# A structure-preserving semi-implicit IMEX finite volume scheme for ideal MHD at all Mach and Alfvén numbers

Andrea Thomann\*

joint work with Walter Boscheri \*

<sup>\*</sup>Inria, Université de Strasbourg, France <sup>†</sup>Université Savoie Mont Blanc, France

NAPDE New Trends in the Numerical Analysis of PDEs, Lille 10th - 13th June 2024

Innin-

Université de Strasbourg

### Three scales in the model

- Transport via the local flow velocity  $\mathbf{v} 
  ightarrow$  material wave u
- Influence of the magnetic field  ${f B} o$  Alfvén speed b
- Influence of the pressure p 
  ightarrow sound speeds c

### Parameters in the model

- Mach number:  $M_c = |u|/c$
- Alfvén "Mach" number:  $M_b = |u|/b$

### Asymptotic process $M_c \rightarrow 0$ :

Transition between compressible and incompressible Euler equations + magnetic field evolution

### Structure-preserving

- Discrete consistency of the numerical scheme with involution constraint  $\nabla\cdot {\bm B}=0$
- Discrete consistency with low acoustic Mach number limit, i.e. preserving asymptotics from compressible to incompressible flow (Boscarino Russo Scandurra 2016)
- Applicability of the scheme in all regimes with respect to Mach and Alfvén numbers (Ability to resolve shocks)

# Efficiency due to

- stability under large time steps restricted by the fluid flow
- avoiding staggering of meshes
- avoiding non-linear implicit systems



# Ideal MHD equations

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \\ \rho \mathbf{E} \\ \mathbf{B} \end{pmatrix} + \nabla \cdot \begin{pmatrix} \rho \mathbf{v} \otimes \mathbf{v} + \left( p + \frac{\|\mathbf{B}\|^2}{8\pi} \right) \mathbb{I} - \frac{1}{4\pi} \mathbf{B} \otimes \mathbf{B} \\ \left( \rho E + p + \frac{\|\mathbf{B}\|^2}{8\pi} \right) \mathbf{v} - \frac{1}{4\pi} \mathbf{B} (\mathbf{v} \cdot \mathbf{B}) \\ \mathbf{B} \otimes \mathbf{v} - \mathbf{v} \otimes \mathbf{B} \end{pmatrix} = 0$$
(MHD)

**Computational domain:**  $\Omega(\mathbf{x}, t) \subset \mathbb{R}^3$  with  $\mathbf{x} = (x, y, z) \in \Omega$  and  $t \in \mathbb{R}^+_0$ 

| ho > 0                     | $\rightarrow$ | density               |
|----------------------------|---------------|-----------------------|
| $\mathbf{v} = (u, v, w)$   | $\rightarrow$ | velocity field        |
| ρΕ                         | $\rightarrow$ | total energy          |
| p > 0                      | $\rightarrow$ | hydrodynamic pressure |
| $\mathbf{B}=(B_x,B_y,B_z)$ | $\rightarrow$ | magnetic field        |
| I                          | $\rightarrow$ | identity matrix       |

**Involution:**  $\nabla \cdot \mathbf{B} = \mathbf{0}$  (solenoidal property of the magnetic field)



### **Total energy**

$$\rho E = \rho e + \rho k + m$$
 with  $k = \frac{1}{2} \|\mathbf{v}\|^2$ ,  $m = \frac{\|\mathbf{B}\|^2}{8\pi}$ .

Equation of state: ideal gas

$$pe = rac{p}{\gamma-1}$$
 with  $\gamma > 0.$ 

Eigenvalues in normal direction n

$$\lambda_{1,8} = \mathbf{v} \cdot \mathbf{n} \mp c_f, \quad \lambda_{2,7} = \mathbf{v} \cdot \mathbf{n} \mp b_n, \quad \lambda_{3,6} = \mathbf{v} \cdot \mathbf{n} \mp c_s, \quad \lambda_{4,5} = \mathbf{v} \cdot \mathbf{n},$$

$$\begin{aligned} c_{s,f}^2 &= \frac{1}{2} \Big( c^2 + b^2 \mp \sqrt{(c^2 + b^2)^2 - 4c^2 b_n^2} \Big), \\ c^2 &= \frac{\gamma p}{\rho}, \quad b^2 = \frac{\|\mathbf{B}\|^2}{4\pi\rho}, \quad b_n^2 = \frac{(\mathbf{B} \cdot \mathbf{n})^2}{4\pi\rho}. \end{aligned}$$



