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1 Introduction

In most of the current body of work in the foundations of cryptography, crypto-
graphic protocols are not shown to be unconditionally secure, but, rather, their
security is reduced to the security of seemingly weaker or simpler primitives.
We now know that, if one way functions exist, then private-key encryption and
authentication are possible, as well as (public-key) digital signatures and zero-
knowledge proofs [14, 12, 23, 21, 13]. On the other hand, if one-way functions
do not exist then most interesting cryptographic problems, including all of the
above, have no solution [15, 22].

Some cryptographic primitives, however, such as public-key encryption, key
agreement, oblivious transfer, collision-resistant hash functions, and non-interactive
zero knowledge, are not known to be equivalent to the existence of one-way func-
tions. Furthermore, several of the known constructions based on one-way func-
tions (in particular, the construction of pseudorandom generators from one-way
functions [14], which is a component of several other constructions) run in poly-
nomial time but are extremely inefficient. Since these are some of the main gaps
in our systematization of the foundations of cryptography, it is natural to ask
whether additional primitives, such as public-key encryption, can be constructed
from one-way functions, and whether known constructions can be made more
efficient. One has to be careful in formalizing such questions. It is commonly
believed that one-way functions exist and that public-key encryption is possible,
which would mean that the existence of one-way functions implies the existence
of public key encryption in a trivial logical sense. The question is whether the
techniques that we typically use to prove implications of one-way functions in
cryptography have some inherent limitation that prevents us from deriving the
existence of public-key encryption.

Impagliazzo and Rudich [18] were the first to give a formal treatment of such
issues. They observed that most implications in cryptography are proved using
a reduction, where the primitive is treated as an oracle, or a “black box,” and
the analysis shows that if the primitive is secure in a black-box sense then the
construction is also secure. Impagliazzo and Rudich consider various black-box
settings (where there are some additional constraints beyond the primitive being
treated as a black box) and show that, in one model, a black-box construction
of key agreement based on one-way functions implies a proof that P �= NP ;
in a more constrained model such a construction is unconditionally impossible.
The formal framework of Impagliazzo and Rudich has subsequently been used to
address other “implication” questions, such as one-way functions versus one-way
permutations [17, 19], one-way functions versus collision-resistant hash functions
[25], between key agreement, oblivious transfer, public-key encryption and trap-
door functions and permutations [9, 10]. Variations of the framework have also
been used to address the issue of the number of rounds in KA protocols [24],
of the efficiency of constructions of universal one-way hash functions based on
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one-way permutations [20, 8], of pseudorandom generators based on one-way
permutations [8] and of public-key encryption based on trapdoor permutations
[7].

The common interpretation of these results is that there are inherent limita-
tions in using a primitive as a black box, and that these impossibility results can
be overcome only by explicitly using the code of the primitive in the construction.

In this paper we revisit these negative results, we give a more careful taxon-
omy of the ways in which “black-box reductions” can be formalized, we strengthen
some previous results (in particular we give unconditional proofs of results that
were previously proved only assuming P = NP ), and we offer a new interpreta-
tion of them: that, in many cases, there is no limitation in using a primitive as a
black box, but there is a limitation in treating adversaries as such. In particular,
these negative results may be overcome by using the code of the adversary in the
analysis.

1.1 Impossibility Results for Reductions

The starting point of the work of Impagliazzo-Rudich is the observation that
most known cryptographic constructions based on one-way functions treat the
one-way function as a “black box.” (Exceptions are discussed in Section 1.5.)
Roughly speaking, a black-box (BB) reduction of a primitive Q to one-way func-
tions (OWF) is a construction that uses oracle access to a function f , and guar-
antees that if f is one-way then the construction is secure. In particular:

– The construction does not use the code of the function f ;
– The construction is well defined and efficient even if f is not efficiently com-

putable (as long as it is given as an oracle);
– There is a proof security that shows that an adversary breaking the protocol

yields an adversary that inverts f .

There are various ways to formalize the third condition (which we make
precise in Section 2. One possibility considered in [18], which we call fully-BB, is
that there is an algorithm that converts every adversary that supposedly breaks
the construction (according to the definition of security for Q) into a procedure
that inverts f . This algorithm is efficient and it is given oracle access to the
adversary and to f . In this setting, both the construction and the analysis are
black box. Another way to look at it is that both the primitive and the adversary
are treated as black boxes. Most reductions in the cryptography literature are
fully-BB.

Impagliazzo and Rudich [18] prove that there can be no fully-BB reduction
of key agreement (KA) to OWF. Since public-key encryption, trapdoor permu-
tations and oblivious transfer all imply KA (by fully-BB reductions), it then
follows that there are no fully-BB transformations of OWF into these other
primitives as well. One may (and should) wonder whether the impossibility is
due to the fact both the primitive and the adversaries are treated as oracles, or
if it is enough that just the primitive is.
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Impagliazzo and Rudich also consider a weaker form a BB reduction of KA
to OWF, a form that we call semi-BB in this paper. In a semi-BB reduction,
we have a BB construction of KA based on a function f given as an oracle. The
analysis proves that for every efficient adversary with oracle to f that breaks
the construction, there is an efficient adversary that inverts f if given oracle
access to f . This seems to formalize the notion of a BB construction with an
arbitrary analysis, but we argue that it does not. If f is a one-way function in
the black-box sense,4 then the construction has to be secure not only against
efficient adversaries, but also against adversaries that have oracle access to f . A
proof technique that makes use of the code of the adversary is not BB in this
sense.

