Short presentation: Deviation of ergodic integrals for Locally hamiltonian flows

School on flat surfaces and interactions

Minsung Kim March 3, 2024

Scuola Normale Superiore, Pisa

Let *M* be a smooth compact connected orientable surface of genus $g \ge 1$. Let $X : M \to TM$ be a smooth vector field with finitely many vanishing points and $\psi_{\mathbb{R}}$ be a flow preserving the measure $d\mu = V(x, y)dx \wedge dy$ (V:positive, smooth). We consider the set of fixed points of the flow $\psi_{\mathbb{R}}$ (isolate and finite).

Locally Hamiltonian flows $\psi_{\mathbb{R}}$ is a (local) solution to the Hamiltonian equation

$$\frac{dx}{dt} = \frac{\frac{\partial H}{\partial y}(x, y)}{V(x, y)}, \quad \frac{dy}{dt} = -\frac{\frac{\partial H}{\partial x}(x, y)}{V(x, y)}$$

where H is the corresponding Hamiltonian function on U_{σ} .

A fixed point σ is called (perfect) saddle if there exists a (singular) chart (x, y) in the neighborhood of U_{σ} such that $d\mu = V(x, y)dx \wedge dy$ and $H(x, y) = \Im(x + iy)^{m_{\sigma}}$ for $m_{\sigma} \ge 2$.

Let *M* be a smooth compact connected orientable surface of genus $g \ge 1$. Let $X : M \to TM$ be a smooth vector field with finitely many vanishing points and $\psi_{\mathbb{R}}$ be a flow preserving the measure $d\mu = V(x, y)dx \wedge dy$ (V:positive, smooth). We consider the set of fixed points of the flow $\psi_{\mathbb{R}}$ (isolate and finite).

Locally Hamiltonian flows $\psi_{\mathbb{R}}$ is a (local) solution to the Hamiltonian equation

$$\frac{dx}{dt} = \frac{\frac{\partial H}{\partial y}(x, y)}{V(x, y)}, \quad \frac{dy}{dt} = -\frac{\frac{\partial H}{\partial x}(x, y)}{V(x, y)}$$

where H is the corresponding Hamiltonian function on U_{σ} .

A fixed point σ is called (perfect) saddle if there exists a (singular) chart (x, y) in the neighborhood of U_{σ} such that $d\mu = V(x, y)dx \wedge dy$ and $H(x, y) = \Im(x + iy)^{m_{\sigma}}$ for $m_{\sigma} \geq 2$.

By Birkhoff ergodic theorem, for a.e $x \in M$ and $f \in L^1(M)$

$$\left|\frac{1}{T}\int_0^T f \circ \phi_t^X(x)dt - \int_M f \ d\mu\right| \to 0, \quad \text{as } T \to \infty. \tag{1}$$

For any smooth observable $f: M \to \mathbb{R}$ we are interested in understanding the asymptotics of the growth of ergodic integrals (*Oscillations of Birkhoff integrals*).

• One can find an exponent 0 $<\lambda < 1$ such that for $\int_M f \ d\mu =$ 0,

$$\int_0^T f \circ \phi_t(x) dt = O(T^{\lambda}).$$

By Birkhoff ergodic theorem, for a.e $x \in M$ and $f \in L^1(M)$

$$\left|\frac{1}{T}\int_{0}^{T}f\circ\phi_{t}^{X}(x)dt-\int_{M}f\ d\mu\right|\to0,\quad\text{as }T\to\infty. \tag{1}$$

For any smooth observable $f: M \to \mathbb{R}$ we are interested in understanding the asymptotics of the growth of ergodic integrals (*Oscillations of Birkhoff integrals*).

• One can find an exponent 0 $<\lambda<1$ such that for $\int_M f \ d\mu=$ 0,

$$\int_0^T f \circ \phi_t(x) dt = O(T^{\lambda}).$$

$$\limsup_{n\to\infty}\frac{\log|S_n(f)(x)|}{\log n}\leq\frac{\nu_2}{\nu_1}.$$

• Kontsevich and Zorich conjectured that there would be a full deviation spectrum

$$0 < rac{
u_g}{
u_1} < \dots < rac{
u_2}{
u_1} < 1$$

- Forni proved the deviation of ergodic integrals for area-preserving flows ('02) based on his work on cohomological equation for compact surface of higher genus ('97).
- Marmi-Moussa-Yoccoz ('05) / Marmi-Yoccoz ('16) solved cohomological equations for interval exchange maps.
- A.Bufetov ('14) proved the deviation of ergodic integrals for translation flows and its limit theorem.
- K. Frączek C.Ulcigrai / Frączek K ('24) proved the deviation of ergodic integrals for (non-degenerate / degenerate) locally Hamiltonian flows.
- Fraczek K ('23+) solved cohomological equations for locally Hamiltonian flows.

$$\limsup_{n\to\infty}\frac{\log|S_n(f)(x)|}{\log n}\leq\frac{\nu_2}{\nu_1}.$$

• Kontsevich and Zorich conjectured that there would be a full deviation spectrum

$$0<\frac{\nu_g}{\nu_1}<\cdots<\frac{\nu_2}{\nu_1}<1$$

- Forni proved the deviation of ergodic integrals for area-preserving flows ('02) based on his work on cohomological equation for compact surface of higher genus ('97).
- Marmi-Moussa-Yoccoz ('05) / Marmi-Yoccoz ('16) solved cohomological equations for interval exchange maps.
- A.Bufetov ('14) proved the deviation of ergodic integrals for translation flows and its limit theorem.
- K. Frączek C.Ulcigrai / Frączek K ('24) proved the deviation of ergodic integrals for (non-degenerate / degenerate) locally Hamiltonian flows.
- Fraczek K ('23+) solved cohomological equations for locally Hamiltonian flows.

