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1. Strata, orbit cloures and period coordinates

The goal of these lecture notes is to explain recent developments on compactifications of or-
bit closures on strata of differentials. In this section we recall the necessary background before
motivating the results on compactifications.

Let g ≥ 0 be a genus and µ = (µ1, . . . , µn) be an integer partition of 2g − 2 (we allow negative
entries). The stratum

H =

{
(X,ω) |X Riemann surface of genus g,(ω) =

∑
i

µipi

}
/( iso.)

is a moduli space for Riemann surfaces and differentials with a fixed multiplicity of zeros.

Remark 1.1. A holomorphic differential form on KX is the same as a global section of the holo-
morphic cotangent bundle KX . The space of holomorphic 1-forms H0(X,KX) is a g-dimensional
complex vector space. Counted with multiplicity a holomorphic differential form always has
2g(X)− 2 zeros.

Similarly, a meromorphic differential ω with poles of order mi at pi is a holomorphic section
of KX(

∑
i mipi), which has a (g +

∑
i mi − 1)-dimensional space of global section. (Hint:Use

Riemann-Roch).

1.1. Equivalent points of view. In the sequel we will mostly work complex-analytically but at
various points it will be useful to keep the flat geometric view point in mind. For a holomorphic
differential, the datum (X,ω) is equivalent to a flat surface, i.e. a compact complex manifold X
of dimension 1 and a finite set of points Σ such that X − Σ is equipped with an atlas of charts
ϕi : Ui → C such that the transition functions ϕi ◦ ϕ−1

j are given by linear functions, i.e.

ϕi ◦ ϕ−1
j (z) = z + c, c ∈ C.

In the charts Ui the differential form ω can be written as

ω = dz.

Since translations respect the flat metric dz ∧ dz̄, the manifold X −Σ admits a flat metric (i.e. a
Riemannian metric with curvature zero).

Any translation surface can be represented by the following data: A polygon P ⊆ C together
with gluing maps z 7→ z + c for the edges of the polygon. Different polygons can represent
isomorphic translation surfaces, if one is obtained from another by a sequence of cutting and
gluing operations.

“Meromorphic flat surfaces”. In the course of these lecture notes we will often encounter “flat
surfaces” corresponding to meromorphic differentials. These pictures might look strange at first
glance, since they consist of “non-compact” polygons. The following pictures give examples of the
variety of flat surfaces that one can encounter.
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Meromorphic flat surfaces
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GL(2,R)-action. The group GL(2,R) acts on the stratum H as follows. Given (X,ω), represent
the flat surface as a polygon in the plane, with pairs of sides identified via a translation. An
element g ∈ GL(2,R) acts linearly on C ≃ R2 and keeps parallel sides parallel. Thus, the image
g · P is again a polygon and we keep the same edge identification as for P .

(
1 1
0 1

)

Figure 1. GL(2,R) acting on a translation surface
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1.2. Period coordinates. Using the representation of translation surfaces as polygons in the
plane, one can describe a natural coordinate system on H. Let (X,ω) ∈ H and choose a polygonal
representation P . Every edge e of P either connects two different zeros of ω or is a closed loop.
Thus we can consider e as an element of the relative homology group

H1(X,ω;Z) := H1(X − P (ω), Z(ω));Z).

In fact, the edges of P form a generating set. The length of e as a vector in C agrees with the
integral ∫

e

ω.

By deforming the edges of the polygon P sligthly (and thus the complex numbers
∫
e
ω), one

can describe a neighborhood of (X,ω) in H.

Theorem 1.2. Let (X,ω) ∈ H. There exists a contractible neighborhood U ⊆ H containing (X,ω)
such that the map

U → H1(X − P (ω), Z(ω);C), (X,ω) 7→ (α 7→
∫
α

ω)

is a biholomorphism onto its image. By choosing a basis α1, . . . , αn one obtains a local biholomor-
phism

U → Cn, (X,ω) 7→
(∫

α1

ω, . . . ,

∫
αn

ω

)
.

Remark 1.3. Implicit in this theorem is a identification of homology groups

H1(X − P (ω), Z(ω);Z) ≃ H1(X ′ − P (ω′), Z(ω′);Z)

for different points (X,ω), (X ′, ω′) ∈ U . This can be achieved as follows. Over U there exists a
complex manifold C → U such that the fiber over (X,ω) is isomorphic to the curve X together with
sections σi : U → C such that the image σi(X,ω) is the i-th zero or pole of ω. The map C → U
is a proper submersion, thus by the Ehresmann fibration theorem the map C → U is C∞- fiber
bundle. In particular, different fibers of C → U are diffeomorphic. Furthermore, one can choose
the diffeomorphisms so that they preserve the images of the section σi. The diffeomorphisms are
not unique but different choices are homotopic, thus the induced map on homologies are the same.