Impagliazzo and Rudich prove that, if P = NP , there is no semi-BB reduc-
tion of KA to OWF. This means that, in order to come up with a proof that
OWF implies KA, one must either avoid semi-BB reductions or find, along the
way, a proof that P �= NP . Impagliazzo and Rudich prove their result by estab-
lishing the stronger (and independently interesting) statement that if P = NP ,
then there is no secure KA in the random oracle model. (Note that a random
oracle is one-way in the black-box sense even if P=NP.)

1.2 The Limitations of Semi-BB Reductions

In this paper we prove, unconditionally, that there is no semi-BB reduction of
OWF to KA. We prove this unconditional result by embedding a PSPACE oracle
into a small part of the random oracle used in the Impagliazzo–Rudich result,
and use the fact that PPSPACE = NPPSPACE . This embedding technique is
due to Simon [25].

Following the lead of Impagliazzo and Rudich, several other works explored
the limitations of black-box reductions with examples being [24, 25, 20, 8–10].
Most results ruled out fully-BB reductions unconditionally, and semi-BB reduc-
tions if P=NP. An exception is the work of Gertner et al [10], which involves a
model that is slightly different from the one of [18], and which only rules out
fully-BB reductions. The embedding technique allows us to prove that semi-BB
reductions are unconditionally impossible in all case where semi-BB reductions
were previously conditionally ruled out.

More generally, we show that, under mild conditions satisfied by most natural
primitives, semi-BB reductions are equivalent to relativizing reductions (proofs
that the implication holds relative to any oracle). Since the above works rule out
relativizing reductions unconditionally, we obtain unconditional impossibility of
semi-BB reductions.

1.3 The Power of Weakly-BB Reductions

Semi-BB reductions have typically been considered to be BB constructions with
arbitrary proofs, and negative results about semi-BB reductions have typically
4 Meaning that no efficient procedure with oracle access to f can invert f on a non-

negligible fraction of inputs.
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been interpreted as limitations for constructions that do not use the code of the
primitive. In this paper, we present a different perspective.

We first formalize the notion of a BB construction with an arbitrary proof,
which we call a weakly-BB reduction. In a weakly-BB reduction of, say, KA to
OWF, the construction refers to an oracle function, and it is secure whenever
the oracle function is one-way in a black-box sense, but the analysis of the
construction may be arbitrary. This means that for every oracle f and for every
efficient adversary that breaks the KA protocol constructed from f , there is an
efficient procedure that inverts f when given oracle access to f . The difference
with semi-BB is that we do not care about KA adversaries that require oracle
access to f to be efficiently realized.

A first observation is that if we had a provably secure KA scheme, then it
would also be a weakly-BB reduction of OWF to KA: just let the parties ignore
the oracle, and then the security of the construction in the real world implies
that it is also secure as a weakly-BB reduction. This means that it is unrealistic
to look for an unconditional proof that weakly-BB reductions of OWF to KA do
not exist; indeed, most likely, such a weakly-BB reduction exists. However one
can still wonder whether the only way to come up with a weakly-BB reduction
is to “cheat” in this manner, and have the analysis of the construction contain
the proof of a strong lower bound (so that the intractability comes not from the
primitive used as an oracle but from the proof of correctness of the reduction).

A similar situation arises in the random oracle model studied by Impagliazzo
and Rudich: a secure KA protocol in the real world would also be secure in the
random oracle model. However, Impagliazzo and Rudich show that if P = NP
then there can be no secure construction of KA in the random oracle model.
That is, the only way to construct a secure KA in the random oracle model is
to come up with a proof that P �= NP along the way.

One may conjecture that, similarly to the Impagliazzo–Rudich result, if
P = NP then there is no weakly-BB reduction of KA to OWF. Perhaps surpris-
ingly, we prove that the opposite is true: if P = NP then there is a weakly-BB
reduction of KA to OWF. Indeed, such a reduction exists even under the weaker
assumption that OWFs do not exist.5 In other words, if KA is possible, then
there is weakly-BB reduction of OWF to ioKA, and if OWF do not exist then
there is also a weakly-BB reduction of OWF to KA. That is, if OWF imply
KA in the logical sense (i.e., unless OWF exist but KA is impossible) then the
implication can be proved using weakly-BB reductions.6 We feel that this re-
sult is important because it shows that there is no inherent limitation (at least
in KA versus OWF) in ignoring the code of the primitive, although there are
limitations in ignoring the code of the adversary as well.

5 Actually, the reduction only provides “infinitely-often KA” (ioKA) from one-way
functions; see Section 4.

6 To be precise, our result leaves out the case in which ioKA exist but KA do not
exist. Even in such a case, it is possible to argue that for every input length, if OWF
imply KA in the logical sense for that input length, then the implication can be
established with a weakly-BB reduction.
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We similarly show that weakly-BB reductions are as powerful as arbitrary
reductions in transforming OWF to one-way permutations, to collision-resistant
hash functions, to trapdoor permutations, and other primitives.

1.4 Efficiency of Reductions

We next turn our attention to another line of research about the limitations of
black-box reductions, namely, the efficiency of reductions. The issue of efficiency
was first raised by Rudich [24], who investigated the round complexity of KA
schemes. Rudich proved that one cannot use a fully-BB reduction to transform
a k-round KA scheme into a (k − 1)-round one. Later, Kim, Simon and Tetali
[20] considered the question of efficiency of constructions of universal one-way
hash functions (UOWHFs) based on one-way permutations (OWPs). The known
reduction is fully black box and invokes the OWP a number of times that is
roughly linear in the compression of the UOWHF. Kim et al. [20] show that
every fully-BB construction must invoke the OWP a number of times that is
about the square root of the expansion.

