaryzinski '97], [Crooks '99] etc.) Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● のへの

[Evans-Cohen-Morris '93] numerical experiments [Evans-Searls '94] [Gallavotti Cohen '94] theoretical explanation

(work in driven system [Bochkov-Kuzovlev '70s], [Jaryzinski '97], [Crooks '99] etc.)

Statistical refinement of thermodynamics second law

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

[Evans-Cohen-Morris '93] numerical experiments [Evans-Searls '94] [Gallavotti Cohen '94] theoretical explanation

(work in driven system [Bochkov-Kuzovlev '70s], [Jaryzinski '97], [Crooks '99] etc.)

If $\mathbb{P}_{\Sigma_{t,\omega}}$ is the law of the random variable Σ_t on (\mathcal{M}, ω) and $\overline{\mathbb{P}}_{\Sigma_{t,\omega}}(s) = \mathbb{P}_{\Sigma_{t,\omega}}(-s)$. If ω if equilibrium state at temperature β , or a multi-thermal state and the system is T.R.I.

$$\frac{\mathrm{d}\bar{\mathbb{P}}_{\Sigma_t,\omega}}{\mathrm{d}\mathbb{P}_{\Sigma_t,\omega}}(s) = \mathrm{e}^{-s}$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

[Evans-Cohen-Morris '93] numerical experiments [Evans-Searls '94] [Gallavotti Cohen '94] theoretical explanation

(work in driven system [Bochkov-Kuzovlev '70s], [Jaryzinski '97], [Crooks '99] etc.)

If $\mathbb{P}_{\Sigma_t,\omega}$ is the law of the random variable Σ_t on (\mathcal{M},ω) and $\overline{\mathbb{P}}_{\Sigma_{t,\omega}}(s) = \mathbb{P}_{\Sigma_{t,\omega}}(-s).$ If ω if equilibrium state at temperature β , or a multi-thermal state

and the system is T.R.I.

$$\frac{\mathrm{d}\bar{\mathbb{P}}_{\Sigma_t,\omega}}{\mathrm{d}\mathbb{P}_{\Sigma_t,\omega}}(s) = \mathrm{e}^{-s}$$

This is called classical transient (ES) fluctuation relation

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT. Université de Toulon

Transient Fluctuation relation

Steady Eluctuation

Quantum transient functional and measurement statistics

Quantum steady

Results

Results

Transient fluctuation relation Classical <u>transient</u> (ES) fluctuation relation

$$\frac{\mathrm{d}\bar{\mathbb{P}}_{\Sigma_t,\omega}}{\mathrm{d}\mathbb{P}_{\Sigma_t,\omega}}(s) = \mathrm{e}^{-s}$$

equivalent to

 $\mathcal{F}_{\omega,t}^{cl}(\alpha) = \mathcal{F}_{\omega,t}^{cl}(1-\alpha)$

with

$$\mathcal{F}_{\omega,t}^{cl}(\alpha) = \int e^{-\alpha s} \mathrm{d}\mathbb{P}_{\Sigma_t,\omega}(s) = \omega(e^{-\alpha \Sigma_t})$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Transient fluctuation relation Classical <u>transient</u> (ES) fluctuation relation

$$\frac{\mathrm{d}\bar{\mathbb{P}}_{\Sigma_t,\omega}}{\mathrm{d}\mathbb{P}_{\Sigma_t,\omega}}(s) = \mathrm{e}^{-s}$$

equivalent to

 $\mathcal{F}_{\omega,t}^{cl}(\alpha) = \mathcal{F}_{\omega,t}^{cl}(1-\alpha)$

with

$$\mathcal{F}^{cl}_{\omega,t}(\alpha) = \int e^{-lpha s} \mathrm{d}\mathbb{P}_{\Sigma_t,\omega}(s) = \omega(e^{-lpha \Sigma_t})$$

The related object cumulant generating function

$$e^{cl}_{\omega,t}(lpha) = rac{1}{t} \log \mathcal{F}^{cl}_{\omega,t}(lpha)$$

is a well known object in large deviation theory. Large time fluctuations can be described (via Gärtner-Ellis theorem) using properties of the limit

$$e^{cl}_{\omega,+}(\alpha) := \lim_{t \to \infty} e^{cl}_{\omega,t}(\alpha)$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Steady fluctuation relation Classical steady(GC) fluctuation relation

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Steady fluctuation relation

Classical steady(GC) fluctuation relation

The initial state of the system is a *non-equilibrium steady state* (*NESS*) $\omega_{NESS} = \lim_{T \to \infty} \omega \circ \phi_{-T}$ (existence assumed).

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● のへの

Steady fluctuation relation

Classical steady(GC) fluctuation relation

The initial state of the system is a *non-equilibrium steady state* (*NESS*) $\omega_{NESS} = \lim_{T \to \infty} \omega \circ \phi_{-T}$ (existence assumed).

Define similarly as before

$$\mathcal{F}_{\omega_{\text{NESS}},t}^{cl}(\alpha) := \omega_{\text{NESS}}(e^{-\alpha \Sigma_t})$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Steady fluctuation relation

Classical steady(GC) fluctuation relation

The initial state of the system is a *non-equilibrium steady state* (*NESS*) $\omega_{NESS} = \lim_{T \to \infty} \omega \circ \phi_{-T}$ (existence assumed).

Define similarly as before

$$\mathcal{F}_{\omega_{NESS},t}^{cl}(\alpha) := \omega_{NESS}(e^{-\alpha \Sigma_t})$$

Large time fluctuations behaviour is encoded by

$$e^{cl}_{\omega_{NESS},+}(lpha) := rac{1}{t} \log \mathcal{F}^{cl}_{\omega_{NESS},t}(lpha)$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Steady fluctuation relation

Classical steady(GC) fluctuation relation

The initial state of the system is a *non-equilibrium steady state* (*NESS*) $\omega_{NESS} = \lim_{T \to \infty} \omega \circ \phi_{-T}$ (existence assumed).

Define similarly as before

$$\mathcal{F}_{\omega_{NESS},t}^{cl}(\alpha) := \omega_{NESS}(e^{-\alpha \Sigma_t})$$

Large time fluctuations behaviour is encoded by

$$e^{cl}_{\omega_{NESS},+}(lpha) := rac{1}{t} \log \mathcal{F}^{cl}_{\omega_{NESS},t}(lpha)$$

In general:

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Steady fluctuation relation

Classical steady(GC) fluctuation relation

The initial state of the system is a *non-equilibrium steady state* (*NESS*) $\omega_{NESS} = \lim_{T \to \infty} \omega \circ \phi_{-T}$ (existence assumed).

Define similarly as before

$$\mathcal{F}_{\omega_{NESS},t}^{cl}(\alpha) := \omega_{NESS}(e^{-\alpha \Sigma_t})$$

Large time fluctuations behaviour is encoded by

$$e^{cl}_{\omega_{\textit{NESS}},+}(lpha):=rac{1}{t}\log \mathcal{F}^{cl}_{\omega_{\textit{NESS}},t}(lpha)$$

In general:

• for t finite
$$\mathcal{F}_{\omega_{NESS},t}^{cl}(\alpha) \neq \mathcal{F}_{\omega,t}^{cl}(\alpha)$$
 and $\mathcal{F}_{\omega_{NESS},t}^{cl}(\alpha) \neq \mathcal{F}_{\omega_{NESS},t}^{cl}(1-\alpha)$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Steady fluctuation relation

Classical steady(GC) fluctuation relation

The initial state of the system is a *non-equilibrium steady state* (*NESS*) $\omega_{NESS} = \lim_{T \to \infty} \omega \circ \phi_{-T}$ (existence assumed).