$$\limsup_{n\to\infty}\frac{\log|S_n(f)(x)|}{\log n}\leq\frac{\nu_2}{\nu_1}.$$

• Kontsevich and Zorich conjectured that there would be a full deviation spectrum

$$0<\frac{\nu_g}{\nu_1}<\cdots<\frac{\nu_2}{\nu_1}<1$$

- Forni proved the deviation of ergodic integrals for area-preserving flows ('02) based on his work on cohomological equation for compact surface of higher genus ('97).
- Marmi-Moussa-Yoccoz ('05) / Marmi-Yoccoz ('16) solved cohomological equations for interval exchange maps.
- A.Bufetov ('14) proved the deviation of ergodic integrals for translation flows and its limit theorem.
- K. Frączek C.Ulcigrai / Frączek K ('24) proved the deviation of ergodic integrals for (non-degenerate / degenerate) locally Hamiltonian flows.
- Fraczek K ('23+) solved cohomological equations for locally Hamiltonian flows.

$$\limsup_{n\to\infty}\frac{\log|S_n(f)(x)|}{\log n}\leq\frac{\nu_2}{\nu_1}.$$

• Kontsevich and Zorich conjectured that there would be a full deviation spectrum

$$0<\frac{\nu_g}{\nu_1}<\cdots<\frac{\nu_2}{\nu_1}<1$$

- Forni proved the deviation of ergodic integrals for area-preserving flows ('02) based on his work on cohomological equation for compact surface of higher genus ('97).
- Marmi-Moussa-Yoccoz ('05) / Marmi-Yoccoz ('16) solved cohomological equations for interval exchange maps.
- A.Bufetov ('14) proved the deviation of ergodic integrals for translation flows and its limit theorem.
- K. Frączek C.Ulcigrai / Frączek K ('24) proved the deviation of ergodic integrals for (non-degenerate / degenerate) locally Hamiltonian flows.
- Fraczek K ('23+) solved cohomological equations for locally Hamiltonian flows.

$$\limsup_{n\to\infty}\frac{\log|S_n(f)(x)|}{\log n}\leq\frac{\nu_2}{\nu_1}.$$

• Kontsevich and Zorich conjectured that there would be a full deviation spectrum

$$0<\frac{\nu_g}{\nu_1}<\cdots<\frac{\nu_2}{\nu_1}<1$$

- Forni proved the deviation of ergodic integrals for area-preserving flows ('02) based on his work on cohomological equation for compact surface of higher genus ('97).
- Marmi-Moussa-Yoccoz ('05) / Marmi-Yoccoz ('16) solved cohomological equations for interval exchange maps.
- A.Bufetov ('14) proved the deviation of ergodic integrals for translation flows and its limit theorem.
- K. Frączek C.Ulcigrai / Frączek K ('24) proved the deviation of ergodic integrals for (non-degenerate / degenerate) locally Hamiltonian flows.
- Fraczek K ('23+) solved cohomological equations for locally Hamiltonian flows.

$$\limsup_{n\to\infty}\frac{\log|S_n(f)(x)|}{\log n}\leq\frac{\nu_2}{\nu_1}.$$

• Kontsevich and Zorich conjectured that there would be a full deviation spectrum

$$0<\frac{\nu_g}{\nu_1}<\cdots<\frac{\nu_2}{\nu_1}<1$$

- Forni proved the deviation of ergodic integrals for area-preserving flows ('02) based on his work on cohomological equation for compact surface of higher genus ('97).
- Marmi-Moussa-Yoccoz ('05) / Marmi-Yoccoz ('16) solved cohomological equations for interval exchange maps.
- A.Bufetov ('14) proved the deviation of ergodic integrals for translation flows and its limit theorem.
- K. Frączek C.Ulcigrai / Frączek K ('24) proved the deviation of ergodic integrals for (non-degenerate / degenerate) locally Hamiltonian flows.
- Fraczek K ('23+) solved cohomological equations for locally Hamiltonian flows.

$$\limsup_{n\to\infty}\frac{\log|S_n(f)(x)|}{\log n}\leq\frac{\nu_2}{\nu_1}.$$

• Kontsevich and Zorich conjectured that there would be a full deviation spectrum

$$0<\frac{\nu_g}{\nu_1}<\cdots<\frac{\nu_2}{\nu_1}<1$$

- Forni proved the deviation of ergodic integrals for area-preserving flows ('02) based on his work on cohomological equation for compact surface of higher genus ('97).
- Marmi-Moussa-Yoccoz ('05) / Marmi-Yoccoz ('16) solved cohomological equations for interval exchange maps.
- A.Bufetov ('14) proved the deviation of ergodic integrals for translation flows and its limit theorem.
- K. Frączek C.Ulcigrai / Frączek K ('24) proved the deviation of ergodic integrals for (non-degenerate / degenerate) locally Hamiltonian flows.
- Fraczek K ('23+) solved cohomological equations for locally Hamiltonian flows.