Gennaro and Trevisan [8] considered again the question of reductions of
OWPs to UOWHF, as well as the question of constructions of pseudorandom
generators (PRGs) based on OWPs. The Blum-Micali-Yao construction [3, 26,
11] invokes the OWP a number of times that is roughly linear in the expansion
of the generator. Gennaro and Trevisan proved that if OWF do not exist, then
there is no weakly-BB transformation of OWP to PRG and no weakly-BB trans-
formation of OWP to UOWHF where the OWP is invoked a sub-linear number
of times (sub-linear in the expansion and in the compression, respectively). On
the other hand, if OWF do exist, then there are zero-query weakly-BB construc-
tions. This means that the only way of improving current constructions, even
with a weakly-BB reduction, is to come up with an unconditional construction
and disregard the oracle.7 Gennaro, Gertner and Katz [7] gave similar results
for constructions of public-key encryption and signature schemes. These results
by Gennaro et al. [8, 7] about the efficiency of reductions are the only ones that
rule out even weakly-BB reductions.

Regarding the efficiency of known reductions in cryptography, perhaps the
most pressing open question is whether the construction of PRG based on OWF
by H̊astad et al. [14] can be made more efficient. It was conjectured in [8] that
black-box transformations of OWF into PRG have to invoke the OWF a super-
linear number of times. In this paper, we show that there is a weakly-BB con-
struction of PRG based on OWF that invokes the one-way function only once.
This sounds like a great improvement over [14] but, unfortunately, we use [14]
as part of our construction. The idea is that if OWFs exist, then we can use
[14] to obtain a PRG that is secure in the real world, and then it will also be a
weakly-BB construction of PRG from OWF (which makes zero oracle queries).
7 Gennaro and Trevisan also show unconditionally that there can be no fully-BB

sublinear construction and, using our results in Section 3.2, we get an unconditional
result for semi-BB constructions.
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On the other hand, if OWFs do not exist, then we describe a weakly-BB con-
struction.8 How should we interpret such a result? It seems to say that we should
not stop looking for more efficient constructions than the one in [14] and that,
in this search, we may restrict ourselves to constructions that treat the one-way
function as a black box.

1.5 Perspective

It should be stressed that not all reductions in the cryptographic literature are
black box. Many of the examples are constructions that make use of the gen-
eral construction of zero-knowledge proofs (and variants) for arbitrary NP lan-
guages [13], as the [13] protocol makes use of the code of the algorithm that
verifies witnesses for the NP algorithm. For example, when using this result to
construct identification schemes from any one-way function [5], the identifica-
tion scheme makes use of the code of the one-way function and thus this is not
a black-box reduction. In a similar fashion, there are a number of other results
in cryptography that make non-black-box use of the starting primitive. Only re-
cently, however, have we seen reductions making non-black-box use of adversary
in the proof of security, in the exciting works of Barak [1, 2].

Given the fact that non-black-box reductions exist in the literature, one might
wonder how to interpret black-box reductions and impossibility results. For this,
it is useful to consider an analogy with the role of reductions in complexity
theory. The first motivation for introducing polynomial-time reducibilities (e.g.
Karp reductions and Cook reductions) was to relate the existence of polynomial-
time algorithms for various problems: if problem A reduces to problem B, then
B ∈ P ⇒ A ∈ P . Note that here the polynomial-time algorithm for B is used
in a black-box manner. The constructed polynomial-time algorithm for A only
uses the B-algorithm as a subroutine and its correctness doesn’t make use of the
fact that the B-algorithm is efficient.9 One can envision non-black-box ways of
proving implications of the form B ∈ P ⇒ A ∈ P , and there are examples in the
literature (one is mentioned below). Still we find reductions to be an extremely
useful concept. First, they provide a natural way of comparing the “complex-
ity” of problems (even when we believe neither problem has a polynomial-time
algorithm). For example, SAT trivially reduces to QBF2 (quantified boolean
formulae with two alternating quantifiers) and it is known that QBF2 does not
(Cook-)reduce to SAT unless the polynomial-time hierarchy collapses. Never-
theless, the implication SAT ∈ P ⇒ QBF2 ∈ P is known to hold, and indeed
it (necessarily) makes non-black-box use of the polynomial-time algorithm for
SAT. Still we interpret the lack of a Cook-reduction from QBF2 to SAT saying
that QBF2 as a more “complex” problem than SAT. Second, results showing
that certain reductions are unlikely to exist provide a guide for attempts to
8 There are again some technical issues about infinitely many versus all input lengths.
9 Note that the black-box use of the B-algorithm is particularly acute when B is a

promise problem, since A must work for all oracles that are correct on inputs that
satisfy the promise, even undecidable ones.
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prove the corresponding implication. For example, it is known that for any NP -
complete problem L, there is no nonadaptive reduction from deciding L in the
worst case to deciding L in the average case (with respect to any samplable dis-
tribution) unless the polynomial-time hierarchy collapses [6, 4]. Thus, in future
attempts to establish a worst-case/average-case equivalence for NP , it is natural
to start by looking for adaptive reductions.

Both of these uses of reductions also seem relevant in cryptography. It is scien-
tifically interesting to have notions for formalizing the idea that, say, public-key
cryptography is a “more complex” primitive than private-key cryptography (even
when we believe both to exist). And results on the non-existence of black-box
reductions help guide attempts to establish new implications. For example, our
results highlight the significance of making non-black-box use of the adversary,
as in [1, 2], and suggest that it may enable us to overcome some previous barriers.
We note that when using non-existence of reductions as a guide for future work,
it is important to make the notions of reduction precise and carefully interpret
their meaning. Indeed, these are some of the goals of the taxonomy and results
presented in this paper.