Define similarly as before

$$\mathcal{F}_{\omega_{\text{NESS}},t}^{cl}(lpha) := \omega_{\text{NESS}}(e^{-lpha \Sigma_t})$$

Large time fluctuations behaviour is encoded by

$$e^{cl}_{\omega_{NESS},+}(lpha) := rac{1}{t} \log \mathcal{F}^{cl}_{\omega_{NESS},t}(lpha)$$

In general:

ergodic hypothesis

$$e_{\omega_{NESS},+}^{cl}(\alpha) = e_{\omega,+}^{cl}(\alpha)$$

proven in some (paradigmatic) models ; in [JPR11] advocated as Principle of Regular Entropic Fluctuation

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting Results

Additional comments

Classical: with respect to $\omega_T = \omega \circ \phi_{-T}$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Classical: with respect to $\omega_T = \omega \circ \phi_{-T}$ The initial state of the system is ω_T . Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Classical: with respect to $\omega_T = \omega \circ \phi_{-T}$ The initial state of the system is ω_T .

Define similarly as before

$$\mathcal{F}_{T,t}^{cl}(\alpha) := \omega_T(e^{-\alpha \Sigma_t})$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Classical: with respect to $\omega_T = \omega \circ \phi_{-T}$ The initial state of the system is ω_T .

Define similarly as before

$$\mathcal{F}_{T,t}^{cl}(\alpha) := \omega_T(e^{-\alpha \Sigma_t})$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Classical: with respect to $\omega_T = \omega \circ \phi_{-T}$ The initial state of the system is ω_T .

Define similarly as before

$$\mathcal{F}_{T,t}^{cl}(\alpha) := \omega_T(e^{-\alpha \Sigma_t})$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Classical: with respect to $\omega_T = \omega \circ \phi_{-T}$ The initial state of the system is ω_T .

Define similarly as before

$$\mathcal{F}_{T,t}^{cl}(\alpha) := \omega_T(e^{-\alpha \Sigma_t})$$

• for t finite
$$\mathcal{F}_{T,t}^{cl}(\alpha) \neq \mathcal{F}_{\omega,t}^{cl}(\alpha)$$
 unless $\omega = \omega_T$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□ ▶ ◆□ ▶ ◆ 目 ▶ ◆ 目 ● の Q @ ♪

Classical: with respect to $\omega_T = \omega \circ \phi_{-T}$ The initial state of the system is ω_T .

Define similarly as before

$$\mathcal{F}_{T,t}^{cl}(\alpha) := \omega_T(e^{-\alpha \Sigma_t})$$

• for t finite
$$\mathcal{F}_{T,t}^{cl}(\alpha) \neq \mathcal{F}_{\omega,t}^{cl}(\alpha)$$
 unless $\omega = \omega_T$

For t → ∞ one has in many cases (for example on compact spaces)

$$e_{\omega_{\tau,+}}^{cl}(\alpha) := \lim_{t \to \infty} e_{T,t}^{cl}(\alpha) = e_{\omega,+}^{cl}(\alpha)$$

Principle of Regular Entropic Fluctuation equivalent to a limit exchange property

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summar

Indirect measurement: setting Results

Additional comments

Quantum case ?? Transient case

Attempt 1: "Naive quantization"

Mathematical setting: Reservoirs $\mathcal{R}_1, \mathcal{R}_2, \dots \mathcal{R}_M$ coupled directly or through a small system S, dim $\mathcal{H}_S = N$

Notation

Reservoirs $\mathcal{R}_1, \mathcal{R}_2, \dots \mathcal{R}_M$ $(\mathcal{O}_j, \tau_{\mathcal{R}_j, t}, \omega_{\beta_j})$, where ω_{β_j} is β_j KMS state for τ_t^j

Small system S, dim $\mathcal{H}_S = N$ ($\mathcal{O}_S, \tau_{S_j,t}, \omega_S$), where is ω_S some state Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Quantum case ?? Transient case

Attempt 1: "Naive quantization"

Mathematical setting: Reservoirs $\mathcal{R}_1, \mathcal{R}_2, \dots \mathcal{R}_M$ coupled directly or through a small system S, dim $\mathcal{H}_S = N$

Notation

Reservoirs $\mathcal{R}_1, \mathcal{R}_2, \dots \mathcal{R}_M$ $(\mathcal{O}_j, \tau_{\mathcal{R}_j, t}, \omega_{\beta_j})$, where ω_{β_j} is β_j KMS state for τ_t^j

Small system S, dim $\mathcal{H}_S = N$ ($\mathcal{O}_S, \tau_{S_j,t}, \omega_S$), where is ω_S some state Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Quantum case ?? Transient case

Attempt 1: "Naive quantization"

Mathematical setting: Reservoirs $\mathcal{R}_1, \mathcal{R}_2, \dots \mathcal{R}_M$ coupled directly or through a small system S, dim $\mathcal{H}_S = N$

Notation

Reservoirs $\mathcal{R}_1, \mathcal{R}_2, \dots \mathcal{R}_M$ $(\mathcal{O}_j, \tau_{\mathcal{R}_j, t}, \omega_{\beta_j})$, where ω_{β_j} is β_j KMS state for τ_t^j

Small system S, dim $\mathcal{H}_S = N$ ($\mathcal{O}_S, \tau_{S_j,t}, \omega_S$), where is ω_S some state Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Quantum case ?? Transient case

Attempt 1: "Naive quantization"

Mathematical setting: Reservoirs $\mathcal{R}_1, \mathcal{R}_2, \dots \mathcal{R}_M$ coupled directly or through a small system S, dim $\mathcal{H}_S = N$

Notation

Reservoirs $\mathcal{R}_1, \mathcal{R}_2, \dots \mathcal{R}_M$ $(\mathcal{O}_j, \tau_{\mathcal{R}_j, t}, \omega_{\beta_j})$, where ω_{β_j} is β_j KMS state for τ_t^j

Small system S, dim $\mathcal{H}_S = N$ ($\mathcal{O}_S, \tau_{S_i,t}, \omega_S$), where is ω_S some state

Initial state: $\omega := \omega_{\mathcal{S}} \otimes (\omega_{\beta_1} \otimes \ldots \otimes \omega_{\beta_M}) = \omega_{\mathcal{S}} \otimes \omega_{\mathcal{R}}$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Quantum case ?? Transient case

Attempt 1: "Naive quantization"

Mathematical setting: Reservoirs $\mathcal{R}_1, \mathcal{R}_2, \dots \mathcal{R}_M$ coupled directly or through a small system S, dim $\mathcal{H}_S = N$

Notation

Reservoirs $\mathcal{R}_1, \mathcal{R}_2, \dots \mathcal{R}_M$ $(\mathcal{O}_j, \tau_{\mathcal{R}_j, t}, \omega_{\beta_j})$, where ω_{β_j} is β_j KMS state for τ_t^j

Small system S, dim $\mathcal{H}_S = N$ ($\mathcal{O}_S, \tau_{S_i,t}, \omega_S$), where is ω_S some state