A contractible open set U as in the theorem, is called a period chart and resulting local coor-
dinates ϕ : U → Cn are called period coordinates.

The structure of GL(2,R)−orbit closusres. The following foundational result describes the
local and global structure of orbit closure for the GL(2,R)-action.

Theorem 1.4 (Eskin-Mirzakhani-Mohammadi, Filip). Let N = GL(2,R) · (X,ω) be a GL(2,R)-
orbit closure. Then N is an algebraic subvariety of H, which locally in period coordinates, is
defined by linear equation with real coefficients.

In the sequel we will work with the following, slightly more general, class of algebraic varieties.

Definition 1.5. A linear subvariety N ⊆ H is an algebraic subvariety, which is defined by linear
equations in local period coordinates.

In the above definition the linear equations are allowed to have complex coefficients. If the linear
equations can be chosen with real coefficients only, we say that N is R-linear. As a consequence of
Theorem 1.4, any orbit closure is an R-linear subvariety. And conversely, any irreducible R-linear
subvariety is an orbit closure.
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Motivation for studying closures of linear subvarieties. One of the big open problems in
Teichmüller theory is the classification of R-linear subvarieties.

LetN be an R-linear subvariety. ThenN is not compact, since once can use the GL(2,R)−action
to degenerate the surface. Thus the following gives a potential approach to classifying orbit clo-
sures.

(1) Construct a suitable compactificationH of the stratum, such that the boundary ∂H “looks
like a stratum”, i.e. still has period coordinates and a GL(2,R)-action

(2) Take the boundary ∂N = N −N inside H
(3) For a suitable compactification, one can hope that the boundary ∂N of N is again

GL(2,R)-invariant and given by real linear equations in period coordinates
(4) The dimension of ∂N is smaller than N . So now one can proceed recursively and keep

reducing the dimension of the R-linear subvarieties
One possible “compactification” where such arguments can be carried out is the WYSIWYG

partial compactificationHWY
developed by Mirzakhani-Wright [MW15] and Chen-Wright [CW19].

The WYSIWYG partial compactification HWY
is a flat geometric construction, but not algebraic.

The recursive approach has been used by Apisa-Wright [AW23] to classify orbit closures of large
rank.

The goal of these lecture notes is to describe an alternative, algebraic compactification H, where
the boundary of R-linear subvarieties have (almost) all the desired properties to allow a recursive
approach. In the end this will recover the results about the WYSIWYG compactification.

2. An extended example

To get an idea of how the boundary of an orbit closure looks like, we will discuss a simple
example of how flat surfaces in an orbit closure can degenerate to the boundary. This is an
informal discussion, which hopefully helps to build the intuition. In particular, we will not define
thoroughly what it means to degenerate or for a sequence of flat surfaces to converge.

Consider the stratum H = H(1, 1). An example of a surface in H can be found using the slit
torus construction as follows. Consider two elliptic curves E1 and E2 and choose two slits of the
same length wich are identified by a translation. Topologically, the resulting surface is a connected
sum of two tori.

Figure 2. A flat surface in H(1, 1)

Define the subvariety

N = {(X,ω) ∈ H | ∃ f : X
2:1−−→ E, g(E) = 1, f∗dz = ω} ⊆ H.

consisting of double covers of an elliptic curve E, where the differential is the pullback of the
unique (up to scaling) holomorphic one-form on E.

For example, one can find an element in N by forcing both elliptic curves E1 and E2 in Figure 2
to be the same. The resulting double covering is then obtained just by projecting onto one
parallelogram.
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Figure 3. A flat surface in H(1, 1)

We claim that N is a R-linear subvariety of dimension 3, locally defined by the condition

ω ∈ f∗H1(E, p, q;C),

where p, q are the two branch points of f : X → E. Equivalently, for any two paths α, β in
H1(X,Z(ω);Z) such that

f∗α = f∗β,

we have ∫
α

ω =

∫
α

f∗dz =

∫
f∗α

dz =

∫
f∗β

dz =

∫
β

f∗dz

∫
β

ω.