2 Black-Box Constructions and Analyses

2.1 Cryptographic Primitives

In order to define the various notions of reduction between cryptographic prim-
itives we first need to clarify what constitutes a primitive. The definition we use
is quite general. Still, for the sake of readability, we do not state our definitions
and results in the most general setting possible. In particular, our notion of effi-
ciency will be that of probabilistic polynomial-time Turing machines (PPTMs)
and we assume that all parties involved in the definition of a primitive (including
the adversaries) are efficient. Therefore, our results are stated in a way that does
not apply to non-uniform or information theoretic notions of security.

Definition 1. A primitive P is a pair 〈FP , RP〉, where FP is a set of functions
f : {0, 1}∗ �→ {0, 1}∗, and RP is a relation over pairs 〈f, M〉 of a function f ∈ FP
and a machine M . The set FP is required to contain at least one function which
is computable by a PPTM.

A function f : {0, 1}∗ �→ {0, 1}∗ implements P or is an implementation
of P if f ∈ FP . An efficient implementation of P is an implementation
of P which is computable by a PPTM. A machine M P-breaks f ∈ FP if
〈f, M〉 ∈ RP . A secure implementation of P is an implementation of P such
that no PPTM P-breaks f . The primitive P exists if there exists an efficient
and secure implementation of P.

Let us elaborate on the semantics of the above definition. It is natural that
an implementation of a primitive can be represented as a function f : {0, 1}∗ �→
{0, 1}∗. For example, in the case of one-way function, f is simply the one-way
function itself. In the case of encryption schemes, f represents three functions:
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the key generation, the encryption and the decryption functions. In the case
of key-agreement and protocols in general, f represents the message function
(the function that determines the message a party should send given its in-
puts and the previous messages). The set FP in the definition of a primitive P
captures various structural requirements for an implementation of P . For ex-
ample, in the case of one-way permutations we require that an implementation
f will be a length-preserving permutation. The set FP also captures correct-
ness requirements (when they are separated from the security of the primitive).
For example, for encryption schemes, we require that the decryption of an en-
cryption of a plaintext m will recover m. For key agreement, we require that
the two parties output the same key. The structural and correctness require-
ments of a primitive are usually easy to obtain when we do not insist on se-
curity. Therefore, it is not very restrictive to require the set FP to contain at
least one efficiently computable function. Finally, the security requirement of a
primitive is specified through the definition of breaking an implementation of
this primitive. This is captured by the relation RP . For example, for one-way
functions, we would define 〈f, M〉 ∈ RP if there is a polynomial p such that
Pr[M(f(Un)) ∈ f−1(f(Un))] > 1/p(n) for infinitely many n. Sometimes, we will
need to work with “infinitely often” (io) analogues of primitives, where the se-
curity is only required to hold for infinitely many input lengths, i.e. to “break”
the primitive, an adversary must succeed on all but finitely many input lengths.
For example, if P is the primitive ioOWF, then we would define 〈f, M〉 ∈ RP if
there is a polynomial p such that Pr[M(f(Un)) ∈ f−1(f(Un))] > 1/p(n) for all
but finitely many n.

We will also need to define the existence of a primitive relative to an oracle.

Definition 2. A primitive P exists relative to an oracle Π if there exists an
implementation f of P which is computable by a probabilistic polynomial time
oracle machine with access to Π and such that no probabilistic polynomial time
oracle machine with access to Π P-breaks f .

2.2 Notions of Reducibility

A reduction from a primitive P to a primitive Q means that the existence of Q
implies the existence of P . In other words, it means that either P exists or Q does
not exist. Reductions in the literature usually entail much more than that. For
example, a reduction from P to Q usually gives a constructive way of obtaining
a secure and efficient implementation of P from one of Q. We now define various
such types of more restricted and structured reductions. For comparison we refer
to an arbitrary reduction as a free reduction.

The most restricted form of reduction considered in this paper is what we call
a fully black-box (BB) reduction, where the construction and analysis (showing
that the construction produces a secure implementation of P given a secure
implementation of Q) are both BB. Most, but not all, reductions in the literature
are fully BB.
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Definition 3. There exists a fully-BB reduction from a primitive P = 〈FP , RP〉
to a primitive Q = 〈FQ, RQ〉, if there exist probabilistic polynomial-time oracle
machines G and S such that:

Correctness For every implementation f ∈ FQ we have that Gf ∈ FP .
Security For every implementation f ∈ FQ and every machine A, if A P-breaks

Gf then SA,f Q-breaks f .

The next, less restricted, notion of reduction is a reduction that works even
if all parties get an oracle access to a, possibly inefficient, implementation of Q.

Definition 4. There exists a semi-BB reduction from a primitive P = 〈FP , RP〉
to a primitive Q = 〈FQ, RQ〉 if there exists a probabilistic polynomial-time oracle
machine G such that:

Correctness For every implementation f ∈ FQ we have that Gf ∈ FP .
Security For every implementation f ∈ FQ, if there exists a probabilistic polynomial-

time oracle machine A such that Af P-breaks Gf , then there exists a prob-
abilistic polynomial-time oracle machine S such that Sf Q-breaks f .

It is tempting to view a semi-BB reduction as a BB-construction with an
arbitrary analysis, since only f is treated as a black box. However, as we try to
argue in Section 3, the analysis in semi-BB reduction is still very much black box.
In essence, this is due to the oracle access that A gets to (the computationally
unbounded) f . Since f may be the heart of the adversary Af that breaks P ,
the access S has to this adversary is in large part black box. Following is our
attempt to formalize what we view as a BB construction with arbitrary analysis.

Definition 5. There exists a weakly-BB reduction from a primitive P =
〈FP , RP〉 to a primitive Q = 〈FQ, RQ〉 if there exists a probabilistic polynomial-
time oracle machine G such that:

Correctness For every implementation f ∈ FQ we have that Gf ∈ FP .
Security For every implementation f ∈ FQ, if there exists a PPTM A that P-

breaks Gf , then there exists a probabilistic polynomial-time oracle machine
S such that Sf Q-breaks f .