Initial state: $\omega := \omega_{\mathcal{S}} \otimes (\omega_{\beta_1} \otimes \ldots \otimes \omega_{\beta_M}) = \omega_{\mathcal{S}} \otimes \omega_{\mathcal{R}}$

Free Dynamics: $\tau_t^{\omega}(A) := \tau_{\mathcal{S},t} \otimes (\tau_{\mathcal{R}_1,t} \otimes \ldots \tau_{\mathcal{R}_M,t}) =: \tau_{\mathcal{S},t} \otimes \tau_{\mathcal{R},t}$ with generator δ_{ω}

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Quantum case ?? Transient case

Attempt 1: "Naive quantization"

Mathematical setting: Reservoirs $\mathcal{R}_1, \mathcal{R}_2, \dots \mathcal{R}_M$ coupled directly or through a small system S, dim $\mathcal{H}_S = N$

Notation

Reservoirs $\mathcal{R}_1, \mathcal{R}_2, \dots \mathcal{R}_M$ $(\mathcal{O}_j, \tau_{\mathcal{R}_j, t}, \omega_{\beta_j})$, where ω_{β_j} is β_j KMS state for τ_t^j

Small system S, dim $\mathcal{H}_S = N$ ($\mathcal{O}_S, \tau_{S_i,t}, \omega_S$), where is ω_S some state

Initial state: $\omega := \omega_{\mathcal{S}} \otimes (\omega_{\beta_1} \otimes \ldots \omega_{\beta_M}) = \omega_{\mathcal{S}} \otimes \omega_{\mathcal{R}}$

Free Dynamics: $\tau_t^{\omega}(A) := \tau_{S,t} \otimes (\tau_{\mathcal{R}_1,t} \otimes \ldots \tau_{\mathcal{R}_M,t}) =: \tau_{S,t} \otimes \tau_{\mathcal{R},t}$ with generator δ_{ω}

Perturbed dynamics: $\tau_t(A)$ with generator $\delta_\omega = \delta_\omega + i[-, V]$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Attempt 1: "Naive quantization"

Underlying idea in simplified setting : $\Sigma_t = -\beta H_{0,t} + \beta H_0 = S_t - S$ and consider its spectral measure on \mathcal{H} and consider the spectral measure μ_{Σ_t}

From previous lecture:

$$\Sigma_t$$
 corresponds to $Ent(\omega_t|\omega) - Ent(\omega|\omega)$

In the GNS representation $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ associated to ω ;

$$\Sigma_t = \log \Delta_{\omega_{-t}|\omega} - \log \Delta_{\omega|\omega}$$

Define

$$\mathcal{F}_t^{naive}(lpha) = \omega(e^{-lpha \Sigma_t}) = \int e^{-lpha s} d\mu_{\Sigma_t}$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Attempt 1: "Naive quantization"

Underlying idea in simplified setting : $\Sigma_t = -\beta H_{0,t} + \beta H_0 = S_t - S$ and consider its spectral measure on \mathcal{H} and consider the spectral measure μ_{Σ_t}

From previous lecture:

$$\Sigma_t$$
 corresponds to $Ent(\omega_t|\omega) - Ent(\omega|\omega)$

In the GNS representation $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ associated to ω ;

$$\Sigma_t = \log \Delta_{\omega_{-t}|\omega} - \log \Delta_{\omega|\omega}$$

Define

$$\mathcal{F}_t^{naive}(lpha) = \omega(e^{-lpha \Sigma_t}) = \int e^{-lpha s} d\mu_{\Sigma_t}$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Attempt 1: "Naive quantization"

Underlying idea in simplified setting : $\Sigma_t = -\beta H_{0,t} + \beta H_0 = S_t - S$ and consider its spectral measure on \mathcal{H} and consider the spectral measure μ_{Σ_t}

From previous lecture:

$$\Sigma_t$$
 corresponds to $Ent(\omega_t|\omega) - Ent(\omega|\omega)$

In the GNS representation $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ associated to ω ;

$$\Sigma_t = \log \Delta_{\omega_{-t}|\omega} - \log \Delta_{\omega|\omega}$$

Define

$$\mathcal{F}_t^{naive}(lpha) = \omega(e^{-lpha \Sigma_t}) = \int e^{-lpha s} d\mu_{\Sigma_t}$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Attempt 1: "Naive quantization"

Underlying idea in simplified setting : $\Sigma_t = -\beta H_{0,t} + \beta H_0 = S_t - S$ and consider its spectral measure on \mathcal{H} and consider the spectral measure μ_{Σ_t}

From previous lecture:

$$\Sigma_t$$
 corresponds to $Ent(\omega_t|\omega) - Ent(\omega|\omega)$

In the GNS representation $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ associated to ω ;

$$\Sigma_t = \log \Delta_{\omega_{-t}|\omega} - \log \Delta_{\omega|\omega}$$

Define

$$\mathcal{F}_t^{naive}(lpha) = \omega(e^{-lpha \Sigma_t}) = \int e^{-lpha s} d\mu_{\Sigma_t}$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Attempt 1: "Naive quantization"

Underlying idea in simplified setting : $\Sigma_t = -\beta H_{0,t} + \beta H_0 = S_t - S$ and consider its spectral measure on \mathcal{H} and consider the spectral measure μ_{Σ_t}

From previous lecture:

$$\Sigma_t$$
 corresponds to $Ent(\omega_t|\omega) - Ent(\omega|\omega)$

In the GNS representation $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ associated to ω ;

$$\Sigma_t = \log \Delta_{\omega_{-t}|\omega} - \log \Delta_{\omega|\omega}$$

Define

$$\mathcal{F}_t^{naive}(lpha) = \omega(e^{-lpha \Sigma_t}) = \int e^{-lpha s} d\mu_{\Sigma_t}$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Attempt 1: "Naive quantization"

Underlying idea in simplified setting : $\Sigma_t = -\beta H_{0,t} + \beta H_0 = S_t - S$ and consider its spectral measure on \mathcal{H} and consider the spectral measure μ_{Σ_t}

From previous lecture:

$$\Sigma_t$$
 corresponds to $Ent(\omega_t|\omega) - Ent(\omega|\omega)$

In the GNS representation $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ associated to ω ;

$$\Sigma_t = \log \Delta_{\omega_{-t}|\omega} - \log \Delta_{\omega|\omega}$$

Define

$$\mathcal{F}_t^{naive}(lpha) = \omega(e^{-lpha \Sigma_t}) = \int e^{-lpha s} d\mu_{\Sigma_t}$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Attempt 1: "Naive quantization"

Underlying idea in simplified setting : $\Sigma_t = -\beta H_{0,t} + \beta H_0 = S_t - S$ and consider its spectral measure on \mathcal{H} and consider the spectral measure μ_{Σ_t}

From previous lecture:

$$\Sigma_t$$
 corresponds to $Ent(\omega_t|\omega) - Ent(\omega|\omega)$

In the GNS representation $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ associated to ω ;

$$\Sigma_t = \log \Delta_{\omega_{-t}|\omega} - \log \Delta_{\omega|\omega}$$

Define

$$\mathcal{F}_t^{naive}(lpha) = \omega(e^{-lpha \Sigma_t}) = \int e^{-lpha s} d\mu_{\Sigma_t}$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Attempt 1: "Naive quantization"

Underlying idea in simplified setting : $\Sigma_t = -\beta H_{0,t} + \beta H_0 = S_t - S$ and consider its spectral measure on \mathcal{H} and consider the spectral measure μ_{Σ_t}

From previous lecture:

$$\Sigma_t$$
 corresponds to $Ent(\omega_t|\omega) - Ent(\omega|\omega)$

In the GNS representation $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ associated to ω ;

$$\Sigma_t = \log \Delta_{\omega_{-t}|\omega} - \log \Delta_{\omega|\omega}$$

Define

$$\mathcal{F}_t^{naive}(lpha) = \omega(e^{-lpha \Sigma_t}) = \int e^{-lpha s} d\mu_{\Sigma_t}$$

leads to NO-fluctuation relation!!!!