Thus in local period coordinates, N is contained in the union of all subspace f∗H1(E, p, q;C).
Note that these spaces are defined over Z, in particular there are only countably many such
subspaces in period coordinates.

We can be more precise about the linear equations. Choose a relative homology basis α1, β1, α2, β2, γ
such that αi forms a symplectic homology basis for N and γ is represented by the slit. Then the
condition ∫

α1

ω =

∫
α2

ω,

∫
β1

ω =

∫
β2

ω

defines a 3-dimensional Q-subspace containing (X,ω).

Exercise 2.1. N is a 3-dimensional GL(2,R)-invariant subvariety of H.

The following criterion for linearity can be useful:

Proposition 2.2. Suppose N is an irreducible, algebraic variety of dimension at least d. Suppose
there exists a number field k such that for any point (X,ω) ∈ N there exists a linear subspace
V ⊆ H1(X,Z(ω);C) defined over k and of dimension at most d, such that

[ω] ∈ V.

Then N is a linear subvariety, defined by k-linear equations.
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Proof. (Sketch) N is contained in the union of all countable many subspaces defined over k. In
particular, N has dimension at most d. Furthermore, N has locally only finitely many irreducible
components, so it agrees with a finite union of such. ■

For a more detailed proof, see [MMW17, Thm. 5.1].
We now describe several ways of degenerating surfaces in N .

Figure 4. Degenerating the surface in N by stretching cylinders

1. Case: Stretch the periods over α1 and α2 to ∞. The flat picture is that of two infinite
cylinders (where for each cylinder the points at infinity are glued together to form a nodal Riemann
surface) glued together along a slit.

Exercise 2.3. (Local model for simple poles) Let C := {z ∈ C | 0 ≤ Re(z) ≤ 1 equipped with the
differential form dz. Consider the corresponding flat surfaces obtained by identifying both sides of
the strip via z 7→ z + 1. Show that the differential acquires a simple pole at the points at infinity
with residue ±1.

The limit X of this degeneration is a meromorphic differential in the stratum H(12,−14). If we
draw the limits of αi on the nodal surface X, then αi crosses the node and we can not interpret the
integral of the limit differential over αi as a period on X. On the other hand, the linear equation

∫
β1

ω =

∫
β2

ω

persists in the limit and it becomes a linear equation on the residues of the limiting differential
with simple poles.
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Figure 5. The limit surface after stretching αi

Upshot: The limit differential (X,ω) is a nodal surface with a meromorphic differential with
simple poles at the nodes. The periods of (X,ω) satisfy linear equations among periods, which are
obtained by taking limits of periods. Linear equations crossing nodes with simple poles disappear.
We will see that this happens in general.

Figure 6. The WYSIWYG limit after shrinking the slit

2. Case: Shrink the slit to the zero. For the next degeneration, we fix the elliptic curves
and only let the length of the slit go to zero. In this case, the first guess is that the limit is just a
union of two elliptic curves connected at a fixed point (the limit of the slit).

In fact, this is the limit, when considered in the WYSIWYG partial compactification HWY
.

Note that the two linear equations∫
α1

ω =

∫
α2

ω,

∫
β1

ω =

∫
β2

ω

persist in the limit.

Remark 2.4. The WYSIWYG partial compactification HWY
was constructed by Mirzakhani-

Wright, Chen-Wright, where it was also shown that the closure of a R-linear subvariety N is again
R-linear and the linear equation defining the boundary are obtained by taking limits of linear
equations on N . We will be able to recover these results from the results in this lecture series.)
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The multi-scale limit. We now introduce a new way of taking limits, which still remembers the
information of the slit and which will lead to the definition of the multi-scale compactification of
strata. The main observation is that different parts of the surface behave differently along the
degeneration. There are parts of the surface which stay of constant size (the two parallelograms).
And there are parts which go to zero (the slit). To obtain information about the slit in the limit,
one rescales the family of differentials so that the length of the slit stays constant. This pushes
the parallelogram defining E1 and E2 to infinity in the limit. In the end, the result is two copies
of the complex plane (which we think of P1 with a point at infinite), glued together along the slit.

Figure 7. The limit of the slit, obtained by rescaling the slit to constant size

Then we combine this with the WYSIWYG limit and glue the two points at infinity to the limits
of the slit. The final result is a nodal Riemann surface with 3 components: Two components of
genus 1 connected to each other by a P1.