Andrea Thomann

Semi-implicit IMEX FV scheme for the MHD equations

NAPDE

Non-dimensional variables:  $\tilde{q} = q/q_{\rm ref}$ 

Stiffness parameters:

 $M_c = \|\mathbf{v}\|/c$  (acoustic Mach number)  $M_b = \|\mathbf{v}\|/b$  (Alfvén Mach number)

$$\frac{\partial}{\partial t} \begin{pmatrix} \tilde{\rho} \\ \tilde{\rho} \tilde{\mathbf{v}} \\ \tilde{\rho} \tilde{E} \\ \tilde{\mathbf{B}} \end{pmatrix} + \nabla \cdot \begin{pmatrix} \tilde{\rho} \tilde{\mathbf{v}} \\ \tilde{\rho} \tilde{\mathbf{v}} \otimes \tilde{\mathbf{v}} + \left( \frac{\tilde{\rho}}{M_c^2} + \frac{1}{M_b^2} \frac{\|\tilde{\mathbf{B}}\|^2}{2} \right) \mathbb{I} - \frac{1}{M_b^2} \tilde{\mathbf{B}} \otimes \tilde{\mathbf{B}} \\ \left( \tilde{\rho} \tilde{E} + \frac{\tilde{\rho}}{M_c^2} + \frac{1}{M_b^2} \frac{\|\tilde{\mathbf{B}}\|^2}{2} \right) \tilde{\mathbf{v}} - \frac{1}{M_b^2} \tilde{\mathbf{B}} (\tilde{\mathbf{v}} \cdot \tilde{\mathbf{B}}) \\ \tilde{\mathbf{B}} \otimes \tilde{\mathbf{v}} - \tilde{\mathbf{v}} \otimes \tilde{\mathbf{B}} \end{pmatrix} = \mathbf{0}, \quad \nabla \cdot \tilde{\mathbf{B}} = \mathbf{0}$$

where the total energy is given by

$$ilde{E} = rac{1}{M_c^2} ilde{e} + rac{1}{M_b^2} rac{ ilde{m}}{ ilde{
ho}} + ilde{k}.$$

Andrea Thomann

# Ideal MHD equations: wave speeds and time step restrictions





### Ideal MHD equations: wave speeds and time step restrictions



Explicit scheme:

$$\Delta t \leqslant rac{\Delta x}{\max |\lambda_k|} 
ightarrow 0$$
 for  $M_b 
ightarrow 0^+$  or  $M_c 
ightarrow 0^+$ 



Andrea Thomann

Semi-implicit IMEX FV scheme for the MHD equations

NAPDE

# Ideal MHD equations: wave speeds and time step restrictions



Explicit scheme:

$$\Delta t \leqslant rac{\Delta x}{\max|\lambda_k|} 
ightarrow 0$$
 for  $M_b 
ightarrow 0^+$  or  $M_c 
ightarrow 0^-$ 

Semi-implicit/implicit-explicit scheme:

$$\Delta t \leqslant rac{\Delta x}{\max |\mathbf{v}|}$$
 for any  $M_b, M_c > 0$ 

ĺnría\_

Andrea Thomann

Semi-implicit IMEX FV scheme for the MHD equations

NAPDE

IMplicit - EXplicit [Ascher (1997), Pareschi (2005)]

 $\mathbf{f}(\mathbf{q}) = \mathbf{f}^{Ex}(\mathbf{q}) + \mathbf{f}^{Im}(\mathbf{q})$  $\frac{\partial \mathbf{q}}{\partial t} + \frac{\partial \mathbf{f}^{Ex}(\mathbf{q})}{\partial x} + \frac{\partial \mathbf{f}^{Im}(\mathbf{q})}{\partial x} = \mathbf{0}.$ 