Remark 1. Arguably, a definition that would capture the phrase “a BB construc-
tion with arbitrary analysis” even better is one where S is also denied access
to f . For the sake of this discussion, let us refer to such reductions as weakly ′-
BB. One problematic aspect of weakly ′-BB reductions is that not only such
reductions are more restricted that weakly-BB they even seem incomparable to
fully-BB reductions. In particular, for many fundamental BB-reductions known
in cryptography, it is not clear if the corresponding implications can also be
proven via weakly ′-BB reductions. In Section 4, we show that in many settings
ruling out the existence of weakly-BB reductions is essentially as hard as ruling
out the existence of any kind of reduction (i.e. a free reduction). Thus, these
results also apply to the more restricted weakly ′-BB reductions.
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Fig. 1. Simple relations between notions of reduction. An arrow goes from a more
restricted form of reduction to a less restricted one.

Related to BB-reductions are relativizing reduction which turn out very use-
ful in the context of BB separations.

Definition 6. There exists a relativizing reduction from a primitive P =
〈FP , RP〉 to a primitive Q = 〈FQ, RQ〉, if for every oracle Π, if Q exists relative
to Π then so does P.

Finally, we consider two additional notions of reductions that are obtained
from semi and weak BB reductions by a switch of quantifiers. Previously we
asked for a “universal” procedure G that reduces all secure implementations f
of Q to secure implementations Gf of P . But this may not be necessary if we
are only trying to show that P reduces to Q. In the following definitions we are
satisfied with the existence of a (possibly different) G for every f (hence the
name ∀∃).

Definition 7. There exists a ∀∃semi-BB reduction from a primitive P =
〈FP , RP〉 to a primitive Q = 〈FQ, RQ〉, if for every implementation f ∈ FQ
there exist a probabilistic polynomial time oracle machine G such that:

Correctness Gf ∈ FP .
Security If there exists a probabilistic polynomial-time oracle machine A such

that Af P-breaks Gf , then there exist a probabilistic polynomial time oracle
machines S such that Sf Q-breaks f .

Definition 8. There exists a ∀∃weakly-BB reduction from a primitive P =
〈FP , RP〉 to a primitive Q = 〈FQ, RQ〉, if for every implementation f ∈ FQ
there exist a probabilistic polynomial time oracle machine G such that:

Correctness Gf ∈ FP .
Security If there exists a PPTM A that P-breaks Gf , then there exists a prob-

abilistic polynomial-time oracle machine S such that Sf Q-breaks f .

Some simple relations between the various notions of reductions are given by
the following lemma (and are illustrated in Figure 1).
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Lemma 1. For any two primitives P and Q, we have the following:

1. If there exists a fully-BB reduction from P to Q then there exists a semi-BB
reduction from P to Q as well.

2. If there exists a semi-BB reduction from P to Q then there exists a weakly-
BB reduction from P to Q as well.

3. If there exists a semi-BB reduction from P to Q then there exists a ∀∃semi-
BB reduction from P to Q as well.

4. If there exists a weakly-BB reduction from P to Q then there exists a ∀∃weakly-
BB reduction from P to Q as well.

5. If there exists a ∀∃semi-BB reduction from P to Q then there exists a
∀∃weakly-BB reduction from P to Q as well.

6. If there exists a ∀∃weakly-BB reduction from P to Q then there exists a free
reduction from P to Q as well.

7. If there exists a fully-BB reduction from P to Q then there exists a relativiz-
ing reduction from P to Q as well.

8. If there exists a relativizing reduction from P to Q then there exists a ∀∃semi-
BB reduction from P to Q as well.

Proof. All relations follow quite easily from the definitions. We concentrate on
the two relations connecting relativizing reductions to BB reductions.

For Item 7, assume that there exists a fully-BB reduction from a primitive
P = 〈FP , RP〉 to a primitive Q = 〈FQ, RQ〉, given by the probabilistic oracle
machines G and S (see the definition of a fully-BB reduction). Let Π be an
arbitrary oracle and further assume that Q exists relative to Π . We need to
prove that P also exists relative to Π .

Let f ∈ FQ be (an implementation of Q) such that no probabilistic polyno-
mial time oracle machine with access to Π Q-breaks f and such that f is com-
putable by MΠ where M is some probabilistic polynomial time oracle machine.
By definition, Gf ∈ FP . Its also immediate that Gf ≡ GMΠ

is also computable
by a probabilistic polynomial time oracle machine with access to Π . Assume for
the sake of contradiction that there exists a probabilistic polynomial time oracle
machine A such that AΠ P-breaks Gf . Then, by definition SAΠ ,f Q-breaks f .
Since SAΠ ,f ≡ SAΠ ,MΠ

is computable by a probabilistic polynomial time oracle
machine with access to Π , we arrive at a contradiction and can conclude Item 7.

For Item 8 let us assume that there is a relativizing reduction from P to
Q and prove that there also exists a ∀∃semi-BB reduction from P to Q. Let f
be any implementation of Q. One possibility is that there exists a probabilistic
polynomial-time oracle machine S such that Sf Q-breaks f . Define a proba-
bilistic polynomial-time oracle machine G that ignores its oracle and computes
some (not necessarily secure) implementation of P . Its follows immediately that
G and S satisfy the conditions in the definition of ∀∃semi-BB reduction. We can
therefore assume that S as above does not exist. This means that relative to
the oracle f the primitive Q exists (its efficient and secure implementation is f
itself). By the definition of relativizing reduction, the primitive Q exists rela-
tive to f as well. Therefore, there exists a probabilistic polynomial time oracle
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machine G such that Gf ∈ FP and there is no probabilistic polynomial time
oracle machine A such that Af P-breaks Gf . We can therefore conclude that
there exists a ∀∃semi-BB reduction from P to Q which completes the proof of
the item.