Figure 8. The multi-scale limit is obtained by gluing both pictures together

We want to organize the components of the limit, depending on the speed at which periods
vanish. The top level records all pieces of constant size, in this case the two elliptic components.
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The P1 component corresponds to parts of the surface that go to zero (the slit), which we record at
level −1. The multi-scale limit is the resulting nodal surface equipped with the limit differentials,
together with the information of which component appears at which level.

Figure 9. The resulting multi-scale limit is a flat surface in the stratum H(0)×
H(0)×H(12,−14)

In general, different pieces of the surface can move at vastly different rates and there can be
many levels in the limit. The top level always corresponds to constant size. The level −1 and
below contain everything that shrinks to zero. Level −2 corresponds to the pieces that shrink
faster than pieces on level −1 and so on. We will make this idea precise later using multi-scale
differentials.

Summary. We see that the boundary of N satisfies the following properties along the degenera-
tions we discussed.

(1) The limit surface satisfies linear equations among its periods.
(2) Linear equations persist in the limit along a degeneration, unless they cross nodes with

simple poles.
(3) There are no linear equations relating periods from different levels, i.e. the boundary has

a product structure corresponding to different levels.

It turns out that these observations hold for the boundary of any linear subvariety inside the
multi-scale compactification of strata. Before we can make this precise, we need to define the
multi-scale compactification in detail.

3. Background on the Deligne-Mumford compactification of moduli space

Before addressing degenerations of differential forms, we start by degenerating the underlying
Riemann surface only.

Definition 3.1. A n-marked stable curve X is a finite union of marked Riemann surfaces Xi and
finite set Σ = {q+e , q−e , e ∈ E(X)} ⊆ X of nodes with q+e glued to q−e such that

• the marked points on X are disjoint from Σ,
• each component Xi of genus zero has at least three marked points or nodes.

The combinatorics of how the different components of X interact is recorded in the dual graph.

Definition 3.2. Let X be a stable curve. The dual graph Γ of X is a graph with a vertex vi for each
irreducible component Xi. Two vertices vi and vj are connected by an edge if the corresponding
components Xi and Xj are connected by a node. Additionally, we decorate each vertex vi with the
integer gi = g(Xi) and for every marked point on Xi we add a half-leg (an edge with starting point
but no end point). The genus g(X) is defined by

g(X) :=

n∑
i=1

g(Xi) + dimH1(Γ).
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Exercise 3.3. Find all dual graphs of stable curves of genus 2 with one and two marked points.

The Deligne-Mumford compactification Mg,n is a moduli space for n-marked stable curve of

genus g, up to isomorphism. The space Mg,n is a smooth algebraic variety (orbifold) of dimension

3g − 3 + n. There is a stratification of Mg,n by dual graphs. Let

MΓ := {X ∈ Mg,n |Γ(X) = Γ}

be the closure of the locus of curves with dual graph Γ. Then

codimMΓ = |E(Γ)|.

Remark 3.4. Topologically a degeneration of Riemann surfaces is obtained by pinching a collec-

tion of homology cycles, called vanishing cycles. If X̃ is a degeneration of X, then there exists a

collection of edges Ẽ in the dual graph of Γ(X̃) such that Γ(X) is obtained by contracting the

edges in Ẽ.

Remark 3.5. The topology on Mg,n can be defined as follows. A sequence (Xn)n converges to
Y if there exists an exhaustion Yn of Y − Σ by compact sets and conformal maps g : Yn → Xn.

3.1. Level graphs and multi-scale differentials.

Definition 3.6. A level graph Γ is a stable graph Γ together with a level function ℓ : V (Γ) →
{0,−1, . . . ,−L} and a prong order κ : E(Γ) → N≥0 subject to the following condition:

• (Horizontal nodes have prong 0) Let e be an edge connecting two vertices v, v′. Then
κ(e) = 0, if and only if v, v′ have the same level, i.e. ℓ(v) = ℓ(v′).

If κ(e) > 0, then we let v+e be the vertex with higher level and q+e the corresponding node. We
define v−e , q

−
e analogously. An edge e with κ(e) is called a vertical edge/node. If κ(e) = 0, then e

is called a horizontal node and we make an arbitrary choice of which vertex is v±e and let q±e be
the corresponding preimages of the nodes.