• Explicit hyperbolic sub-system with eigenvalues  $\lambda^{Ex}$ :

$$\frac{\partial \mathbf{q}}{\partial t} + \frac{\partial \mathbf{f}^{Ex}(\mathbf{q})}{\partial x} = \mathbf{0}.$$

• Implicit (hyperbolic) sub-system with eigenvalues  $\lambda^{lm}$ :

$$\frac{\partial \mathbf{q}}{\partial t} + \frac{\partial \mathbf{f}^{lm}(\mathbf{q})}{\partial x} = \mathbf{0}.$$

stability condition of the numerical scheme:  $\Delta t \leq \min_{\Omega} \frac{\Delta x}{|\lambda^{Ex}|}$ 



**1D MHD equations** 

$$\mathbf{q} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ \rho w \\ \rho E \\ B_x \\ B_y \\ B_z \end{pmatrix}, \quad \mathbf{f}(\mathbf{q}) = \begin{pmatrix} \rho u \\ \rho u^2 + \rho + \frac{\|\mathbf{B}\|^2}{8\pi} - \frac{1}{4\pi} B_x^2 \\ \rho u v - \frac{1}{4\pi} B_x B_y \\ \rho u w - \frac{1}{4\pi} B_x B_z \\ (\rho E + \rho + \frac{\|\mathbf{B}\|^2}{8\pi}) u - \frac{1}{4\pi} B_x (\mathbf{v} \cdot \mathbf{B}) \\ 0 \\ u B_y - v B_x \\ u B_z - w B_x \end{pmatrix}.$$



# 1D MHD equations: splitting scheme of [Dumbser (2019)]

$$\frac{\partial \mathbf{q}}{\partial t} + \frac{\partial \mathbf{f}^{e}(\mathbf{q})}{\partial x} + \frac{\partial \mathbf{f}^{p}(\mathbf{q})}{\partial x} = \mathbf{0}$$

$$put = \begin{pmatrix} \rho u \\ \rho u^{2} + \frac{\|\mathbf{B}\|^{2}}{8\pi} - \frac{1}{4\pi}B_{x}^{2} \\ \rho uv - \frac{1}{4\pi}B_{x}B_{y} \\ \rho uw - \frac{1}{4\pi}B_{x}B_{z} \\ (\rho k + 2m)u - \frac{1}{4\pi}B_{x}(\mathbf{v} \cdot \mathbf{B}) \\ 0 \\ uB_{y} - vB_{x} \\ uB_{z} - wB_{x} \end{pmatrix}, \quad \mathbf{f}^{p} = \begin{pmatrix} 0 \\ p \\ 0 \\ 0 \\ h\rho u \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad h = e + \frac{p}{\rho}.$$

⇒ stiffness of the acoustic Mach number ( $M_c$ ) ⇒ dependence of time step on Alfvén Mach number ( $M_b$ )



Andrea Thomann

# 1D MHD equations: splitting scheme of [Fambri (2021) ] $\rightarrow$ talk of E. Sonnendrücker



⇒ stiffness of the acoustic **and** Alfvén Mach number  $(M_c, M_b)$ ⇒ dependence of time step only on convection!



Andrea Thomann

$$\mathbf{f}^{c} = \begin{pmatrix} \rho u \\ \rho u^{2} \\ \rho uv \\ \rho uw \\ \rho uw \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{f}^{p} = \begin{pmatrix} 0 \\ p \\ 0 \\ 0 \\ (\rho E + p)u \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{f}^{b} = \begin{pmatrix} 0 \\ \frac{\|\mathbf{B}\|^{2}}{8\pi} - \frac{1}{4\pi}B_{x}^{2} \\ -\frac{1}{4\pi}B_{x}B_{y} \\ -\frac{1}{4\pi}B_{x}B_{z} \\ \frac{\|\mathbf{B}\|^{2}}{8\pi}u - \frac{1}{4\pi}B_{x}(\mathbf{v} \cdot \mathbf{B}) \\ 0 \\ uB_{y} - vB_{x} \\ uB_{z} - wB_{x} \end{pmatrix}$$