3 Semi-BB versus Relativization

The study of BB separations in cryptography started with the seminal work
of Impagliazzo and Rudich [18]. Previously it was known that the existence
of many cryptographic primitives, such as various private-key primitives and
digital signatures, reduces to the existence of one-way functions (OWF), which
in turn are essentially necessary for all computational aspects of security in
Cryptography. Other primitives however such as key-agreement (KA), and thus
also various fundamental primitives that imply KA, resisted attempts to be
reduced to OWF. Noting that almost all reductions in cryptography are black-
box, [18] turned to showing that such reductions are simply not sufficiently
powerful to reduce KA to OWF or even to one way permutations (OWP).

Theorem 1. [18] There is no relativizing reduction from KA to OWP.

An immediate consequence of Theorem 1 is that there is no fully-BB reduc-
tion from KA to OWP. At the core of the proof of Theorem 1 stands a lemma
which states that, relative to a random oracle (which is in some sense a “perfect
OWP”), there are no KA unless P �= NP . In particular, constructing KA in the
random-oracle model is at least as hard as proving P �= NP . In addition, [18]
pointed that this lemma seems to “rule out” even less restrictive forms of BB
reductions from KA to OWP. Using the taxonomy of this paper, we can state
the results of [18] with respect to BB reductions as follows.

Theorem 2. (implicit in [18]) There is no fully-BB reduction from key-agreement
to one-way permutations. Furthermore, there is no ∀∃semi-BB reduction from
KA to OWP unless P �= NP .

In this section we prove an unconditional version of Theorem 2. We generalize
this by showing that “usually” ∀∃semi-BB reductions are equivalent to relativiz-
ing reductions. This implies unconditional proofs of various results that were
previously only known to hold conditionally. Finally, based on the new equiva-
lence between reduction types, we reinterpret the notion of semi-BB reductions.

3.1 Impagliazzo-Rudich Revisited

Based on Theorem 1 and using an “embedding technique” due to Simon [25],
we are able to strengthen Theorem 2 as follows.

Theorem 3. There is no ∀∃semi-BB reduction from KA to OWP.
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Proof. Theorem 1 implies that there exists an oracle Π : {0, 1}∗ �→ {0, 1} such
that relative to Π , OWP exists and KA does not. Let f ′ be the secure and
efficient OWP which exist relative to Π . We define a permutation f such that
(1) f is computable by a probabilistic polynomial-time oracle machine with
access to Π , (2) f is one-way relative to Π , and (3) There exists a probabilistic
polynomial-time oracle machine with access to f that evaluates Π . Let us first
assume that such an f exist and see how it implies the theorem.

Properties (1) and (2) of f imply that f is one-way relative to itself (since
an oracle machine that OWP-breaks f relative to f can be efficiently simulated
relative to Π). Properties (1) and (3) of f imply that there is no KA relative
to f . This is because an efficient implementation of KA relative to f is also
an efficient implementation of KA relative to Π which implies that it can be
broken relative to Π and thus also relative to f . Now assume for the sake of
contradiction that there exist a ∀∃semi-BB reduction from KA to OWP. Let G
be the probabilistic polynomial-time oracle machine which corresponds to f as
guaranteed by the definition of ∀∃semi-BB reduction. It is now straight forward
from the definition of G that Gf is a secure KA relative to f which contradicts
our assumption that there exist a ∀∃semi-BB reduction from KA to OWP.

It remains to define f with the desired properties. Intuitively Π is “em-
bedded” into a small part of f and on the rest of the inputs, f evaluates f ′.
On a 2n + 1-bit long input 〈r, x, σ〉 where r and x are n-bit long each and σ
is a bit, the function f is defined as follows: If r is the all-zero string then
f(r, x, σ) = r, x, Π(x)⊕σ. Otherwise, f(r, x, σ) = r, f ′(x), σ. (The definition can
be naturally extended to even-length inputs.) That f is a permutation follows
trivially from f ′ being a permutation. Property (2) (the one-wayness of f rel-
ative to Π) is also easy as on all but a negligible fraction of its inputs (those
with r being the all-zero string), inverting f on a random input is equivalent to
inverting f ′ on a random input. Finally, properties (1) and (3) follows immedi-
ately from the definition. �


3.2 The General Condition for Equivalence

The equivalence between the existence of a relativizing reduction and a ∀∃semi-
BB reduction, is not limited to the reduction from KA to OWP. In fact, essen-
tially the same argument was used by Simon [25], in regard of the reduction of
collision-resistant hash functions to OWP. In general, the two notions of reduc-
tion are equivalent for showing a reduction from a primitive P to a primitive
Q, if it is possible to “embed” an arbitrary oracle into Q as in the proof of
Theorem 3.

Definition 9. We say that a primitive Q = 〈FQ, RQ〉 allows embedding if for
any f ′ ∈ FQ and any oracle Π : {0, 1}∗ �→ {0, 1} there exist f ∈ FQ such that
the following hold:

1. f is computable by a probabilistic polynomial-time oracle machine with access
to Π,.
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Fig. 2. In addition to the simple relations already shown in Figure 1, the dashed arrow
indicates that “usually” relativizing reduction are equivalent to ∀∃semi-BB reduction.

2. If there exists a probabilistic polynomial-time oracle machine M that Q-
breaks f then there exists such M that Q-breaks f ′.

3. There exists a probabilistic polynomial-time oracle machine with access to f
that evaluates Π.

The following equivalence is proven in exactly the same way as Theorem 3.

