An induction on interval exchange transformations with flips (IETFs) to study bi-triangle tiling billiards

Magali JAY

Aix-Marseille Université

School on flat surfaces, Le Teich, March 2024

・ロト ・四ト ・ヨト ・ヨト

Definitions Generic behavior A specific class

Interval Exchange Transformations

Magali JAY Bi-triangle tiling billiards 2/16

・ロト ・聞ト ・ヨト ・ヨト

Definitions Generic behavior A specific class

Definition of an IET

Let \mathcal{D} be a union of interval(s) and circle(s).

Definition

An interval exchange transformation (IET) on \mathcal{D} is a bijection over \mathcal{D} on itself, which is piecewise a translation.

Figure: Example of an IET

(I) < (I)

Definitions Generic behavior A specific class

Definition of an IET

Let \mathcal{D} be a union of interval(s) and circle(s).

Definition

An interval exchange transformation (IET) on \mathcal{D} is a bijection over \mathcal{D} on itself, which is piecewise a translation.

Figure: Example of an IET

An IET corresponds to the return map of the geodesic flow on some translation surface.

Definitions Generic behavior A specific class

Definition of an IETF

Let \mathcal{D} be a union of interval(s) and circle(s).

Definition

An interval exchange transformation with flips (IETF) on \mathcal{D} is a bijection over \mathcal{D} on itself, which is piecewise continuous and obtained as the composition of a translation and an involution on each interval of continuity.

Figure: Example of an IETF

Definitions Generic behavior A specific class

Generic behavior

Theorem (Keane - 1975)

Almost every IET without flip is minimal (that is, every of its orbits is dense).

Theorem (Nogueira - 1989)

Almost every IET with flips admits a periodic point.

Definitions Generic behavior A specific class

A specific class

We consider IETFs such that:

- The domain \mathcal{D} is the union of circles with the same radius.
- All intervals are fliped.
- The permutation data has a certain type. For example:

Definitions Generic behavior A specific class

A specific class

We consider IETFs such that:

- The domain \mathcal{D} is the union of circles with the same radius.
- All intervals are fliped.
- The permutation data has a certain type. For example:

Definitions Generic behavior A specific class

A specific class

We consider IETFs such that:

- The domain \mathcal{D} is the union of circles with the same radius.
- All intervals are fliped.
- The permutation data has a certain type. For example:

• The parameter of rotation is the same on all circles.

Definitions Generic behavior A specific class

A specific class

We consider IETFs such that:

- The domain \mathcal{D} is the union of circles with the same radius.
- All intervals are fliped.
- The permutation data has a certain type. For example:

• The parameter of rotation is the same on all circles.

We call them tiling billiards IETFs.

Definitions Generic behavior A specific class

A result on this specific class

Theorem (J.+)

Let f be a tiling billiards IETF with permutation

$$\left[\left(\begin{array}{ccc} \overline{A_1} & \overline{B_1} & \overline{C_1} \\ \overline{A_2} & \overline{B_1} & \overline{C_1} \end{array} \right), \left(\begin{array}{ccc} \overline{A_2} & \overline{B_2} & \overline{C_2} \\ \overline{A_1} & \overline{B_2} & \overline{C_2} \end{array} \right) \right].$$

Definitions Generic behavior A specific class

A result on this specific class

Theorem (J.+)

Let f be a tiling billiards IETF with permutation

Definitions Generic behavior A specific class

A result on this specific class

Theorem (J.+)

Let f be a tiling billiards IETF with permutation

$$\left[\left(\begin{array}{ccc} \overline{A_1} & \overline{B_1} & \overline{C_1} \\ \overline{A_2} & \overline{B_1} & \overline{C_1} \end{array} \right), \left(\begin{array}{ccc} \overline{A_2} & \overline{B_2} & \overline{C_2} \\ \overline{A_1} & \overline{B_2} & \overline{C_2} \end{array} \right) \right]$$

Definitions Generic behavior A specific class

A result on this specific class

Theorem (J.+)

Let f be a tiling billiards IETF with permutation

$$\left[\left(\begin{array}{ccc} \overline{A_1} & \overline{B_1} & \overline{C_1} \\ \overline{A_2} & \overline{B_1} & \overline{C_1} \end{array} \right), \left(\begin{array}{ccc} \overline{A_2} & \overline{B_2} & \overline{C_2} \\ \overline{A_1} & \overline{B_2} & \overline{C_2} \end{array} \right) \right]$$

 Interval Exchange Transformations
 Triangle tiling billiards

 Tiling billiards
 Studying tiling billiards with IETFs

 Strategy for the proof
 Bi-triangle tiling billiards

Tiling billiards

Magali JAY Bi-triangle tiling billiards 8/16

イロト イヨト イヨト イヨト

臣

Triangle tiling billiards Studying tiling billiards with IETFs Bi-triangle tiling billiards

Triangle tiling billiards

Theorem (Baird-Smith,Davis,Fromm,Iyer and Hubert,Paris-Romaskevich)

For any triangle, for almost every initial direction, the trajectory is either periodic or at bounded distance from a line.

Figure: The two generic types of trajectories

Triangle tiling billiards Studying tiling billiards with IETFs Bi-triangle tiling billiards

Triangle tiling billiards

Theorem (Baird-Smith,Davis,Fromm,Iyer and Hubert,Paris-Romaskevich)

For any triangle, for almost every initial direction, the trajectory is either periodic or at bounded distance from a line.

Definition

We call a trajectory **chaotic** if it is neither periodic nor at a bounded distance from a line.