Ínría

### Eigenvalues of the three sub-systems

**Convective sub-system:**  $\partial_t q + \partial_x \mathbf{f}^c = \mathbf{0}$ 

Real eigenvalues (weakly hyperbolic):

$$\lambda_{1,2,3,4}^{c} = 0, \quad \lambda_{5,6,7,8}^{c} = u.$$

Pressure sub-system:  $\partial_t q + \partial_x \mathbf{f}^p = \mathbf{0}$ 

Real/Complex eigenvalues (full set of eigenvectors):

$$\lambda_{1,2,3,4,5,6}^{p} = 0, \quad \lambda_{7,8}^{p} = \frac{1}{2} \Big( u \mp \sqrt{u^{2} + 4(c^{2} - (\gamma - 1)(m + k + u^{2}))} \Big).$$

Magnetic sub-system:  $\partial_t q + \partial_x \mathbf{f}^b = \mathbf{0}$ 

Real eigenvalues (weakly hyperbolic):

$$\lambda_{1,2,3,4}^{b} = 0, \quad \lambda_{5,6}^{b} = \frac{1}{2} \left( u \mp \sqrt{u^{2} + 4 \left( \frac{B_{x}}{\sqrt{4\pi\rho}} \right)^{2}} \right), \quad \lambda_{7,8}^{b} = \frac{1}{2} \left( u \mp \sqrt{u^{2} + 4 \left( \frac{\|\mathbf{B}\|^{2}}{\sqrt{4\pi\rho}} \right)^{2}} \right)$$



# Numerical scheme

Ínría

# Semi-discrete first order scheme 1/3

1. Explicit sub-system ( $\rho^{\star} = \rho^{n+1}$ ):

$$\mathbf{q}^{\star} = \mathbf{q}^n - \Delta t \, \frac{\partial \mathbf{f}^c(\mathbf{q}^n)}{\partial x}.$$



# Semi-discrete first order scheme 1/3

1. Explicit sub-system ( $\rho^* = \rho^{n+1}$ ):

$$\mathbf{q}^{\star} = \mathbf{q}^n - \Delta t \, \frac{\partial \mathbf{f}^c(\mathbf{q}^n)}{\partial x}.$$

2. Implicit magnetic sub-system ( $B_x = const$ ):

$$\begin{split} (\rho u)^{n+1} &= \rho u^{\star} - \Delta t \frac{\partial}{\partial x} \left( p^n + \frac{\mathbf{B}^n \cdot \mathbf{B}^{n+1}}{8\pi} - \frac{1}{4\pi} B_x^2 \right), \\ (\rho v)^{n+1} &= \rho v^{\star} - \Delta t \frac{\partial}{\partial x} \left( -\frac{1}{4\pi} B_x B_y^{n+1} \right), \\ \rho w)^{n+1} &= \rho w^{\star} - \Delta t \frac{\partial}{\partial x} \left( -\frac{1}{4\pi} B_x B_z^{n+1} \right), \\ B_y^{n+1} &= B_y^n - \Delta t \frac{\partial}{\partial x} \left( \frac{(\rho u)^{n+1}}{\rho^{n+1}} B_y^n - \frac{(\rho v)^{n+1}}{\rho^{n+1}} B_x \right), \\ B_z^{n+1} &= B_z^n - \Delta t \frac{\partial}{\partial x} \left( \frac{(\rho u)^{n+1}}{\rho^{n+1}} B_z^n - \frac{(\rho w)^{n+1}}{\rho^{n+1}} B_x \right). \end{split}$$



