Cell Decomposition from L^{2} - Delaunay Triangulations?

- Yanik Kleibrink in cooperation with Sam Freedman Goethe University Frankfurt am Main

Initial Idea

- End Goal: Analyze the cohomology of strata $\mathcal{H}\left(a_{1}, \ldots, a_{n}\right)$ of translation surfaces.

Initial Idea

- End Goal: Analyze the cohomology of strata $\mathcal{H}\left(a_{1}, \ldots, a_{n}\right)$ of translation surfaces.
\rightarrow try to find a cell decomposition of the stratum

Initial Idea

- End Goal: Analyze the cohomology of strata $\mathcal{H}\left(a_{1}, \ldots, a_{n}\right)$ of translation surfaces.
\rightarrow try to find a cell decomposition of the stratum
- Howard Masur and John Smillie (1991): Every translation surface has an L^{2}-Delaunay triangulation Δ :
The circumcircle of every triangle in Δ contains no vertices in its interior.

Initial Idea

- End Goal: Analyze the cohomology of strata $\mathcal{H}\left(a_{1}, \ldots, a_{n}\right)$ of translation surfaces.
\rightarrow try to find a cell decomposition of the stratum
- Howard Masur and John Smillie (1991): Every translation surface has an L^{2}-Delaunay triangulation Δ :
The circumcircle of every triangle in Δ contains no vertices in its interior.

${ }^{1}$ By Gjacquenot - Own work, File:Delaunay circumcircles.png (Nü es), Public Domain, https://commons.wikimedia.org/w/index.php?curid=30370476

Initial Idea

- End Goal: Analyze the cohomology of strata $\mathcal{H}\left(a_{1}, \ldots, a_{n}\right)$ of translation surfaces.
\rightarrow try to find a cell decomposition of the stratum
- Howard Masur and John Smillie (1991): Every translation surface has an L^{2}-Delaunay triangulation Δ :
The circumcircle of every triangle in Δ contains no vertices in its interior.

- Idea: Translation surfaces with the same gluing datum of the triangles belong to the same "cell".
${ }^{1}$ By Gjacquenot - Own work, File:Delaunay circumcircles.png (Nü es),
Public Domain, https://commons.wikimedia.org/w/index.php?curid=30370476

Problems

- Delaunay triangulations aren't always unique.

Problems

- Delaunay triangulations aren't always unique.
\rightarrow Ambiguities form cell boundaries.
- Delaunay triangulations aren't always unique.
\rightarrow Ambiguities form cell boundaries.
- William Veech (1996): Delaunay triangulations lead to a cell decomposition of the moduli space of "complex affine" surfaces.
- Delaunay triangulations aren't always unique.
\rightarrow Ambiguities form cell boundaries.
- William Veech (1996): Delaunay triangulations lead to a cell decomposition of the moduli space of "complex affine" surfaces.
- Idea: Intersect this cell decomposition with the locus of translation surfaces.
\rightarrow Conditions:

$$
\prod_{\ldots} \frac{\sin (\ldots)}{\sin (\ldots)}=1
$$

