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Introduction

• A translation surface M is a collection of polygons {P1, . . . , Pl}
whose edges are glued with a family of translations of the form
z 7→ z + c .

• Collections of objects are strata H(r1, . . . , rk) with
2g − 2 = ∑k

i=1 ri .

Example in H(1, 1)
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Rel foliation

TNH(r1, . . . , rk) = H1(S, {r1, . . . , rk};R2)

Let Res : H1(S, {r1, . . . , rk};R2) → H1(S;R2) be the restriction map.
Define R := ker(Res).
It integrates to a foliation of H(r1, . . . , rk): the Rel foliation.

Other names: Kernel, Isoperiodic, Absolute Period
The leaves have real dimension 2(k − 1).

Moreover, Z = R ∩ H1(S, {r1, . . . , rk};Rx) defines the real Rel
flow(s).

In H(1, 1), the leaves of this subfoliation have dim = 1.
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Real rel flow

Deforms N ∈ H(1, 1) so that the relative positions of • and ◦ change
horizontally.
Relt : H(1, 1) → H(1, 1)

N Rel1.25N
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Real rel flow
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Some things about Rel

• Calta ’04 noticed that one can push affine measures by real Rel
to obtain more U−invariant measures.

• The Rel leave of the Arnoux-Yoccoz surface is dense in
H(g − 1, g − 1), for g ≥ 3. Hopper-Weiss ’18

• The real Rel trajectory of Arnoux-Yoccoz is divergent H-W ’18
• Rel leaves can be dense in some affine manifolds if they have

Property P. Florent Ygouf ’22
• There are dense real Rel orbits in every connected comp. of any

stratum. Winsor ’22
• Ergodicity real Rel and Rel: Chaika-Weiss ’23
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Recurrence

Theorem (O. ’24)
There are real Rel trajectories in H(1, 1) that are non-recurrent and
not divergent.

N ∈ H(1, 1) is recurrent if ∃ti → ∞ : lim Relti N = N .

lim
ti →∞

Relti N = N .
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Double covers

Let E ⊂ H(1, 1) branched double covers of tori:
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Rel trajectories in E are determined by the location of the
singularities and the horizontal flow of the underlying torus.

• periodic orbits
• {Relt(M)} ∼ T2

• divergent orbits (the singularities collapse)
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What about Rel on H(1, 1)\E

Fix M ∈ E . Lebesgue is invariant w.r.t horizontal flow on M. It could
be ergodic. But if it is not, for example:

For θ irrational, Lebesgue
restricted to one of the copies of
the tori is an ergodic measure.
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What about Rel on H(1, 1)\E

We can use a deformation of translation surfaces that commutes with
Rel . Tremors:
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Tremor

If µ is an inv. measure for the horizontal flow, we can see it as the
product of a transverse measure β and dx .
Like a product: µ = dx ⊗ β.
Moreover we can assume β ∈ H1(S, {p1, p2},R).
Thus tremβM is the solution of some ODE. The local coord. of it are
of the form:∫

γ
dxtremβM =

∫
γ

dxM + β(γ)
∫
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Recurrence

N ∈ H(1, 1) is recurrent if ∃ti → ∞ such that

lim
ti →∞

Relti N = N .

For aperiodic surfaces glued along a
horizontal slit, we have the following:
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Theorem
Let M ∈ E as above. The surface tremβM ∈ H(1, 1)\E is recurrent if
and only if θ ̸∈ Q is well approximable.
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Area exchange

When the slit is very long, it is possible to represent the same surface
with a shorter slit:
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By doing this, some area exchange happens.

A key to understand how close RelttremβM is from tremβM by
controlling this area exchange.
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Area exchange

When θ ̸∈ Q is badly approximable
there are constants 0 < c < C < 1

c <
|Area red − Area white|

Total area < C

independently of the length of the
slit.
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