Julien Boulanger - Algebraic intersections in translation surfaces

Definition

A saddle connection is a geodesic line starting and ending at singularities (not necessarily the same).

Figure: Examples of saddle connections on the Bouw-Möller surfaces $S_{2,7}$ (left) and $S_{5,4}$ (right).

Two questions I am interested in

- Study the intersections of saddle connections.
- Characterize the periodic directions on the double n-gon, $n \geq 7$ odd.

Algebraic intersection

The algebraic intersection is invariant under continuous deformation of the curves.

Question

How many times can two closed curves of a given length intersect?

Definition

$$
\operatorname{KVol}(X):=\operatorname{Vol}(X) \cdot \sup _{\alpha, \beta \text { closed curves }} \frac{\operatorname{Int}(\alpha, \beta)}{l(\alpha) /(\beta)}
$$

For translation surfaces, we can replace "closed curves" by "union of saddle connections".

With I. Pasquinelli, we generalize a result that I obtained with E. Lanneau and D. Massart and we explicitely calculate KVol on the $S L_{2}(\mathbb{R})$-orbit of Bouw-Möller surfaces with a single singularity.

A fundamental domain for the $S L_{2}(\mathbb{R})$-orbit of the double pentagon. In this case

$$
K \operatorname{Vol}(X)=\frac{2 \varphi-1}{(\varphi-1)^{2}} \sin \theta(X)
$$

where φ is the golden mean.

Theorem (B.-Lanneau-Massart, 2022)

KVol in the double pentagon is achieved uniquely by pairs of disctinct sides of the pentagons.

