Some Real Rel Trajectories in $\mathcal{H}(1,1)$ that are not Recurrent

Carlos Ospina

University of Utah

Le Teich March 2024

< 両 > う o へ

Introduction

- A translation surface *M* is a collection of polygons {*P*₁,...,*P_l*} whose edges are glued with a family of translations of the form *z* → *z* + *c*.
- Collections of objects are strata $\mathcal{H}(r_1, \ldots, r_k)$ with $2g 2 = \sum_{i=1}^k r_i$.

Example in $\mathcal{H}(1,1)$

$$T_N\mathcal{H}(r_1,\ldots,r_k)=H^1(S,\{r_1,\ldots,r_k\};\mathbb{R}^2)$$

Let $Res: H^1(S, \{r_1, \ldots, r_k\}; \mathbb{R}^2) \to H^1(S; \mathbb{R}^2)$ be the restriction map. Define $\mathcal{R} := ker(Res)$.

It integrates to a foliation of $\mathcal{H}(r_1, \ldots, r_k)$: the **Rel** foliation.

Other names: Kernel, Isoperiodic, Absolute Period The leaves have real dimension 2(k-1).

Moreover, $Z = \mathcal{R} \cap H^1(S, \{r_1, \ldots, r_k\}; \mathbb{R}_x)$ defines the **real Rel** flow(s).

3

In $\mathcal{H}(1,1)$, the leaves of this subfoliation have dim = 1.

Real rel flow

Deforms $N \in \mathcal{H}(1,1)$ so that the relative positions of \bullet and \circ change horizontally.

 $\mathbb{R}el_t: \mathcal{H}(1,1) \to \mathcal{H}(1,1)$

Real rel flow

- Calta '04 noticed that one can push affine measures by real Rel to obtain more *U*-invariant measures.
- The Rel leave of the Arnoux-Yoccoz surface is dense in $\mathcal{H}(g-1,g-1)$, for $g\geq 3$. Hopper-Weiss '18
- The real Rel trajectory of Arnoux-Yoccoz is divergent H-W '18
- Rel leaves can be dense in some affine manifolds if they have Property P. *Florent Ygouf '22*
- There are dense real Rel orbits in every connected comp. of any stratum. *Winsor '22*
- Ergodicity real Rel and Rel: Chaika-Weiss '23

Theorem (0. '24)

There are real Rel trajectories in $\mathcal{H}(1,1)$ that are non-recurrent and not divergent.

 $N \in \mathcal{H}(1,1)$ is recurrent if $\exists t_i \to \infty$: $\lim Rel_{t_i}N = N$.

$$\lim_{t_i\to\infty} Rel_{t_i}N=N.$$

Double covers

Let $\mathcal{E} \subset \mathcal{H}(1,1)$ branched double covers of tori:

Rel trajectories in \mathcal{E} are determined by the location of the singularities and the horizontal flow of the underlying torus.

- periodic orbits
- $\overline{\{Rel_t(M)\}} \sim \mathbb{T}^2$
- divergent orbits (the singularities collapse)

8/14

Fix $M \in \mathcal{E}$. Lebesgue is invariant w.r.t horizontal flow on M. It could be ergodic. But if it is not, for example:

For θ irrational, Lebesgue restricted to one of the copies of the tori is an ergodic measure.

We can use a deformation of translation surfaces that commutes with $\it Rel.$ Tremors:

Tremor

If μ is an inv. measure for the horizontal flow, we can see it as the product of a transverse measure β and $\mathrm{d}x.$

Like a product: $\mu = dx \otimes \beta$.

Moreover we can assume $\beta \in H^1(S, \{p_1, p_2\}, \mathbb{R})$.

Thus $trem_{\beta}M$ is the solution of some ODE. The local coord. of it are of the form:

$$\int_{\gamma} \mathrm{d}x_{trem_{\beta}M} = \int_{\gamma} \mathrm{d}x_{M} + \beta(\gamma) \qquad \int_{\gamma} \mathrm{d}y_{trem_{\beta}M} = \int_{\gamma} \mathrm{d}x_{M}$$

11/14

Recurrence

 $N \in \mathcal{H}(1,1)$ is recurrent if $\exists t_i \to \infty$ such that

$$\lim_{t_i\to\infty} \operatorname{Rel}_{t_i} N = N.$$

For aperiodic surfaces glued along a horizontal slit, we have the following:

Theorem

Let $M \in \mathcal{E}$ as above. The surface trem_{β} $M \in \mathcal{H}(1,1) \setminus \mathcal{E}$ is recurrent if and only if $\theta \notin \mathbb{Q}$ is well approximable.

< ゆ > う > や < 中 >

When the slit is **very** long, it is possible to represent the same surface with a shorter slit:

By doing this, some area exchange happens.

A key to understand how close $Rel_t trem_\beta M$ is from $trem_\beta M$ by controlling this area exchange.

Area exchange

When $\theta \notin \mathbb{Q}$ is badly approximable there are constants 0 < c < C < 1

$$c < \frac{|Area red - Area white|}{Total area} < C$$

independently of the length of the slit.