Definition 3.7. Let H = H(µ), µ = (µ(p1), . . . , µ(pn)) be a stratum and Γ be a level graph. For
any vertex v ∈ V (Γ), the partition µv is determined by the following:

(1) µv contains µ(pi) if the half-leg corresponding to the marked point pi is adjacent to v,
(2) For every node e and every preimage q±e adjacent to v, the partition µv contains an entry

κ(e)− 1 if q+e is adjacent to v and −κ(e)− 1 if q−e is adjacent to v.

For every level i of Γ we define

Hi :=
∏

v:ℓ(v)=i

H(µv).

Definition 3.8. Fix a stratum H. A multi-scale differential (X,ω) for H compatible with a level
graph Γ consists of a stable marked curve with underlying dual graph Γ and a differential

ω ∈ H0 ×
∏
i<0

PHi.

Additionally, a multi-scale differential has to satisfy additional linear equations among its residues
and has to have a prong matching. See below for more details on these additional conditions.

Suppose (X,ω) is a multi-scale differential. We write ωv for the differential on the irreducible
component Xv and let Z(ωv), P (ωv) be the zeros and poles, respectively, of ωv on Xv. Note that
every zero or pole is either a marked point or a node.

For any level i, we let

X(i) :=
⋃

v:ℓ(v)=i

Xv

be the subsurface of level i. Let ω(i) be the restriction of ω to X(i) and Z(ω(i)), P (ω(i)) the zeros
and poles at level i.
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Residue conditions. Amulti-scale differential has to satisfy the following linear equations among
residues:

(1) Matching residues at horizontal nodes If e is a horizontal node, then

resq+e ω + resq−e ω = 0.

(2) Global residue condition For every level i and every connected component Y of

X>i =
⋃

v:ℓ(v)>i

Xv

that does not contain a marked point with a prescribed pole, let e1, . . . , en be the set of
nodes connecting Y to components with level < i. Then

n∑
k=1

resq−ei
ω = 0.

Prongs. Given a differential ω choose a chart such that

ω = zkdz.

A prong is a tangent vector ±η∂z where ηk+1 = 1. Up to sign, there are |k+1| prongs and a prong
matching is a bijection between prongs at two preimages of a node. For us it mostly matters that
a choice of prong matchings is a finite datum. For counting problems it matter how many prong
matchings there are and this is computable. Since we are mostly interested in the local structure
of the moduli space of multi-scale differentials the prong matching won’t play much of a role.

The moduli space of multi-scale differentials.

Definition 3.9. The moduli space of multi-scale differentials H is the space of all multi-scale
differentials corresponding to the stratum H.

Theorem 3.10 ([BCGGM19]). The moduli space of multi-scale differentials H is a smooth alge-
braic orbifold. The boundary is a normal crossing divisor, which is stratified by level graphs.

The boundary of H is stratified by level graphs, analogous to the stratification of Mg,n by
stable graphs.

Definition 3.11. Let Γ be a level graph and

DΓ := {(X,ω) ∈ H |ω compatible with Γ}.
Then DΓ is a subvariety of codimension ℓ(Γ)− 1 + |h(Γ)|, where ℓ(Γ) is the number of levels of Γ

and h(Γ) the set of horizontal nodes.

How can we describe a neighborhood of a point in DΓ? A point in DΓ consists of a collection of
differentials ωv each contained in a stratum H(µv). The partition µv is determined by the original
partition µ and the level graph Γ. Thus DΓ looks like a product of strata and has natural period
coordinates. Since in lower levels the differentials are projectivized we have to use projectivized
period coordinates there.

Proposition 3.12. Let DΓ be a boundary stratum of H. Then DΓ has local period coordinates
modeled on a linear subspace of

H1(X(0), ω(0);C)×
∏
i<0

PH1(X(i), ω(i);C).

Here X(i) is the subsurface consisting of irreducible components of level i and ω(i) the restriction
of ω to X(i).

Remark 3.13. As before we are ignoring residue equations and prong-matchings here. Inside
Hi there is a subspace HR

i consisting of all multi-scale differentials satisfying the global residue
conditions and matching residues at horizontal nodes. Since residues are part of the period coor-
dinates, this means passing to a linear subspace in period coordinates (defined by linear equations
with rational coefficients).
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Choosing a prong-matching means passing to a finite cover which does not change the local
structure. We also ignore issues arising from the stack structure of the boundary. These delicate
issues are dealt with in great detail in [CMZ20].