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Attempt 1: "Naive quantization"

Underlying idea in simplified setting : $\Sigma_t = -\beta H_{0,t} + \beta H_0 = S_t - S$ and consider its spectral measure on \mathcal{H} and consider the spectral measure μ_{Σ_t}

From previous lecture:

$$\Sigma_t$$
 corresponds to $Ent(\omega_t|\omega) - Ent(\omega|\omega)$

In the GNS representation $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ associated to ω ;

$$\Sigma_t = \log \Delta_{\omega_{-t}|\omega} - \log \Delta_{\omega|\omega}$$

Define

$$\mathcal{F}_t^{naive}(lpha) = \omega(e^{-lpha \Sigma_t}) = \int e^{-lpha s} d\mu_{\Sigma_t}$$

leads to NO-fluctuation relation!!!!

Remark: Σ_t is constructed as difference at time t and at time 0 of a given observable.

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

(ロ) (個) (E) (E) E の()

Quantization: transient fluctuation relation Attempt 2:

Mathematical point of view: Phase space contraction What is relevant is

 Σ_t corresponds to $Ent(\omega_t|\omega)$

In a GNS representation

$$\mathcal{F}_{\omega,t}(\alpha) = (\Omega_{\omega}, e^{-\alpha \log \Delta_{\omega_{-t}|\omega}} \Omega_{\omega}) = (\Omega_{\omega}, \Delta_{\omega_{-t}|\omega}^{-\alpha} \Omega_{\omega})$$

In terms of cocycle

$$\mathcal{F}_{\omega,t}(\alpha) = \omega([D_{\omega_{-t}}:D_{\omega}]^{\alpha})$$

leads to fluctuation relation!!!!!

Let $\mathbb{P}_{\omega,t}$ be such that

$$\mathcal{F}_{\omega,t}(\alpha) = \int e^{-\alpha s} \mathrm{d}\mathbb{P}_{\omega,t}.$$

What does $\mathbb{P}_{\omega,t}$ means?

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Attempt 2:

Physical point of view [Kurchan'00] Measurement has been neglected. Associate to *S* the *two-time measurement statistics* $\mathbb{P}_{\omega,t}$ defined as difference between two measurements

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Attempt 2:

Physical point of view [Kurchan'00] Measurement has been neglected. Associate to *S* the *two-time measurement statistics* $\mathbb{P}_{\omega,t}$ defined as difference between two measurements

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Attempt 2:

Physical point of view [Kurchan'00] Measurement has been neglected. Associate to *S* the *two-time measurement statistics* $\mathbb{P}_{\omega,t}$ defined as difference between two measurements

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Attempt 2:

Physical point of view [Kurchan'00] Measurement has been neglected. Associate to *S* the *two-time measurement statistics* $\mathbb{P}_{\omega,t}$ defined as difference between two measurements

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Attempt 2:

Physical point of view [Kurchan'00] Measurement has been neglected. Associate to *S* the *two-time measurement statistics* $\mathbb{P}_{\omega,t}$ defined as difference between two measurements

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Attempt 2:

Physical point of view [Kurchan'00] Measurement has been neglected. Associate to *S* the *two-time measurement statistics* $\mathbb{P}_{\omega,t}$ defined as difference between two measurements

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Attempt 2:

Physical point of view [Kurchan'00] Measurement has been neglected. Associate to *S* the *two-time measurement statistics* $\mathbb{P}_{\omega,t}$ defined as difference between two measurements this approach leads to *fluctuation relation*

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● のへの

Attempt 2:

Physical point of view [Kurchan'00] Measurement has been neglected. Associate to *S* the *two-time measurement statistics* $\mathbb{P}_{\omega,t}$ defined as difference between two measurements this approach leads to *fluctuation relation*

At the level of averages and variances, there is no difference!

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Attempt 2:

Physical point of view [Kurchan'00] Measurement has been neglected. Associate to *S* the *two-time measurement statistics* $\mathbb{P}_{\omega,t}$ defined as difference between two measurements this approach leads to *fluctuation relation*

At the level of averages and variances, there is no difference!

The success of TTM come with a price: unexpected phenomena (with no classical countepart) due to the invasive role of measurement [Benoist-P.Raquépas19, Benoist-P.Pautrat 20] and *now*

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Two-time measurement statistics

Full (Counting) Statistics [Lesovik, Levitov '93][Levitov, Lee,Lesovik '96]

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

Two-time measurement statistics

Full (Counting) Statistics [Lesovik, Levitov '93][Levitov, Lee,Lesovik '96]

Confined systems: described by $(\mathcal{H}, H, \rho) \dim \mathcal{H} < \infty$ Given an observable A: $A = \sum_{j} a_{j} P_{a_{j}}$ where $a_{j} \in \sigma(A) P_{a_{j}}$ associated spectral projections Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Two-time measurement statistics Full (Counting) Statistics [Lesovik, Levitov '93][Levitov, Lee,Lesovik '96]

Confined systems: described by $(\mathcal{H}, H, \rho) \dim \mathcal{H} < \infty$ Given an observable A: $A = \sum_{j} a_{j} P_{a_{j}}$ where $a_{j} \in \sigma(A) P_{a_{j}}$ associated spectral projections Protocol:

- t = 0, we measure A (outcome a_j)
- evolve for time t

- measure again at time t (outcome a_k)

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□ > ◆□ > ◆目 > ◆目 > ● ● ● ● ●

Two-time measurement statistics

Full (Counting) Statistics [Lesovik, Levitov '93][Levitov, Lee,Lesovik '96]

Confined systems: described by $(\mathcal{H}, H, \rho) \dim \mathcal{H} < \infty$ Given an observable A: $A = \sum_{j} a_{j} P_{a_{j}}$ where $a_{j} \in \sigma(A) P_{a_{j}}$ associated spectral projections Two-time measurement distribution of A: $\mathbb{P}_{A,t}(\phi)$ = probability of measuring a change in A equal to ϕ . Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Two-time measurement statistics

Full (Counting) Statistics [Lesovik, Levitov '93][Levitov, Lee,Lesovik '96]

Confined systems: described by $(\mathcal{H}, H, \rho) \dim \mathcal{H} < \infty$ Given an observable A: $A = \sum_{j} a_{j} P_{a_{j}}$ where $a_{j} \in \sigma(A) P_{a_{j}}$ associated spectral projections Two-time measurement distribution of A: $\mathbb{P}_{A,t}(\phi)$ = probability of measuring a change in A equal to ϕ . In confined system:

$$\mathbb{P}_{A,t}(\phi) =$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Two-time measurement statistics

Full (Counting) Statistics [Lesovik, Levitov '93][Levitov, Lee,Lesovik '96]