Triangle tiling billiards Studying tiling billiards with IETFs Bi-triangle tiling billiards

Studying tiling billiards with IETFs

Figure: An IETF corresponding to a triangle tiling billiard.

A trajectory corresponds to the orbit of a point.

Triangle tiling billiards Studying tiling billiards with IETFs Bi-triangle tiling billiards

Studying tiling billiards with IETFs

Figure: An IETF corresponding to a triangle tiling billiard.

A trajectory corresponds to the orbit of a point.

(drift) periodic trajectory \Leftrightarrow periodic orbit

Triangle tiling billiards Studying tiling billiards with IETFs Bi-triangle tiling billiards

Studying tiling billiards with IETFs

Figure: An IETF corresponding to a triangle tiling billiard.

A trajectory corresponds to the orbit of a point.

(drift) periodic trajectory \Leftrightarrow periodic orbit chaotic trajectory \Leftrightarrow minimal IETF

Triangle tiling billiards Studying tiling billiards with IETFs **Bi-triangle tiling billiards**

Bi-triangle tiling billiards

Figure: Trajectories of a bi-triangle tiling billiard and corresponding IETF

Triangle tiling billiards Studying tiling billiards with IETFs Bi-triangle tiling billiards

Bi-triangle tiling billiards

Figure: Trajectories of a bi-triangle tiling billiard and corresponding IETF

・ロト ・聞ト ・ヨト ・ヨト

Outline The induction

Strategy for the proof

Magali JAY Bi-triangle tiling billiards 12/16

(日) (四) (三) (三) (三)

Outline The induction

Recall of the statement

Theorem (J.+)

Let f be a tiling billiards IETF with permutation

$$\left[\left(\begin{array}{ccc} \overline{A_1} & \overline{B_1} & \overline{C_1} \\ \overline{A_2} & \overline{B_1} & \overline{C_1} \end{array} \right), \left(\begin{array}{ccc} \overline{A_2} & \overline{B_2} & \overline{C_2} \\ \overline{A_1} & \overline{B_2} & \overline{C_2} \end{array} \right) \right]$$

Outline The induction

Outline

We define an induction and a condition (C) such that:

• If the condition (C) holds, we can process the induction.

(日) (四) (三) (三) (三)

Outline The induction

Outline

We define an induction and a condition (C) such that:

- If the condition (C) holds, we can process the induction.
- If the condition (C) does not hold, then there exists a periodic orbit.

(日)

Outline The induction

Outline

We define an induction and a condition (C) such that:

- If the condition (C) holds, we can process the induction.
- If the condition (C) does not hold, then there exists a periodic orbit.

Hence, if f is minimal, then we can process the induction on f for ever.

• If we can process the induction for ever, then the lengths on the two circles are the same.

イロト 不得下 イヨト イヨト 二日

Outline The induction

Outline

We define an induction and a condition (C) such that:

- If the condition (C) holds, we can process the induction.
- If the condition (C) does not hold, then there exists a periodic orbit.

Hence, if f is minimal, then we can process the induction on f for ever.

• If we can process the induction for ever, then the lengths on the two circles are the same.

イロト 不得下 イヨト イヨト 二日

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval.

・ロト ・聞ト ・ヨト ・ヨト

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Outline The induction

The induction on an example

We study the first return map of the IETF on a well chosen interval. Here, $l(A_1) + l(A_2) < l(B_1) + l(B_2)$, $l(C_1) + l(C_2)$.

Thank you!

Magali JAY Bi-triangle tiling billiards 16 / 16

(日) (四) (三) (三) (三)

The technical condition for the induction

Magali JAY Bi-triangle tiling billiards 17/16

・ロト ・部ト ・ヨト ・ヨト

크

Link with tiling billiards Changing the frame of reference

Theorem (Baird-Smith, Davis, Fromm, Iyer)

Let \mathbf{P} be a polygon inscribed in a circle. In a (generalized) \mathbf{P} -tiling billiard, the trajectory is always subtended by the same chord of the circumcircle.

Figure: The parameter τ of the trajectory

・ロト ・四ト ・ヨト ・ヨト

Link with tiling billiards Changing the frame of reference

Theorem (Baird-Smith, Davis, Fromm, Iyer)

Let \mathbf{P} be a polygon inscribed in a circle. In a (generalized) \mathbf{P} -tiling billiard, the trajectory is always subtended by the same chord of the circumcircle.

Figure: The parameter τ of the trajectory

Link with tiling billiards Changing the frame of reference

Theorem (Baird-Smith, Davis, Fromm, Iyer)

Let \mathbf{P} be a polygon inscribed in a circle. In a (generalized) \mathbf{P} -tiling billiard, the trajectory is always subtended by the same chord of the circumcircle.

Figure: The parameter τ of the trajectory

Link with tiling billiards Changing the frame of reference

Theorem (Baird-Smith, Davis, Fromm, Iyer)

Let \mathbf{P} be a polygon inscribed in a circle. In a (generalized) \mathbf{P} -tiling billiard, the trajectory is always subtended by the same chord of the circumcircle.

Figure: The parameter τ of the trajectory

<ロト < 団ト < 団ト < 団ト < 団ト -

Link with tiling billiards

Changing the frame of reference

Figure: Changing the frame of reference

Magali JAY Bi-triangle tiling billiards 19/16

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

э

Link with tiling billiards

Changing the frame of reference

Figure: Changing the frame of reference

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

э

Link with tiling billiards

Changing the frame of reference

Figure: Changing the frame of reference

Link with tiling billiards

Changing the frame of reference

э

Figure: Changing the frame of reference

Link with tiling billiards

Changing the frame of reference

Figure: Changing the frame of reference