Theorem 4. Let P = 〈FP , RP〉 be any primitive and Q = 〈FQ, RQ〉 be any
primitive that allows embedding. Then there exist a relativizing reduction from
P to Q if and only if there exist a ∀∃semi-BB reduction from P to Q.

We note that its hard to think of a natural primitive that does not allow em-
bedding. In fact, the case of OWP is relatively difficult compared to others we
could think of (because of the need to preserve the permutation). Therefore, we
can informally say that “usually” the above equivalence holds (see Figure 2 for
an updated picture which takes this “equivalence” into account). The embed-
ding technique allows us to prove that ∀∃semi-BB reductions are unconditionally
impossible in all case where ∀∃semi-BB reductions were previously only condi-
tionally ruled out. Two examples are [24] on reducing the number of rounds
in KA and [9] on the relationships among KA, oblivious transfer, public-key
encryptions, and trapdoor functions and permutations. In fact, this also holds
for the results of [8, 7] regarding the efficiency of known constructions. In this
setting however, it is important to take into account the efficiency of the embed-
ding technique itself. Usually however the embedding is extremely efficient. For
example, in the definition of f above evaluating it requires a single oracle query
(either to f ′ or to Π) and similarly evaluating Π requires a single oracle call to
f .

3.3 Discussion

It is typical to view semi-BB reductions and certainly ∀∃semi-BB as a BB-
construction with arbitrary analysis. However, we feel that the equivalence to
relativizing reductions and more particularly the embedding technique implies
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Fig. 3. In addition to the picture given by Figure 2, the dotted arrow indicates that in
some interesting cases weakly-BB reductions are equivalent to free (arbitrary) reduc-
tions.

that the analysis in semi-BB reduction is still very much black box. Recall that
in a semi-BB reduction from P to Q we only consider polynomial time machines
A such Af P-breaks Gf and the requirement is that if such a machine A exists
then there also exists an efficient S such that Sf Q-breaks f . This looks less
BB than the analysis in fully-BB reductions since S does not get oracle access
to A but rather only to f and since we only consider efficient machines A. The
reason that this analysis is still very much BB is that the adversary for P is Af

(which may be very inefficient) rather than f . Meaning in particular that the
reduction does not have access to a small decryption of this adversary (yet alone
a small circuit that evaluates it). What the embedding technique contributes to
this argument is that usually f may be viewed as the major part of the adversary
Af . In fact, in many cases we can assume that A is embedded into f . Therefore,
getting oracle access may effectively give S access to Af .

4 Weakly-BB Versus Arbitrary Reductions

In this section we show various settings for which weakly-BB reductions exist
iff free (arbitrary) reductions exist (this is illustrated in Figure 3). In other
words, in some settings weakly-BB are as powerful as free reductions. We could
therefore concentrate on finding such reductions which treat the primitive as a
black box. These results also indicate that it is unlikely we could strengthen some
previous BB separations that previously ruled out semi-BB reductions so that
they also rule out weakly-BB reductions in the same settings.

4.1 Distributional One-Way Functions

Part of each proof of equivalence between weakly-BB reductions and free reduc-
tions given in this section is a construction which works under the assumption
that one-way functions do not exist. As shown by Impagliazzo and Luby [16],
the non-existence of one-way functions imply the non-existence of distributional
one-way functions, a fact that we will use in our constructions.
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Lemma 2 (Impagliazzo and Luby). Suppose that one-way functions do not
exist, and let g be a (possibly probabilistic) polynomial time computable function
and q(n) be a polynomial. Then there is a polynomial time probabilistic algorithm
S such that on, infinitely many input lengths n, the distributions (x, g(x)) and
(S(g(x)), g(x)) have statistical distance at most 1/q(n), where x is uniform in
{0, 1}n.

In other words, the result says that if it is possible to compute preimages of
polynomial time computable functions, then it is also possible to sample almost
uniformly from the set of preimages.

4.2 Weakly-BB Reductions from KA to OWF

We now show that if the statement “the existence of OWF implies the existence
of ioKA” is true then it can be proved via a weakly-BB construction of KA based
on OWF. We note that this means that it is unlikely that we could rule out a
weakly-BB reduction from ioKA to OWF whereas [18] (implicitly) rule out such
semi-BB reductions. The equivalence between free reductions and weakly-BB
reductions in this context follows from the next two lemmas.

Lemma 3. Suppose that ioKA exists. Then there is a weakly-BB reduction from
ioKA to OWF.

Proof. The efficient oracle machine G needed by the definition of weakly-BB
reductions simply ignores the oracle f and evaluates from scratch the ioKA
which independently exist. The reduction is secure as there is no PPTM A that
ioKA-breaks Gf . �


Lemma 4. Suppose that OWF do not exist. Then there is a weakly-BB reduction
from ioKA to OWF.

Proof (Proof sketch). Consider the following construction: given security param-
eter n and oracle f

– Alice picks at random x, r ∈ {0, 1}n, and sends x, r to Bob.
– Alice and Bob agree on the bit f(x) · r.

The protocol does not make much sense in the “real world,” but the reader
should be reminded that the protocol is only meant to work in case OWFs do
not exist, a case in which no KA protocol can exist in the real world.

To prove the Lemma, we will show that if f is a black-box one-way function,
then the protocol cannot be broken by an efficient adversary. Intuitively, the
reason is that if f is a black-box one-way function, and OWFs do not exist, then
f must be a function that cannot be computed efficiently. Using Goldreich-Levin,
we can then infer that f(x) · r is hard to predict.