Confined systems: described by $(\mathcal{H}, H, \rho) \dim \mathcal{H} < \infty$ Given an observable A: $A = \sum_{j} a_{j}P_{a_{j}}$ where $a_{j} \in \sigma(A) P_{a_{j}}$ associated spectral projections Two-time measurement distribution of A: $\mathbb{P}_{A,t}(\phi)$ = probability of measuring a change in A equal to ϕ . In confined system:

 $\mathbb{P}_{A,t}(\phi) = \operatorname{tr}(\rho P_{a_j})$

Fact/Problem: the measurement perturbes the state, the initial state reduces to ρ_{am}

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Two-time measurement statistics

Full (Counting) Statistics [Lesovik, Levitov '93][Levitov, Lee,Lesovik '96]

Confined systems: described by $(\mathcal{H}, H, \rho) \dim \mathcal{H} < \infty$ Given an observable A: $A = \sum_{j} a_{j}P_{a_{j}}$ where $a_{j} \in \sigma(A) P_{a_{j}}$ associated spectral projections Two-time measurement distribution of A: $\mathbb{P}_{A,t}(\phi)$ = probability of measuring a change in A equal to ϕ . In confined system:

$$\mathbb{P}_{A,t}(\phi) = \operatorname{tr}(\rho P_{a_j})$$

with

$$\rho_{am} = \frac{1}{\operatorname{tr}(\rho P_{a_j})} P_{a_j} \rho P_{a_j}.$$

Fact/Problem: the measurement perturbes the state, the initial state reduces to ρ_{am}

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting Results

Additiona

12/30

Two-time measurement statistics

Full (Counting) Statistics [Lesovik, Levitov '93][Levitov, Lee,Lesovik '96]

Confined systems: described by $(\mathcal{H}, H, \rho) \dim \mathcal{H} < \infty$ Given an observable A: $A = \sum_{j} a_{j}P_{a_{j}}$ where $a_{j} \in \sigma(A) P_{a_{j}}$ associated spectral projections Two-time measurement distribution of A: $\mathbb{P}_{A,t}(\phi)$ = probability of measuring a change in A equal to ϕ . In confined system:

$$\mathbb{P}_{A,t}(\phi) = \operatorname{tr}(\rho P_{a_j})\operatorname{tr}(e^{-\mathrm{i}tH}\rho_{am}e^{\mathrm{i}tH}P_{a_k})$$

with

$$\rho_{am} = \frac{1}{\operatorname{tr}(\rho P_{a_j})} P_{a_j} \rho P_{a_j}.$$

Fact/Problem: the measurement perturbes the state, the initial state reduces to ρ_{am}

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting Results

Additional

Two-time measurement statistics

Full (Counting) Statistics [Lesovik, Levitov '93][Levitov, Lee,Lesovik '96]

Confined systems: described by $(\mathcal{H}, H, \rho) \dim \mathcal{H} < \infty$ Given an observable A: $A = \sum_{j} a_{j}P_{a_{j}}$ where $a_{j} \in \sigma(A) P_{a_{j}}$ associated spectral projections Two-time measurement distribution of A: $\mathbb{P}_{A,t}(\phi)$ = probability of measuring a change in A equal to ϕ . In confined system:

$$\mathbb{P}_{A,t}(\phi) = \sum_{a_k-a_j=\phi} \operatorname{tr}(\rho P_{a_j}) \operatorname{tr}(e^{-\mathrm{i}tH} \rho_{am} e^{\mathrm{i}tH} P_{a_k})$$

with

$$\rho_{am} = \frac{1}{\operatorname{tr}(\rho P_{a_j})} P_{a_j} \rho P_{a_j}.$$

Fact/Problem: the measurement perturbes the state, the initial state reduces to ρ_{am}

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting Results

Additional comments

Two-time measurement statistics -thermodynamic limit

This defines
$$\mathcal{F}_{\omega,t}^{(n)}(\alpha) = \int e^{-\alpha s} \mathrm{d}\mathbb{P}_{S,t}^{(n)}(s)$$
.

Theorem

It is possible to rewrite $\mathcal{F}_{\omega,t}^{(n)}(\alpha)$ in term of algebraic objects that survive the limit $n \to \infty$. Under standard hypothesis, $\lim_{(n)\to\infty} \mathcal{F}_{\omega,t}^{(n)}(\alpha) =: \mathcal{F}_{\omega,t}(\alpha)$ is well defined and correspond to the same formal expression.

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● のへの

Two-time measurement statistics -thermodynamic limit

This defines
$$\mathcal{F}_{\omega,t}^{(n)}(\alpha) = \int e^{-\alpha s} d\mathbb{P}_{S,t}^{(n)}(s)$$
.

Theorem

It is possible to rewrite $\mathcal{F}_{\omega,t}^{(n)}(\alpha)$ in term of algebraic objects that survive the limit $n \to \infty$. Under standard hypothesis, $\lim_{(n)\to\infty} \mathcal{F}_{\omega,t}^{(n)}(\alpha) =: \mathcal{F}_{\omega,t}(\alpha)$ is well defined and correspond to the same formal expression.

And that expression is same as before!!!

$$\mathcal{F}_{\omega,t}(\alpha) = (\Omega_{\omega}, e^{-\alpha \log \Delta_{\omega_{-t}|\omega}} \Omega_{\omega}) = (\Omega_{\omega}, \Delta_{\omega_{-t}|\omega}^{-\alpha} \Omega_{\omega})$$

In other words

 $\mathcal{F}_{\omega,t}(\alpha) = \mathcal{F}_{\omega,t}^{ttm}(\alpha)$ obtained though two-time measurement protocol

 $\mathcal{F}_{\omega,t}(\alpha) = \mathcal{F}_{\omega,t}^{psc}(\alpha)$ obtained in the spirit of quantum phase space contraction

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting Results

Additional comments

How to quantize steady FR? Difficulties:

- A measurement would destroy the steady state
- steady state exists only in the thermodynamic limit
- in the thermodynamic limit, non-normality of the steady state (to the initial state)

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summar

Indirect measurement: setting

Results

Additional

 ω_{NESS} as an idealization of ω_T at an unknown very large time (see remark about classical case)

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● のへの

 $\omega_{\textit{NESS}}$ as an idealization of ω_{T} at an unknown very large time (see remark about classical case)

Two time measurement framework (start with finite dimensional approximation dim $\mathcal{H} = n$)

- start with ω initial state as in the transient case
- perform the first measurement at an unknown very large time T
- let the system evolve for time t
- perform the measurement at an unknown very large time T + t

(日)(4月)(4日)(4日)

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional

 ω_{NESS} as an idealization of ω_T at an unknown very large time (see remark about classical case)

Two time measurement framework (start with finite dimensional approximation dim $\mathcal{H} = n$)

- start with ω initial state as in the transient case
- perform the first measurement at an unknown very large time T
- let the system evolve for time t
- perform the measurement at an unknown very large time ${\cal T}+t$ This defines

$$\mathbb{P}_{T,t}^{(n)}, \quad \mathcal{F}_{\omega_{T},t}^{(n)}(\alpha) = \int e^{-t\alpha s} \mathrm{d}\mathbb{P}_{T,t}^{(n)}(s)$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

