Family name: Nguyen First name: Duc-Manh Affiliation: University of Bordeaux

Research interests:

- Moduli spaces of flat surfaces and k-differentials (geometry, topology, volumes...).
- Teichmüller theory, representations of mapping class groups.
- Billiards, Teichmüller dynamics in moduli spaces.

Latest results

Theorem (N.)

Every stratum of k-differentials carries a **canonical** volume form. The volume of the set of surfaces with area ≤ 1 in every stratum is finite.

Remarks:

- In the case $k \in \{1, 2\}$, this result is due to Masur and Veech.
- Another proof of finiteness by B. Dozier (using the compactification of strata of k-differentials by multi-scale differentials introduced by Bainbridge-Chen-Gendron-Grushevsky-Möller).

Theorem (N.)

In genus 0, there exists an explicit recursive formula to compute the volume of all strata of k-differentials such that none of the orders of zeros and poles is a multiple of k.

Corollary

A new proof of a formula computing the volumes of strata of quadratic differentials with simple poles and zeros of odd order in genus 0 which was predicted by Kontsevich and proved by Athreya-Eskin-Zorich.

Corollary

Fix an integer $n \ge 3$. Let

$$L_n = \{\mu = (\mu_1, \dots, \mu_n) \in \mathbb{R}^n_{<1} : \mu_1 + \dots + \mu_n = 2\}$$

Given $\mu \in L_n$, $C(\mu)$ denotes the moduli space of flat metrics on the sphere having exactly n cone singularities with angles $\theta_i = 2\pi(1 - \mu_i)$ up to scaling. Then there is a piecewise polynomial continuous function $\mathcal{F}_n : L_n \to \mathbb{R}$ such that

- each polynomial piece of *F_n* has rational coefficients and degree at most n − 3,
- if $\mu_i \notin \mathbb{Z}$ for all i = 1, ..., n, then $\mathcal{F}_n(\mu)$ gives the volume of $\mathcal{C}(\mu)$.