Semisimplicity of the Kontsevich-Zorich cocycle for products of strata

Polina Baron

University of Chicago

March 6, 2024

Polina Baron (UChicago)

Semisimplicity on products of strata

The KZ cocycle

The Moduli space \mathcal{M}_g of Riemann surfaces of genus g has the natural real (complex) Hodge bundle $H^1_{\mathbb{R}}$ $(H^1_{\mathbb{C}})$ of first cohomologies $H^1(S, \mathbb{R})$ $(H^1(S, \mathbb{C}))$. This bundle can be pulled back to the Hodge bundle $E_{\mathbb{R}}$ $(E_{\mathbb{C}})$ over the space of flat surfaces \mathcal{H}_g . Identifying its lattices $H^1(S, \mathbb{Z})$ $(H^1(S, \mathbb{Z} \otimes i\mathbb{Z}))$, one obtains the Gauss–Manin connection on this bundle. Parallel transport of the cohomology classes along the connection gives the Kontsevich–Zorich cocycle G^{KZ} .

For a surface $(M, \Sigma, \omega) \in \mathcal{H}(\mu)$, where $\mu = (\mu_1, \ldots, \mu_n)$ gives the degrees of zeroes of ω , denote by $\gamma_1, \ldots, \gamma_{2g}$ the basis of the relative homology group $H_1(M, \Sigma, \mathbb{Z})$. The KZ cocycle is given by the linear action of $SL_2\mathbb{R}$ on *the periods*

$$\int_{\gamma_1} \omega, \ \ldots, \ \int_{\gamma_{2g}} \omega.$$

The Hodge bundle

A weight n Hodge structure on $E_{\mathbb{C}}$ is a decomposition of the complexification

$$E_{\mathbb{C}} = \bigoplus_{p+q=n} E_{\mathbb{C}}^{p,q} \quad \text{such that} \quad E_{\mathbb{C}}^{p,q} = \overline{E_{\mathbb{C}}^{q,p}} \ \, \forall p+q=n.$$

The Hodge filtration is

$$F_i = \bigoplus_{p \ge i} E^{p,q}_{\mathbb{C}}.$$

The Weil operator acts by multiplication by $\sqrt{-1}^{p-q}$ on $E_{\mathbb{C}}^{p,q}$. The polarization is a non-degenerate bilinear form I(,) such that I(Cx, y) is symmetric and positive-definite.

The KZ cocycle is a *variation of Hodge structures* over the stratum.

The invariant subbundles

Let μ be an ergodic $SL_2\mathbb{R}$ -invariant measure. A subbundle V is $SL_2\mathbb{R}$ -invariant if it is measurable and invariant under the parallel transport along a.e. $SL_2\mathbb{R}$ -orbit.

Problem: $E^{p,q}_{\mathbb{C}}$ are rarely $SL_2\mathbb{R}$ -invariant.

How do Hodge decompositions of $SL_2\mathbb{R}$ -invariant subbundles look?

Applications: affine invariant submanifolds (linear equations in local period coordinates), rigidity, zero Lyapunov exponents, etc.

Theorem (Deligne semisimplicity. Simion Filip, 2014)

E has a decomposition into $SL_2\mathbb{R}$ -invariant components that are Hodge-orthogonal and respect Hodge structure:

$$V = \bigoplus V_i, \quad V_i = \bigoplus (V_i \cap E_{\mathbb{C}}^{p,q}).$$

Products of strata

Studying products of strata is interesting.

Motivating examples:

(1) Weak mixing of (T, X, μ) is equivalent to ergodicity of $(T \times T, X \times X, \mu \times \mu)$.

(2) The Rel foliation.

Acting on $\mathcal{H}_n = \mathcal{H}(\mu_1) \times \cdots \times \mathcal{H}(\mu_n)$ by a product of $SL_2\mathbb{R}$ is easy. What if we want $G \subsetneq \prod_{i=1}^n SL_2\mathbb{R}$?

If G projects on each of its factors surjectively but does not decompose into a product, then G is a conjugate of the diagonal subgroup:

$$G = \{g \times h_2^{-1}gh_2 \times h_n^{-1}gh_n \mid g \in SL_2\mathbb{R}, \ h_2, \ldots, h_n \text{ are fixed}\}.$$

Products of strata

Theorem (B., expected on arXiv in May 2024)

Results concerning Hodge decompositions of invariant subbundles can be generalized for the action of $G \subsetneq \prod_{i=1}^n SL_2\mathbb{R}$ on \mathcal{H}_n if G projects surjectively on each $SL_2\mathbb{R}$ component.

Main ideas:

(a) Relationship between the GM connection (flat structure) and the *Hodge connection* (direct sum of connections of the decomposition) \Rightarrow sections flat along $SL_2\mathbb{R}$ orbits have flat (p, q)-components; (b) The *algebraic hull* of the KZ cocycle is reductive (any invariant subspace has a complement);

(c) Decompose the subbundle and construct the variation of Hodge structures "by hand".

Thank you for your attention!