<□> <□> <□> <□> <=> <=> <=> <0,00

Quantum steady entropic functional: our proposal Proposition (Thermodynamic limit (T.Benoist, L.Bruneau, V.Jakšić, A.P., C.-A.Pillet '23)) It is possible to rewrite $\mathcal{F}_{\omega_{\tau,t}}^{(n)}(\alpha)$ in term of algebraic objects that survive the limit. Under standard hypothesis, $\mathcal{F}_{\omega_{\tau,t}}(\alpha) := \lim_{n\to\infty} \mathcal{F}_{\omega_{\tau,t}}^{(n)}(\alpha)$ is well defined correspond to the same formal expression.

$$\mathcal{F}_{\omega_{T,t}}(\alpha) = \lim_{R \to \infty} \int_0^R \omega_T(\zeta_\theta [D_{\omega_{-t}} : D_\omega]^\alpha) \mathrm{d}\theta$$

with $\zeta_{\theta}(-)$ modular dynamic associated to ω (free dynamics up to a temperature time scale factor)

Recall:

$$\mathcal{F}_{\omega,t}(\alpha) = \omega([D_{\omega_{-t}}:D_{\omega}]^{\alpha})$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Quantum steady entropic functional: our proposal Proposition (Thermodynamic limit (T.Benoist, L.Bruneau, V.Jakšić, A.P., C.-A.Pillet '23)) It is possible to rewrite $\mathcal{F}_{\omega_{\tau,t}}^{(n)}(\alpha)$ in term of algebraic objects that survive the limit. Under standard hypothesis, $\mathcal{F}_{\omega_{\tau,t}}(\alpha) := \lim_{n\to\infty} \mathcal{F}_{\omega_{\tau,t}}^{(n)}(\alpha)$ is well defined correspond to the same formal expression.

$$\mathcal{F}_{\omega_{T},t}(\alpha) = \lim_{R \to \infty} \int_{0}^{R} \omega_{T}(\zeta_{\theta}[D_{\omega_{-t}} : D_{\omega}]^{\alpha}) \mathrm{d}\theta$$

with $\zeta_{\theta}(-)$ modular dynamic associated to ω (free dynamics up to a temperature time scale factor)

Recall:

$$\mathcal{F}_{\omega,t}(\alpha) = \omega([D_{\omega_{-t}}:D_{\omega}]^{\alpha})$$

Definition

$$\mathcal{F}_{\omega_{NESS},t}(\alpha) := \lim_{T \to \infty} \mathcal{F}_{\omega_{T},t}(\alpha)$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting Results

Results

Additional comments

Theorem (direct coupling, no S, T.Benoist, L.Bruneau, V.Jakšić, A.P., C.-A.Pillet '23)

Let assume the reservoirs are coupled directly (no S); assume the dynamics $\tau^0_{\mathcal{R},t}$ is ergodic. Then

$$\mathcal{F}_{\omega_{\tau},t}(\alpha) = \mathcal{F}_{\omega,t}(\alpha)$$

for all $T \in \mathbb{R}$.

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Quantum steady entropic functional: our proposal: results

Theorem (direct coupling, no S, T.Benoist, L.Bruneau, V.Jakšić, A.P., C.-A.Pillet '23)

Let assume the reservoirs are coupled directly (no S); assume the dynamics $\tau^0_{\mathcal{R},t}$ is ergodic. Then

$$\mathcal{F}_{\omega_{\tau},t}(\alpha) = \mathcal{F}_{\omega,t}(\alpha)$$

for all $T \in \mathbb{R}$.

Consequences:

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Quantum steady entropic functional: our proposal: results

Theorem (direct coupling, no S, T.Benoist, L.Bruneau, V.Jakšić, A.P., C.-A.Pillet '23)

Let assume the reservoirs are coupled directly (no S); assume the dynamics $\tau^0_{\mathcal{R},t}$ is ergodic. Then

$$\mathcal{F}_{\omega_{\tau},t}(\alpha) = \mathcal{F}_{\omega,t}(\alpha)$$

for all $T \in \mathbb{R}$.

Consequences:

$$\blacktriangleright \mathcal{F}_{\omega_{\text{NESS},t}}(\alpha) = \mathcal{F}_{\omega,t}(\alpha)$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Quantum steady entropic functional: our proposal: results

Theorem (direct coupling, no S, T.Benoist, L.Bruneau, V.Jakšić, A.P., C.-A.Pillet '23)

Let assume the reservoirs are coupled directly (no S); assume the dynamics $\tau^0_{\mathcal{R},t}$ is ergodic. Then

$$\mathcal{F}_{\omega_{\tau},t}(\alpha) = \mathcal{F}_{\omega,t}(\alpha)$$

for all $T \in \mathbb{R}$.

Consequences:

$$\blacktriangleright \mathcal{F}_{\omega_{NESS},t}(\alpha) = \mathcal{F}_{\omega,t}(\alpha)$$

If the symmetry true for F_{ω,t}(α), then for the steady functional F_{ωNESS,t}(α) also satisfy the symmetry AT FINITE TIME t;

▶ if
$$e_{\omega_{NESS},+}(\alpha), e_{\omega,+}(\alpha)$$
 exist, they are equal

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summar

Indirect measurement: setting Results

Additional comments

Quantum steady entropic functional: our proposal:

results

Theorem (coupling through *S*, T.Benoist, L.Bruneau, V.Jakšić, A.P., C.-A.Pillet '23)

Let assume the reservoirs are through a small system S; assume the dynamics $\tau^0_{\mathcal{R},t}$ is ergodic. Then

$$\mathbf{e}_{\omega_{NESS},+}(\alpha) = \mathbf{e}_{\omega,+}(\alpha)$$

Remark

In both theorems:

- 1. No additional hypothesis on the perturbed dynamics; strong coupling allowed.
- 2. Underlying mechanism: invasive measurement role; memory erasing effect of first measurement; stability of the fluctuation
- 3. General proof, with algebraic methods (no need for resonance analysis model by model)
- 4. We are able to cope with NESS in the thermodynamic limit.

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting Results

Additional comments

Proof in abstract terms

Consider $(\mathcal{O}, \tau_t, \omega)$ with ω a τ_t invariant. $(\mathcal{O}, \tau_t, \omega)$ is ergodic iff for any ω normal state ν and any $A \in \mathcal{O}$

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T\nu(\tau_t(A))\mathrm{d}t=\omega(A)$$

Apply this property to

$$\mathcal{F}_{\omega_{T},t}(\alpha) = \lim_{R \to \infty} \frac{1}{R} \int_{0}^{R} \omega_{T}(\zeta_{\theta}[D_{\omega_{-t}}:D_{\omega}]^{\alpha}) \mathrm{d}\theta$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Consider the GNS representation associated to ω ; $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega)$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional

Consider the GNS representation associated to ω ; $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega)$ Liouvillean: any operator such that $\pi_{\omega}(\tau_t(A)) = e^{itL}\pi_{\omega}(A)e^{-itL}$ not uniquely defined.

 L_∞ such that $L_\infty \Omega = \Omega$

 L_{α} deformed Liovillean, L_0 liouvillean for the free dynamics

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Consider the GNS representation associated to ω ; $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega)$ Liouvillean: any operator such that $\pi_{\omega}(\tau_t(A)) = e^{itL}\pi_{\omega}(A)e^{-itL}$ not uniquely defined.

