Counting Saddle Connections
on flat Cone Spheres
$K_{a:} F_{u}$

IMB, University of Bordeaux

School on flat surfaces and interactions, Mar. 2024

- $X:\left(\mathbb{S}^{2}, \Sigma\right)$
- flat structure on $\mathbb{S}^{2} \backslash \Sigma$

- Cone structure at $p \in \Sigma$
- cone angle at p is less than 2π

- $\quad N(X L)$
$=\#$ Saddle connections on X with lengths less than $L\}$
- Main question

Upper bounds/growth rate of N(XL)?

- We showed that if there is no embedded cylinder on X.

Length of γ on $X \sqrt{L(\gamma, \gamma)}$ for \forall saddle connection γ on X.
" $A \asymp B$ " means that $\exists a>1$ and $b>0$ sit. $\frac{1}{a} A-b \leq B \leq a A+b$

- Estimate $N(X L)$

$$
e(\gamma) \approx \sqrt{2}
$$

by $n(X, k)=\#\{$ saddle connections on X with selfintersections less than $k\}$

- Understand $\int_{\Omega(\underline{k})} N(X L) d \mu_{t_{n u}}=\cdots$

THANK YOU!

