Convex tilings of the Sphere

Marcel Eichberg
Heidelberg University

2021

Introduction

Definition

A triangulation of the sphere is convex if there are never more than six triangles at a vertex.

Theorem (Thurston)

There is a lattice L in complex Lorentz space $\mathbb{C}(1,9)$ and a group
Γ of automorphisms, such that triangulations of non-negative combinatorial curvature are elements of L_{+} / Γ, where L_{+}is the set of lattice points of positive square-norm. The projective action of Γ on complex hyperbolic space $\mathbb{C H} H^{9}$ has quotient of finite volume. The square of the norm of a lattice point is the number of triangles in the triangulation.

Counting triangulations

Theorem (Engel,Smillie)
The weighted number of oriented convex tilings of S^{2} with n tiles is $\frac{809}{2^{15} 3^{13} 5^{2}} \sigma_{9}\left(\frac{n}{2}\right)$
where $\sigma_{m}(n)=\sum_{d \mid n} d^{m}$ for an integer n and $\sigma_{m}(n)=0$ otherwise