 L_∞ such that $L_\infty \Omega = \Omega$

 L_{α} deformed Liovillean, L_0 liouvillean for the free dynamics

$$\mathcal{F}_{\omega,t}(\alpha) = (\Omega, \Delta^{\alpha}_{\omega_t|\omega}\Omega) = (\Omega, e^{-itL_{\alpha}}\Omega)$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Consider the GNS representation associated to ω ; $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega)$ Liouvillean: any operator such that $\pi_{\omega}(\tau_t(A)) = e^{itL}\pi_{\omega}(A)e^{-itL}$ not uniquely defined.

 L_∞ such that $L_\infty \Omega = \Omega$

 L_{α} deformed Liovillean, L_0 liouvillean for the free dynamics

$$\mathcal{F}_{\omega,t}(\alpha) = (\Omega, \Delta^{\alpha}_{\omega_t|\omega}\Omega) = (\Omega, e^{-itL_{\alpha}}\Omega)$$

$$\mathcal{F}_{\omega_{\tau},t}(\alpha) = \lim_{A \to \infty} \frac{1}{A} \int_{0}^{A} (\Omega_{\tau}, e^{i\theta L_{0}} \Delta_{\omega_{t}|\omega}^{\alpha} e^{-i\theta L_{0}} \Omega_{\tau}) \mathrm{d}\theta$$
$$= (\Omega, e^{iTL_{\infty}} \mathbb{1}_{\{0\}}(-\beta L_{0}) e^{-itL_{\alpha}} \Omega)$$

Direct coupling: If the dynamics on \mathcal{R} is ergodic, 0 is a simple eigenvalue for L_0 and $1_{\{0\}}(L_0) = |\Omega\rangle\langle\Omega|$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting Results

Results

Additional

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Consider the GNS representation associated to ω ; $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega)$ Liouvillean: any operator such that $\pi_{\omega}(\tau_t(A)) = e^{itL}\pi_{\omega}(A)e^{-itL}$ not uniquely defined.

 L_∞ such that $L_\infty \Omega = \Omega$

 L_{α} deformed Liovillean, L_0 liouvillean for the free dynamics

$$\mathcal{F}_{\omega,t}(\alpha) = (\Omega, \Delta^{\alpha}_{\omega_t|\omega}\Omega) = (\Omega, e^{-itL_{\alpha}}\Omega)$$

$$\mathcal{F}_{\omega_{\tau},t}(\alpha) = \lim_{A \to \infty} \frac{1}{A} \int_{0}^{A} (\Omega_{\tau}, e^{i\theta L_{0}} \Delta_{\omega_{t}|\omega}^{\alpha} e^{-i\theta L_{0}} \Omega_{\tau}) \mathrm{d}\theta$$
$$= (\Omega, e^{iTL_{\infty}} \mathbb{1}_{\{0\}}(-\beta L_{0}) e^{-itL_{\alpha}} \Omega)$$

Direct coupling: If the dynamics on \mathcal{R} is ergodic, 0 is a simple eigenvalue for L_0 and $1_{\{0\}}(L_0) = |\Omega\rangle\langle\Omega|$ Coupling through a small system \mathcal{S} : If the dynamics on \mathcal{R} is ergodic, 0 is a simple eigenvalue for L_0 and $\ker(L) = \ker(L_{\mathcal{S}}) \otimes \Omega_{\mathcal{R}}$; equality is attained in in the long time limit $t \to \infty$ Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting Results

Additional comments

Summing up so far

- we have introduced classical entropic functional and we have review the quantization in the transient case
- we have introduced a proposal for quantum steady (GC) entropic functional *F*_{ω_{NESS},t}(α)
- we have shown a "memory erasing effect"/ stability due to the first measurement ; this can be interpreted as stability in the quantum case of the fluctuations
- we have shown e_{ω_{NESS},+}(α) = e_{ω,+}(α) under very minimal ergodicity hypothesis
- direct measurement on infinitely extended or (very large) reservoir is an idealization. Are we able to write similar (less general) results ins the framework of an indirect measurement using resonance theory ? YES, next subject.

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional Results

Summary

Indirect measurement: setting Results

Additional comments

Indirect Measurment: Ancilla State Tomography The Entropic Ancilla State Tomography (EAST)

Confined system: described by $(\mathcal{H}, \mathcal{H}, \rho) \dim \mathcal{H} < \infty$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting Results

Results

Additional

Indirect Measurment: Ancilla State Tomography The Entropic Ancilla State Tomography (EAST) Confined system: described by $(\mathcal{H}, \mathcal{H}, \rho) \dim \mathcal{H} < \infty$

Couple $\mathcal{S} + \mathcal{R}$ with an auxiliary system called "ancilla"

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting Results

Results

Additional

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● のへの

Indirect Measurment: Ancilla State Tomography The Entropic Ancilla State Tomography (EAST)

Confined system: described by $(\mathcal{H}, \mathcal{H}, \rho) \dim \mathcal{H} < \infty$

Couple S + R with an auxiliary system called "ancilla"

ancilla = spin 1/2 $(\mathfrak{H}_a, \mathcal{H}_a, \rho_a)$ with $\mathfrak{H}_a = \mathbb{C}^2$ Denote by v_{\pm} the eigenvectors of the Pauli matrix σ_z associated to the eigenvalues ± 1 . ρ_a a density matrix such that $\langle v_+, \rho_a v_- \rangle \neq 0$.

Consider the extended system
$$\widehat{\mathcal{H}} = \mathcal{H} \otimes \mathbb{C}^2$$

 $\widehat{\omega} = \omega \otimes \rho_a$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

Indirect Measurment: Ancilla State Tomography The Entropic Ancilla State Tomography (EAST)

Confined system: described by $(\mathcal{H}, \mathcal{H}, \rho) \operatorname{dim} \mathcal{H} < \infty$

Couple $\mathcal{S} + \mathcal{R}$ with an auxiliary system called "ancilla"

ancilla = spin 1/2 $(\mathfrak{H}_a, \mathcal{H}_a, \rho_a)$ with $\mathfrak{H}_a = \mathbb{C}^2$ Denote by v_{\pm} the eigenvectors of the Pauli matrix σ_z associated to the eigenvalues ± 1 . ρ_a a density matrix such that $\langle v_+, \rho_a v_- \rangle \neq 0$.

Consider the extended system $\widehat{\mathcal{H}} = \mathcal{H} \otimes \mathbb{C}^2 \\ \widehat{\omega} = \omega \otimes \rho_{\mathsf{a}}$

We introduce family of Hamiltonians (for each α) $\widehat{H}_{\alpha} = e^{\frac{\alpha}{2} \log \omega \otimes \sigma_z} (H \otimes \mathbb{1}) e^{-\frac{\alpha}{2} \log \omega \otimes \sigma_z}$

 $P:=|m{v}_{-}
angle\langlem{v}_{+}|$, a simple computation gives

$$\operatorname{tr}(\mathrm{e}^{-\mathrm{i}t\widehat{H}_{\alpha}}\widehat{\nu}\mathrm{e}^{\mathrm{i}t\widehat{H}_{\alpha}}1\!\!\!1\otimes \mathsf{P}) = \langle \mathsf{v}_{+}, \rho_{\mathsf{a}}\mathsf{v}_{-}\rangle \mathcal{F}_{\omega,t}(\alpha)$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional Results

.