Andrea Thomann

NAPDE

### Linear coupling of momentum and magnetic field equations

$$B_{y}^{n+1} = B_{y}^{\star} + \Delta t^{2} \frac{\partial}{\partial x} \left( \frac{B_{y}^{n}}{\rho^{n+1}} \frac{\partial}{\partial x} \left( \frac{B_{y}^{n} B_{y}^{n+1} + B_{z}^{n} B_{z}^{n+1}}{8\pi} \right) + \frac{B_{x}}{\rho^{n+1}} \frac{\partial}{\partial x} \left( \frac{B_{x} B_{y}^{n+1}}{4\pi} \right) \right)$$
$$B_{z}^{n+1} = B_{z}^{\star} + \Delta t^{2} \frac{\partial}{\partial x} \left( \frac{B_{z}^{n}}{\rho^{n+1}} \frac{\partial}{\partial x} \left( \frac{B_{y}^{n} B_{y}^{n+1} + B_{z}^{n} B_{z}^{n+1}}{8\pi} \right) + \frac{B_{x}}{\rho^{n+1}} \frac{\partial}{\partial x} \left( \frac{B_{x} B_{z}^{n+1}}{4\pi} \right) \right)$$

where

$$\begin{split} B_{y}^{\star} &= B_{y}^{n} - \Delta t \frac{\partial}{\partial x} \left( \frac{B_{y}^{n}}{\rho^{n+1}} \left( \rho u^{\star} - \Delta t \frac{\partial}{\partial x} \left( p^{n} - \frac{B_{x}^{2}}{8\pi} \right) \right) + \frac{B_{x}}{\rho^{n+1}} \rho v^{\star} \right), \\ B_{z}^{\star} &= B_{z}^{n} - \Delta t \frac{\partial}{\partial x} \left( \frac{B_{z}^{n}}{\rho^{n+1}} \left( \rho u^{\star} - \Delta t \frac{\partial}{\partial x} \left( p^{n} - \frac{B_{x}^{2}}{8\pi} \right) \right) + \frac{B_{x}}{\rho^{n+1}} \rho w^{\star} \right). \end{split}$$

Remark. At this stage we seek only an update for **B**, ρ**v** is not updated Implicit diffusion can be added to this step to ensure stability throughout all flow regimes



### Semi-discrete first order scheme 3/3

3. Implicit energy (pressure) sub-system: [Boscarino, Russo, Scandurra (2018)] (AP for  $M_c \rightarrow 0$ )

$$(\rho u)^{n+1} = (\rho u)^{\star} - \Delta t \frac{\partial}{\partial x} \left( p^{n+1} + \frac{\|\mathbf{B}^{n+1}\|^2}{8\pi} - \frac{1}{4\pi} B_x^2 \right),$$
  
$$(\rho E)^{n+1} = (\rho E)^n - \Delta t \frac{\partial}{\partial x} \left( (\rho E^n + p^n) \frac{(\rho u)^{n+1}}{\rho^{n+1}} + \frac{\|\mathbf{B}^{n+1}\|^2}{8\pi} u^n - \frac{B_x}{4\pi} (\mathbf{v}^n \cdot \mathbf{B}^{n+1}) \right).$$

**Linear elliptic equation** with  $p^{n+1} = (\rho E^{n+1} - \rho k^n - \rho m^{n+1})(\gamma - 1)$ 

$$(\rho E)^{n+1} = (\rho E)^{\star} + (\gamma - 1)\Delta t^2 \frac{\partial}{\partial x} \left( \frac{\rho E^n + p^n}{\rho^{n+1}} \frac{\partial}{\partial x} ((\rho E)^{n+1}) \right),$$

where

$$\rho E^{\star} = \rho E^{n} - \Delta t \frac{\partial}{\partial x} \left( \frac{\rho E^{n} + \rho^{n}}{\rho^{n+1}} (\rho u)^{\star \star} + \frac{\|\mathbf{B}^{n+1}\|^{2}}{8\pi} u^{n} - \frac{1}{4\pi} B_{x} (\mathbf{v}^{n} \cdot \mathbf{B}^{n+1}) \right)$$
  
$$T_{n} \rho u)^{\star \star} = (\rho u)^{\star} - \Delta t \frac{\partial}{\partial x} \left( -(\gamma - 1) \left( \rho^{n} k^{n} + \rho^{n+1} \frac{\|\mathbf{B}^{n+1}\|^{2}}{8\pi} \right) + \frac{\|\mathbf{B}^{n+1}\|^{2}}{8\pi} - \frac{B_{x}^{2}}{4\pi} \right)$$



