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Definition of an IET

Let D be a union of interval(s) and circle(s).

Definition
An interval exchange transfromation (IET) on D is a
bijection over D on itself, which is piecewise a translation.

[ [ [
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S

Figure: Example of an IET

An IET corresponds to the return map of the geodesic flow on
some translation surface.
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Definition of an IETF

Let D be a union of interval(s) and circle(s).

Definition
An interval exchange transformation with flips (IETF)
on D is a bijection over D on itself, which is piecewise
continuous and obtained as the composition of a translation and
an involution on each interval of continuity.

Φ

Figure: Example of an IETF
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Generic behavior

Theorem (Keane - 1975)

Almost every IET without flip is minimal (that is, every of its
orbits is dense).

Theorem (Nogueira - 1989)

Almost every IET with flips admits a periodic point.
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A specific class

We consider IETFs such that:
The domain D is the union of circles with the same radius.
All intervals are fliped.
The permutation data has a certain type. For example:(

◦ A B C

A B C
◦
)

Φ
x0 Φ(x0)Φ2(x0)

[(
◦ A1 B1 C1

A2 B1 C1
◦
)
,

(
◦ A2 B2 C2

A1 B2 C2
◦
)]

Φ
x0 Φ(x0) Φ2(x0)

The parameter of rotation is the same on all circles.
We call them tiling billiards IETFs.
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A result on this specific class

Theorem (J.+)
Let f be a tiling billiards IETF with permutation[(

◦ A1 B1 C1

A2 B1 C1
◦
)
,

(
◦ A2 B2 C2

A1 B2 C2
◦
)]

.

f

If f is minimal, then the lengths are the same on both circles.

f

In this case, the IETF g is minimal.

Magali Jay Bi-triangle tiling billiards 7 / 16



Interval Exchange Transformations
Tiling billiards

Strategy for the proof

Definitions
Generic behavior
A specific class

A result on this specific class

Theorem (J.+)
Let f be a tiling billiards IETF with permutation[(

◦ A1 B1 C1

A2 B1 C1
◦
)
,

(
◦ A2 B2 C2

A1 B2 C2
◦
)]

.

f

If f is minimal, then the lengths are the same on both circles.

f

In this case, the IETF g is minimal.

Magali Jay Bi-triangle tiling billiards 7 / 16



Interval Exchange Transformations
Tiling billiards

Strategy for the proof

Definitions
Generic behavior
A specific class

A result on this specific class

Theorem (J.+)
Let f be a tiling billiards IETF with permutation[(

◦ A1 B1 C1

A2 B1 C1
◦
)
,

(
◦ A2 B2 C2

A1 B2 C2
◦
)]

.

If f is minimal, then the lengths are the same on both circles.

f

In this case, the IETF g is minimal.

Magali Jay Bi-triangle tiling billiards 7 / 16



Interval Exchange Transformations
Tiling billiards

Strategy for the proof

Definitions
Generic behavior
A specific class

A result on this specific class

Theorem (J.+)
Let f be a tiling billiards IETF with permutation[(

◦ A1 B1 C1

A2 B1 C1
◦
)
,

(
◦ A2 B2 C2

A1 B2 C2
◦
)]

.

If f is minimal, then the lengths are the same on both circles.

f

In this case, the IETF g is minimal.

Magali Jay Bi-triangle tiling billiards 7 / 16



Interval Exchange Transformations
Tiling billiards

Strategy for the proof

Triangle tiling billiards
Studying tiling billiards with IETFs
Bi-triangle tiling billiards

Tiling billiards

Magali Jay Bi-triangle tiling billiards 8 / 16



Interval Exchange Transformations
Tiling billiards

Strategy for the proof

Triangle tiling billiards
Studying tiling billiards with IETFs
Bi-triangle tiling billiards

Triangle tiling billiards

Theorem (Baird-Smith,Davis,Fromm,Iyer and
Hubert,Paris-Romaskevich)

For any triangle, for almost every initial direction, the trajectory
is either periodic or at bounded distance from a line.

Figure: The two generic types of trajectories
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Triangle tiling billiards

Theorem (Baird-Smith,Davis,Fromm,Iyer and
Hubert,Paris-Romaskevich)

For any triangle, for almost every initial direction, the trajectory
is either periodic or at bounded distance from a line.

Definition
We call a trajectory chaotic if it is neither periodic nor at a
bounded distance from a line.
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Studying tiling billiards with IETFs

Φ
x0 Φ(x0)Φ2(x0)

Figure: An IETF corresponding to a triangle tiling billiard.

A trajectory corresponds to the orbit of a point.

(drift) periodic trajectory ⇔ periodic orbit
chaotic trajectory ⇔ minimal IETF
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Φ
x0 Φ(x0) Φ2(x0)

Figure: Trajectories of a bi-triangle tiling billiard and corresponding
IETF
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Recall of the statement

Theorem (J.+)
Let f be a tiling billiards IETF with permutation[(

◦ A1 B1 C1

A2 B1 C1
◦
)
,

(
◦ A2 B2 C2

A1 B2 C2
◦
)]

.

If f is minimal, then the lengths are the same on both circles.

f

Moreover the IETF g is minimal.
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Outline

We define an induction and a condition (C) such that:
If the condition (C) holds, we can process the induction.

If the condition (C) does not hold, then there exists a
periodic orbit.

Hence, if f is minimal, then we can process the induction on f
for ever.

If we can process the induction for ever, then the lengths on
the two circles are the same.

□
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The induction on an example

We study the first return map of the IETF on a well chosen
interval.

Here, l(A1) + l(A2) < l(B1) + l(B2), l(C1) + l(C2).

f

R(f)[(
◦ A1 B1 C1

A2 B1 C1
◦
)
,

(
◦ A2 B2 C2

A1 B2 C2
◦
)]

.
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A1 B2 C2
◦
)]

.
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Thank you!
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The technical condition for the induction

Φ
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Sketch of the proof

Link with tiling billiards
Changing the frame of reference

Theorem (Baird-Smith, Davis, Fromm, Iyer)

Let P be a polygon inscribed in a circle. In a (generalized)
P-tiling billiard, the trajectory is always subtended by the same
chord of the circumcircle.

Figure: The parameter τ of the trajectory
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Link with tiling billiards
Changing the frame of reference

x0

x1

x2

Figure: Changing the frame of reference
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