More precisely, let E be a polynomial-time adversary that has a noticeable
advantage in guessing the generated key f(x) · r on all but finitely many input
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lengths. Using Goldreich-Levin, we can then find a probabilistic polynomial-
time algorithm M that computes f correctly with noticeable probability, i.e.
Pr[M(Un) = f(Un)] ≥ 1/p(n) for some polynomial p. Since the nonexistence
of one-way functions implies the nonexistence of distributional one-way func-
tions [16], there is a probabilistic polynomial-time algorithm I that generates
almost-uniformly distributed preimages under M . That is, (Un, M(Un)) and
(I(M(Un)), M(Un)) have statistical difference at most 1/q(n) for any desired
polynomial q and infinitely many n. We will now argue that, by choosing q = 4p,
it follows that I inverts f with nonnegligible probability.

It is not hard to show that Pry∈M(Un)[I(y) ∈ f−1(y)] is non-negligible. How-
ever, this in itself does not imply that Pry∈f(Un)[I(y) ∈ f−1(y)] is non-negligible
as well. For that we need to first argue about the likelihood of obtaining a
particular output y under f and under M . Define the set O of outputs {y :
Pr[M(Un) = y] ≤ 2p(n) Pr[f(Un) = y]}. Since Pr[M(Un) = f(Un)] ≥ 1/p(n) it
follows that Pr[M(Un) = f(Un) ∈ O] ≥ 1/2p(n), as otherwise the probability
mass that M(Un) gives to strings outside of O is strictly larger than 1 which is
of course impossible.

Consider the statistical test T defined as follows: T (x, y) = 1 iff. f(x) =
M(x) = y ∈ O. We now have that Pr[T (Un, M(Un)) = 1] = Pr[M(Un) =
f(Un) ∈ O] ≥ 1/2p(n). Since (for infinitely many values of n), (Un, M(Un)) and
(I(M(Un)), M(Un)) have statistical difference at most 1/4p(n) we can conclude
that Pr[T ((I(M(Un)), M(Un))) = 1] ≥ 1/4p(n). Equivalently,

Pr
y∈M(Un)

[I(y) ∈ (
f−1(y) ∩ M−1(y)

)
and y ∈ O] ≥ 1/4p(n).

By the definition of O we get that for infinitely many values of n,

1/4p(n)
≤ Pr

y∈M(Un)
[I(y) ∈ (

f−1(y) ∩ M−1(y)
)

and y ∈ O]

=
∑

y∈O

Pr[M(Un) = y] Pr[I(y) ∈ (
f−1(y) ∩ M−1(y)

)
]

≤ 2p(n)
∑

y∈O

Pr[f(Un) = y] Pr[I(y) ∈ (
f−1(y) ∩ M−1(y)

)
]

= 2p(n) Pr
y∈f(Un)

[I(y) ∈ (
f−1(y) ∩ M−1(y)

)
and y ∈ O]

≤ 2p(n) Pr
y∈f(Un)

[I(y) ∈ f−1(y)]

We conclude that, for infinitely many values of n, Pry∈f(Un)[I(y) ∈ f−1(y)] ≥
1/8p2(n).

�

From the above two lemmas, we conclude that weakly-BB reductions are as

powerful as free reductions for this problem:

Theorem 5. There is weakly-BB reduction from ioKA to OWF if and only if
there is a free reduction from ioKA to OWF.
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Next we give a similar result for reducing trapdoor permutations to OWF.

Theorem 6. There is a weakly-BB reduction of io-trapdoor permutations to
one-way functions if and only if there is a free reduction of io-trapdoor permu-
tations to one-way functions.

Proof (Proof sketch). The proof has the same structure as that of Theorem 5.
The case that io-trapdoor permutations exist is immediate. For the case that
one-way functions don’t exist, we consider the following construction of a family
of trapdoor permutations from a black-box OWF f . On security parameter n
and oracle access to f : the key generation algorithm outputs the empty string
for both the index of the function and the trapdoor information. The trapdoor
permutation gf is defined as gf (x, r) = (x, r ⊕ f(x)). It is clear that this defines
a permutation. The inversion algorithm uses oracle access to f to invert gf .

The proof that gf is hard to invert by PPT algorithms uses the fact that
one-way functions don’t exist, and is similar to the proof of Lemma 4. As in
that lemma, this construction does not make much sense in the “real world,”
but recall that the protocol is only meant to work in case OWFs do not exist, a
case in which no trapdoor permutation can exist in the real world. �


4.3 A Weakly-BB Construction More Efficient than HILL

As mentioned in the introduction, a long-standing open question is to reduce
or explain the inefficiency of the construction of pseudorandom generators from
general one-way functions [14]. The construction of [14] is a fully black-box re-
duction that seems to require polynomially many queries to the one-way function
even to obtain a pseudorandom generator that stretches by one bit (in contrast
to the construction of pseudorandom generators from one-way permutations [3,
26, 11], which requires only one query to stretch by one bit).

Theorem 7. There is weakly-BB construction of ioPRGs from OWFs that makes
only one query.

Thus to show that the inefficiency of [14] is inherent, one must consider more
constrained reductions than weakly-BB reductions. In particular, one cannot
directly use the approach of [8], which gives lower bounds on the efficiency of
weakly-BB reductions. Alternatively, this theorem says that, in attempting to
improve the efficiency of [14], there is no loss in treating the OWF as a black
box.

Lemma 5. Suppose that OWF exist. Then there is a weakly-BB construction of
ioPRG based on OWF, where the construction makes zero oracle queries.

Lemma 6. Suppose that OWF do not exist. Then there is a weakly-BB con-
struction of ioPRG based on OWF, where the construction makes one oracle
queries.

Proof (Proof sketch). The construction is Gf (x, r) = (x, r, f(x) · r), for |x| = |r|.
The proof that this is a weakly BB construction is analogous to the proof of
Lemma 4.
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