Andrea Thomann

Autonomous system:

$$\frac{\partial \mathbf{q}(t)}{\partial t} + \mathcal{H}(\mathbf{q}_{Ex}(t), \mathbf{q}_{im}(t)) = \mathbf{0}, \quad \forall t > t_0, \quad \text{with} \quad \mathbf{q}(t_0) = \mathbf{q}_0.$$
$$\frac{\partial \mathbf{q}}{\partial t} + \frac{\partial \mathbf{f}^c(\mathbf{q}_{Ex})}{\partial x} + \frac{\partial \mathbf{f}^p(\mathbf{q}_{Ex}, \mathbf{q}_{im})}{\partial x} + \frac{\partial \mathbf{f}^b(\mathbf{q}_{Ex}, \mathbf{q}_{im})}{\partial x} = \mathbf{0}$$



### Autonomous system

$$\frac{\partial \mathbf{q}}{\partial t} = \mathcal{H}(\mathbf{q}_{Ex}(t), \mathbf{q}_{Im}(t)), \qquad \forall t > t_0, \qquad \text{with} \qquad \mathbf{q}(t_0) = \mathbf{q}_0.$$

Stage fluxes for i = 1, ..., s ( $\mathbf{q}_{Ex}^n = \mathbf{q}_{Im}^n = \mathbf{q}^n$ )

$$\begin{aligned} \mathbf{q}_{Ex}^{i} &= \mathbf{q}_{Ex}^{n} + \Delta t \sum_{j=1}^{i-1} \tilde{a}_{ij} k_{j}, & 2 \leqslant i \leqslant s, \\ \tilde{\mathbf{q}}_{im}^{i} &= \mathbf{q}_{Ex}^{n} + \Delta t \sum_{j=1}^{i-1} a_{ij} k_{j}, & 2 \leqslant i \leqslant s, \\ k_{i} &= \mathcal{H} \Big( \mathbf{q}_{Ex}^{i}, \tilde{\mathbf{q}}_{im}^{i} + \Delta t a_{ii} k_{i} \Big), & 1 \leqslant i \leqslant s. \end{aligned}$$

Numerical solution  $\mathbf{q}^{n+1} = \mathbf{q}^n + \Delta t \sum_{i=1}^{s} b_i k_i$ .

 $\tilde{a}_{ij}, a_{ij}, b_i \Rightarrow$  Butcher tableaux

Andrea Thomann

Ínnía -

#### Semi-implicit IMEX FV scheme for the MHD equations

NAPDE

Finite volume data in each cell  $\omega_{ijk}$  with 2<sup>nd</sup> order TVD reconstruction

$$q_{ijk} = rac{1}{|\omega_{ijk}|} \int\limits_{\omega_{ijk}} q(\mathbf{x}) \, d\mathbf{x}, \qquad r_{ijk}(x) = c_0 \, q_{ijk} + c_1 \, (x - x_i).$$

### Flux operators for the convective sub-system

• Numerical flux operator  $\mathbb{F}(f(q))$ 

$$\mathbb{F}_{x}(f(q)) = \frac{\mathcal{F}_{i+\frac{1}{2}jk}(f(q)) - \mathcal{F}_{i-\frac{1}{2}jk}(f(q))}{\Delta x},$$

with a Rusanov-type numerical flux function

$$\mathcal{F}_{i+\frac{1}{2}jk}(q) = \frac{1}{2} \Big( f(q_{i+\frac{1}{2}jk}^+) + f(q_{i+\frac{1}{2}jk}^-) \Big) - \frac{1}{2} \alpha_{i+\frac{1}{2}jk} \Big( q_{i+\frac{1}{2}jk}^+ - q_{i+\frac{1}{2}jk}^- \Big),$$

The numerical dissipation is only proportional to  $\lambda^c$ :

 $\alpha_{i+\frac{1}{2}jk} = \max(|u_{i+1jk}|, |u_{ijk}|).$ 

• Central flux operator  $\mathbb{B}(f(q))$ . The same as  $\mathbb{F}(f(q))$  with  $\alpha_{i+\frac{1}{2}jk} = 0$ .