Summary

Indirect measurement: setting Results

Additional comments

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

Indirect Measurement: Ancilla State Tomography

In the general case: $\widehat{\mathcal{O}} := \mathcal{O} \otimes \mathcal{O}_{\mathbb{C}^2}$ $\widehat{\tau}^t = \tau^t \otimes \mathrm{id} \quad \widehat{\tau}^t_\alpha \text{ perturbed dynamics corresponding to } \widehat{H}_\alpha$

$$\widehat{\omega}(\widehat{\tau}^t_{\alpha}(\mathbb{1}\otimes \mathsf{P})) = \langle \mathsf{v}_+, \rho_{\mathsf{a}}\mathsf{v}_- \rangle \mathcal{F}^{\mathrm{ancilla}}_{\omega,t}(\alpha).$$

$$\mathcal{F}_{\omega,t}^{\text{ancilla}}(\alpha) := \omega \left(([D\omega_{-t} : D\omega])^{\frac{\tilde{\alpha}*}{2}} [D\omega_{-t} : D\omega])^{\frac{\alpha}{2}} \right)$$
$$= \omega \left([D\omega_{-t} : D\omega]^{\alpha} \right) = \mathcal{F}_{\omega,t}(\alpha)$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional Results

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ● ◆ ●

Indirect Measurment: Ancilla State Tomography

If the intial state is ω the multi-thermal state

$$\mathcal{F}_{\omega,t}^{\mathrm{ttm}}(\alpha) = \mathcal{F}_{\omega,t}^{\mathrm{ancilla}}(\alpha)$$

But for general ν , in particular if $\nu = \omega_T$ the functionals

$$\mathcal{F}_{\omega_{\tau},t}(\alpha) \neq \mathcal{F}_{\omega_{\tau},t}^{\mathrm{ancilla}}(\alpha)$$

This indirect measurement protocol is not "invariant" if with respect of the time T.

Is the protocol "stable"? Meaning that in the limit $t \to +\infty$ the corresponding cumulant generating function will be the same?

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summar

Indirect measurement: setting

Results

Additional

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々ぐ

Indirect Measurment: Ancilla State Tomography

Answer is : YES! but not in general

For ω_T finite, true under additional hypothesis

For ω_{NESS} expected under additional chaotic property of the dynamics, we can prove it for Spin-Fermion/boson model. One can argue for Ancilla ST, the situation is parallel to the classical case.

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Indirect Measurment: Ancilla State Tomography,

results

General results:

(AnV) For some $\vartheta > 0$ the map

$$\mathbb{R} \ni \boldsymbol{s} \mapsto \varsigma^{\theta}_{\omega}(\boldsymbol{V}) \in \mathcal{O}$$

has an analytic extension to the complex strip $\mathfrak{S}(\vartheta) = \{ z \in \mathbb{C} | \operatorname{Re} z - 1 \backslash 2 | < \vartheta \}.$

Theorem (T.Benoist, L.Bruneau, V.Jakšić, A.P., C.-A.Pillet '24) Suppose that (AnV) holds with $\theta > \frac{1}{2}$. Set

$$C_{\mathcal{T}} := \mathrm{e}^{|\mathcal{T}|(\|\varsigma_{\omega}^{-\mathrm{i}\frac{1}{2}}(V)\| + \|V\|)} \quad D_{\mathcal{T}} := \mathrm{e}^{-|\mathcal{T}|(\|\varsigma_{\omega}^{\mathrm{i}\frac{1}{2}}(V)\| + \|V\|)}.$$

Then for any $\alpha \in (-\vartheta, \vartheta)$,

$$D_{\mathcal{T}}\mathcal{F}_{\omega,t}(\alpha) \leq \mathcal{F}_{\omega_{\mathcal{T}},t}^{\mathrm{ancilla}}(\alpha) \leq C_{\mathcal{T}}\mathcal{F}_{\omega,t}(\alpha).$$

Consequence (stability of the measurement protocol for finite T):

$$e_{\omega,+}(\alpha) = e_{\omega_{\mathcal{T}},+}^{\mathrm{ancilla}}(\alpha)$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

Indirect Measurment: Ancilla State Tomography: results

Model dependent results

Theorem (T.Benoist, L.Bruneau, V.Jakšić, A.P., C.-A.Pillet '24) For the Spin-Fermion. Suppose that (AnV) holds with $\theta > \frac{1}{2}$ and some additional regularity hypothesis. Then for any $\alpha \in (-\vartheta, \vartheta)$,

$$e_{\omega_{NESS},t}(\alpha) = e_{\omega,t}(\alpha)$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

A comment on entropic functionals at T > 0

For T = 0, i.e. with respect to ω

$$\mathcal{F}_{\omega,t}(\alpha) = \mathcal{F}_{\omega,t}^{\mathrm{psc}}(\alpha) = \mathcal{F}_{\omega,t}^{\mathrm{ttm}}(\alpha) = \mathcal{F}_{\omega,t}^{\mathrm{ancilla}}(\alpha)$$

$$\mathcal{F}_{\omega,t}^{\mathrm{psc}}(\alpha) = \mathcal{F}_{\omega,t}^{\mathrm{ttm}}(\alpha) = \omega\left(\left(\left[D\omega_{-t}:D\omega\right]\right)^{\alpha}\right)$$
$$\mathcal{F}_{\omega,t}^{\mathrm{ancilla}}(\alpha) = \omega\left(\left(\left[D\omega_{-t}:D\omega\right]\right)^{\frac{\tilde{\alpha}*}{2}}\left[D\omega_{-t}:D\omega\right]\right)^{\frac{\alpha}{2}}\right)$$

For T > 0, i.e. with respect to ω_T

$$\mathcal{F}_{\omega_{T},t}^{\text{psc}}(\alpha) \neq \mathcal{F}_{\omega_{T},t}^{\text{ttm}}(\alpha) \neq \mathcal{F}_{\omega_{T},t}^{\text{ancilla}}(\alpha)$$
$$\mathcal{F}_{\omega_{T},t}^{\text{ttm}}(\alpha) = \lim_{R \to \infty} \int_{0}^{R} \omega_{T}(\zeta_{\theta}[D_{\omega_{-t}}:D_{\omega}]^{\alpha}) d\theta$$
$$\mathcal{F}_{\omega_{T},t}^{\text{ancilla}}(\alpha) = \omega_{T}(([D\omega_{-t}:D\omega])^{\frac{\tilde{\alpha}*}{2}}[D\omega_{-t}:D\omega])^{\frac{\alpha}{2}})$$
$$\mathcal{F}_{\omega_{T},t}^{\text{psc}}(\alpha) = \omega_{T}([D_{\omega_{-t}}:D_{\omega}]^{\alpha})$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A comment on entropic functionals at T > 0

Equality are restored in the large time limit under some conditions If reservoir are ergodic and (AnV) is verified

$$e_{\omega,+}(\alpha) = \lim_{t \to \infty} \frac{1}{t} \log \mathcal{F}_{\omega_{\tau},t}^{\text{ttm}}(\alpha) = \lim_{t \to \infty} \frac{1}{t} \log \mathcal{F}_{\omega_{\tau},t}^{\text{ancilla}}(\alpha)$$

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Entropic fluctuations in quantum two-time measurement framework

Annalisa Panati et Claude-Alain Pillet CPT, Université de Toulon

Plan

Classical non equilibrium SM

Transient Fluctuation relation

Steady Fluctuation relation

Quantum Non Equilibrium SM

Quantum transient functional and Two-time measurement statistics

Quantum steady functional

Results

Summary

Indirect measurement: setting

Results

Additional comments

(ロ) (母) (E) (E) (E) のQC

Thank you for your attention