Interval Exchange Transformations and Slow Entropy

Yibo Zhai

Department of Mathematics University of Utah

March 4, 2024

Yibo Zhai (University of Utah)

I.E.T. and Slow Entropy

3-IET

Given $\lambda = (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3_{>0}$, the following graph shows a 3-Interval exchange transformation T_{λ}

For every interval exchange transformation T_λ, h_{Leb}(T_λ) = 0 with respect to the classical entropy.

Slow Entropy

 (ε, n) -Hamming ball for a finite partition \mathscr{P} in system (X, μ, T) :

$$B_T^n(x,\varepsilon) = \{y \in X : \overline{d}_T^n(x,y) < \varepsilon\},\$$

where

$$\overline{d}_{T}^{n}(x,y) = \frac{|\{0 \leq i \leq n-1 : x_{i} \neq y_{i}\}|}{n},$$

 $x_i \neq y_i$ means $T^i x$ and $T^i y$ are not in the same atom of \mathscr{P} .

Slow Entropy

The slow metric entropy for the partition \mathscr{P} and given scale $a_{\chi}(n) = n^{\chi}$ is:

$$h_{\mu,\mathscr{P}}(T) = \lim_{\varepsilon \to 0} \left(\sup \left\{ \chi : \limsup_{n \to \infty} \frac{Q_n}{n^{\chi}} > 0 \right\} \right),$$

where Q_n is the minimum number of (ε, n) -Hamming balls needed to cover a set of measure at least $1 - \varepsilon$.

Theorem (Ferenczi)

Let (X, μ, T) be an ergodic measure preserving system. Then, (X, μ, T) is isomorphic to the Kronecker system if and only if $h_{\mu,a_{\chi}}(T) = 0$ for all scales a_{χ} .

Theorem (Cheng, Ospina, Vinhage, Z.)

There exists a dense set $A \subseteq \mathbb{R}^3_{>0}$, such that if T is a 3-IET determined by A, then $h_{Leb,a_{\chi}}(T) = 1$ with respect to $a_{\chi}(n) = n^{\chi}$.

4/4