Remark 3.14. In Mg,n a degeneration of a Riemann surface is obtained by pinching a collection
of vanishing cycles. Hence if a Riemann surface with dual graph Γ degenerates to one with dual
graph Γ′, the graph Γ is obtained by contracting a set of edges.

A similar description is still valid for H. Any degeneration creates new levels and new horizontal

nodes. If Γ
′
is the level graph of a degeneration of surfaces with level graph Γ, then Γ is obtained

by choosing a set of horizontal edges Fhor and a set of levels I and contracting all of the horizontal
edges in Fhor and any vertical edge that connects vertices between level i and i+1 for some i ∈ I

Exercise 3.15. Find all level graphs in strata of genus 2 and their degenerations.

4. Closures of orbit closures

Theorem 4.1 ([Ben22]). Let DΓ ⊆ H be a boundary stratum and N ⊆ H a linear subvariety.
Then the boundary

∂NΓ := ∂N ∩DΓ

is a linear subvariety (in the period coordinates of the boundary). Furthermore, ∂NΓ is a level-wise
product, i.e.

∂NΓ =
∏

Vi,

where each Vi ⊆ H1(X(i), ω(i);C) are linear subspaces.

Informally the last part of the theorem can be stated as: Linear equations don’t mix levels.
Note that this theorem does not contain any information on whether a given boundary stratum is
empty or not. It only says that if a boundary component is non-empty then it is defined by linear
equations among residues.

In fact, we can be much more precise and identify the linear equations defining ∂N as limits of
linear equations defining N .

For this, we need a way of comparing homology groups of a multi-scale differential with the
homology groups of nearby surfaces. We start with an informal description: The stratum is locally
modeled on the cohomology groups

H1(X,ω;C) = H1(X − P (ω), Z(ω);C).

Thus a linear relation ∫
α

ω = 0

can be thought of as a homology cycle

α ∈ H1(X,ω;C)

such that [ω] ∈ Ann(α).
Let Y be a smooth Riemann surface and X be a stable curve, which is obtained by pinching a

collection of vanishing cycles Λ. Let Γ be a level graph on the dual graph of X. Given a homology
class α on Y , represent it by a path on Y . And consider the image under the map that pinches
the vanishing cycles. We are interested in the limit of periods∫

α

ω.

when the differential ω converges to a multi-scale differential.
How can we understand a sequence of differentials converging to a multi-scale differentials?

After removing the vanishing cycles, Y is cut into several connected components. Each component
Yv can be identified with a vertex of the dual graph of X and thus be assigned a level ℓ(v). For
each level i, there exists constants ci(Y ), depending on the degeneration, such that
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ci(Y )ω(i)(Y ) converges to ω(i)(X). Furthermore, the ratios

ci−1(Y )

ci(Y )

converge to zero.

Figure 10. Cutting along the vanishing cycles decomposes Y into componentss

To see what will happen to periods
∫
α
ω(Y ) in the limit, we first consider a few special cases.

1. Case: α can be represented by a path in top level, but cannot be homotoped
into a lower level.

The differential ω converges to zero on the lower level compared to the top level. Thus in the
limit only the parts of α the surface in the top level survive.

2.Case:α can be homotoped into a lower level. In that case the integral∫
α

ω

goes to zero. But remember that there are rescaling coefficients c−1(t) such that c−1(t)ω converges
to ω(−1). In particular if the linear equation∫

α

ω = 0 =

∫
α

c(t)ω

is satisfied, then in the limit it becomes ∫
ω(−1) = 0.

3.Case: α crosses a horizontal node. In this case the integral∫
α

ω

diverges and we do not take the limit. (The differential locally near the nodes looks like
r

z
dz so

that the period blows up when integrated through the node.)
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4.1. Limits of periods: The level filtration. For each vanishing cycle λ = λe let λ
◦ be a small

open neighborhood of λ that deformation retracts onto λ. Let ∂λ◦ = λ+
e ⊔λ−

e be the the boundary
of λ◦ (with opposite orientations).

In particular let Λ◦ = ⊔eλ
◦
e. The surface Y −Λ◦ is a compact Riemann surface with boundary

that can be embedded into X. In particular, we choose λ+
e to be in the component of X with a

higher level, if e is a vertical node.
Note that Y −Λver,◦ decomposes into several connected component. Let Y hor

v be the connected
component contained in Xv.

By further removing the thickened horizontal vanishing cycles Λhor we then obtain the surfaces
Ye.

