Some Real Rel Trajectories in $\mathcal{H}(1,1)$ that are not Recurrent

Carlos Ospina
University of Utah

Le Teich
March 2024

Introduction

- A translation surface M is a collection of polygons $\left\{P_{1}, \ldots, P_{1}\right\}$ whose edges are glued with a family of translations of the form $z \mapsto z+c$.
- Collections of objects are strata $\mathcal{H}\left(r_{1}, \ldots, r_{k}\right)$ with $2 g-2=\sum_{i=1}^{k} r_{i}$.

Example in $\mathcal{H}(1,1)$

Rel foliation

$$
T_{N} \mathcal{H}\left(r_{1}, \ldots, r_{k}\right)=H^{1}\left(S,\left\{r_{1}, \ldots, r_{k}\right\} ; \mathbb{R}^{2}\right)
$$

Let Res：$H^{1}\left(S,\left\{r_{1}, \ldots, r_{k}\right\} ; \mathbb{R}^{2}\right) \rightarrow H^{1}\left(S ; \mathbb{R}^{2}\right)$ be the restriction map． Define $\mathcal{R}:=\operatorname{ker}($ Res $)$ ．
It integrates to a foliation of $\mathcal{H}\left(r_{1}, \ldots, r_{k}\right)$ ：the Rel foliation．

Other names：Kernel，Isoperiodic，Absolute Period The leaves have real dimension $2(k-1)$ ．

Moreover，$Z=\mathcal{R} \cap H^{1}\left(S,\left\{r_{1}, \ldots, r_{k}\right\} ; \mathbb{R}_{x}\right)$ defines the real Rel flow（s）．

In $\mathcal{H}(1,1)$ ，the leaves of this subfoliation have $\operatorname{dim}=1$ ．

3／14

Real rel flow

Deforms $N \in \mathcal{H}(1,1)$ so that the relative positions of \bullet and \circ change horizontally.

$$
\mathbb{R e} l_{t}: \mathcal{H}(1,1) \rightarrow \mathcal{H}(1,1)
$$

$4 / 14$

- \quad aC

Real rel flow

Some things about Rel

－Calta＇04 noticed that one can push affine measures by real Rel to obtain more U－invariant measures．
－The Rel leave of the Arnoux－Yoccoz surface is dense in $\mathcal{H}(g-1, g-1)$ ，for $g \geq 3$ ．Hopper－Weiss＇18
－The real Rel trajectory of Arnoux－Yoccoz is divergent H－W＇18
－Rel leaves can be dense in some affine manifolds if they have Property P．Florent Ygouf＇22
－There are dense real Rel orbits in every connected comp．of any stratum．Winsor＇22
－Ergodicity real Rel and Rel：Chaika－Weiss＇23

Recurrence

Theorem (0. '24)

There are real Rel trajectories in $\mathcal{H}(1,1)$ that are non-recurrent and not divergent.
$N \in \mathcal{H}(1,1)$ is recurrent if $\exists t_{i} \rightarrow \infty: \lim \operatorname{Re}_{t_{i}} N=N$.

$$
\lim _{t_{i} \rightarrow \infty} \operatorname{Rel}_{t_{i}} N=N
$$

Double covers

Let $\mathcal{E} \subset \mathcal{H}(1,1)$ branched double covers of tori：

Rel trajectories in \mathcal{E} are determined by the location of the singularities and the horizontal flow of the underlying torus．
－periodic orbits
－$\overline{\left\{\operatorname{Rel}_{t}(M)\right\}} \sim \mathbb{T}^{2}$
－divergent orbits（the singularities collapse）

$$
8 / 14
$$

What about $R e l$ on $\mathcal{H}(1,1) \backslash \mathcal{E}$

Fix $M \in \mathcal{E}$ ．Lebesgue is invariant w．r．t horizontal flow on M ．It could be ergodic．But if it is not，for example：

For θ irrational，Lebesgue restricted to one of the copies of the tori is an ergodic measure．

What about Rel on $\mathcal{H}(1,1) \backslash \mathcal{E}$

We can use a deformation of translation surfaces that commutes with Rel．Tremors：

$10 / 14$

Tremor

If μ is an inv．measure for the horizontal flow，we can see it as the product of a transverse measure β and $\mathrm{d} x$ ．
Like a product：$\mu=\mathrm{d} x \otimes \beta$ ．
Moreover we can assume $\beta \in H^{1}\left(S,\left\{p_{1}, p_{2}\right\}, \mathbb{R}\right)$ ．
Thus $\operatorname{trem}_{\beta} M$ is the solution of some ODE．The local coord．of it are of the form：

$$
\int_{\gamma} \mathrm{d} x_{\text {rem }_{\beta} M}=\int_{\gamma} \mathrm{d} x_{M}+\beta(\gamma) \quad \int_{\gamma} \mathrm{d} y_{\text {tree }_{\beta} M}=\int_{\gamma} \mathrm{d} x_{M}
$$

$11 / 14$

Recurrence

$N \in \mathcal{H}(1,1)$ is recurrent if $\exists t_{i} \rightarrow \infty$ such that

$$
\lim _{t_{i} \rightarrow \infty} \operatorname{Rel}_{t_{i}} N=N
$$

For aperiodic surfaces glued along a horizontal slit，we have the following：

Theorem

Let $M \in \mathcal{E}$ as above．The surface tram $_{\beta} M \in \mathcal{H}(1,1) \backslash \mathcal{E}$ is recurrent if and only if $\theta \notin \mathbb{Q}$ is well approximable．

$$
12 / 14
$$

Area exchange

When the slit is very long，it is possible to represent the same surface with a shorter slit：

By doing this，some area exchange happens．

A key to understand how close $\operatorname{Rel}_{t} \operatorname{trem}_{\beta} M$ is from $\operatorname{trem}_{\beta} M$ by controlling this area exchange．

Area exchange

When $\theta \notin \mathbb{Q}$ is badly approximable there are constants $0<c<C<1$

$$
c<\frac{\mid \text { Area red }- \text { Area white } \mid}{\text { Total area }}<C
$$

independently of the length of the slit.
$14 / 14$