Let Y(i) = ⊔v:ℓ(v)Yv be the subsurface of level i. We define the subsurface Y<i of level below i
similarly.

The first step is to define a restriction map to level 0.

α0 : H1(X,ω;Z) → H1(X(0), ω(0))

Figure 11. The specialization map onto level 0

Informally, the map α(0) is defined by representing a homology class γ be a sum of smooth
paths and cutting off the path at any point that crosses a vanishing cycles connecting to lower
level. The end result is a relative cohomology class (relative to the new boundary components
and the marked zeros) Note that at this point we do not take care of horizontal nodes yet. We
define W0 = H1(X,ω;Z),W1 = kerα(0). Note that W0/W1 is isomorphic to the cohomology of
the surface Y(0). Note that Y(0) still contains the horizontal vanishing cycles of level 0. In the next

step we want to cut along those. We define W⊥
0 ⊆ W0/W1 to be the subspace of cycles that do

not intersect any horizontal cycle in level 0.
Let Y cut

(0) be the Riemann surface with boundary obtained by cutting Y(0) along all horizontal

vanishing cycles. We want to define a map

β0 : W⊥
0 → H1(Y

cut
(0) , ω(0);Z)

as follows. Represent a homology class in W⊥
0 by a sum of paths not intersecting the horizontal

vanishing cycles of level 0. And restrict this class to Y cut
(0) . This map is not well-defined, the

ambiguity is the difference λ+
e − λ−

e .
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Figure 12. The restriction map is not well-defined

We thus define the residue subspace R0 to be the span λ+
e − λ−

e , where e ranges over all
horizontal nodes in level 0. We thus get a well-defined map

β0 : W⊥
0 → H1(Y

cut
(0) , ω(0);Z)/R0.

One can check that β0 is an isomorphism. Note that the dual of H1(Y
cut
(0) , ω(0);Z)/R0 can be

identified with the local model for H in level 0. We now proceed with the deeper levels. Let W1

be the kernel of α0. Every class in W−1 can be represented by a cycle completely supported in
the subsurface Y(−1). That way we can try to define a map

W−1 → H1(Y(≤−1), ω(≤−1);Z),

but as before there is ambiguity. It turns out the ambiguity is exactly obtained by the global
residue condition. If we let RGRC

−1 the subspace generated by the cycles in the GRC condition we
get a map

α−1 : W−1 → H1(Y(−1, ω(−1);Z)/RGRC .

Afterward we still need to take care of the horizontal nodes. As before, set W⊥
−1 ⊆ W−1/ kerα−1

the cycles with zero intersection against horizontal vanishing cycles in level −1. There is a well-
defined map

β−1 : H1(Y
cut
(−1), ω(−1);Z)/R−1,

where Y cut
(−1) is obtained from Y(−1) by cutting along horizontal vanishing cycles and R−1 defined

by the global residue conditions as well as the residue subspace defined by λ+
e − λ−

e for horizontal
vanishing cycles in level −1.

Upshot: Proceeding in the same way for the remaining levels, one obtains a filtration

W−L ⊆ . . . ⊆ W0,

with restriction maps

αi : Wi → H1(Y(i), ω(i);Z)/RGRC
i ,

with subspaces W⊥
i ⊆ Wi/Wi−1 and isomorphisms

βi : W
⊥
i → H1(Y

cut
(i) , ω(i);Z)/Ri ≃ H1(X(i), ω(i);Z)/Ri.
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4.2. Limits of linear equations. Suppose (X,ω) ∈ ∂N is a boundary point of an orbit closure
and choose a nearby point (Y, η) ∈ N .

In local period coordinates near (Y, η) the linear subvariety N is defined by the vanishing of
some linear equations, in other words

N = Ann(V ),

where V is a subspace V ⊆ H1(Y, η;C).
For every level i of (X,ω) we define

Vi = V ∩Wi ⊆ Wi

and V ⊥
i := [Vi] ∩W⊥

i ⊆ Wi/Wi−1.

Theorem 4.2 ([Ben22]). Suppose N is a linear subvariety, (X,ω) ∈ ∂N ∩DΓ is a boundary point
and (Y, η) ∈ N is a nearby point such that N = Ann(V ) in local period coordinates.

Then ∂N ∩DΓ is a linear subvariety, which in local period coordinates is defined as

∂N ∩DΓ = Ann(V ⊥
0 )×

−1∏
−L

P(Ann(V ⊥
i ))
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