Andrea Thomann

# Cell-centered divergence-free operator

Magnetic vector potential A:  $\nabla \cdot (\nabla \times \mathbf{A}) = \mathbf{0}$  [Helzel (2011)]

$$\mathbf{B} - \nabla \times \mathbf{A} = \mathbf{0}$$
$$\frac{\partial \mathbf{A}}{\partial t} + (\nabla \times \mathbf{A}) \times \mathbf{v} = \mathbf{0}$$

# Mimetic FD [Hyman & Shashkov (1997)] and DG [Boscheri (2023)]

• Gradient and curl operators:

$$\mathbb{G}(q) = \begin{pmatrix} \mathbb{G}_{x}(q) \\ \mathbb{G}_{y}(q) \\ \mathbb{G}_{z}(q) \end{pmatrix} = \begin{pmatrix} \frac{q_{i+1jk} - q_{i-1jk}}{2\Delta x} \\ \frac{q_{ij+1k} - q_{ij-1k}}{2\Delta y} \\ \frac{q_{ijk+1} - q_{ijk-1}}{2\Delta z} \end{pmatrix}, \quad \mathbb{C}(\mathbf{q}) = \begin{pmatrix} \mathbb{C}_{x}(\mathbf{q}) \\ \mathbb{C}_{y}(\mathbf{q}) \\ \mathbb{C}_{z}(\mathbf{q}) \end{pmatrix} = \begin{pmatrix} \mathbb{G}_{x}(q_{z}) - \mathbb{G}_{z}(q_{y}) \\ \mathbb{G}_{z}(q_{x}) - \mathbb{G}_{x}(q_{z}) \\ \mathbb{G}_{x}(q_{y}) - \mathbb{G}_{y}(q_{x}) \end{pmatrix}$$

• Divergence operator:  $\mathbb{D}(\mathbf{q}) = \mathbb{G}_x(q_x) + \mathbb{G}_y(q_y) + \mathbb{G}_z(q_z)$ 

### div-curl discrete property:

$$\mathbb{D}(\mathbb{C}(\boldsymbol{q})) = \mathbb{G}_x(\mathbb{C}_x(\boldsymbol{q})) + \mathbb{G}_y(\mathbb{C}_y(\boldsymbol{q})) + \mathbb{G}_z(\mathbb{C}_z(\boldsymbol{q})) = 0$$

# Numerical results

Ínría

| ρ                       | = | $ ho_0=10^{-k},\qquad k=0,\ldots,5$                                                                                                     |
|-------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------|
| ( <i>u</i> , <i>v</i> ) | = | $\mathbf{v}_0 + rac{	ilde{\mathbf{v}}}{2\pi}  \exp\!\left(rac{1-r^2}{2} ight) \cdot (-r\sin(	heta), r\cos(	heta))$                    |
| $(B_x, B_y)$            | = | $0 + \frac{\tilde{B}}{2\pi} \exp\left(\frac{1-r^2}{2}\right) \cdot \left(-r\sin(\theta), r\cos(\theta)\right)$                          |
| p                       | = | $p_0 + rac{1}{2}e^{1-r^2}\left(rac{1}{8\pi}rac{	ilde{B}^2}{(2\pi)^2}(1-r^2) - rac{1}{2} ho\left(rac{	ilde{v}}{2\pi} ight)^2 ight)$ |
|                         |   |                                                                                                                                         |
|                         |   | Background density $ ho_0=10^{-k}$                                                                                                      |

|                | Background density $ ho_0=10^{-R}$ |              |              |              |              |           |  |  |  |  |
|----------------|------------------------------------|--------------|--------------|--------------|--------------|-----------|--|--|--|--|
|                | k = 0                              | <i>k</i> = 1 | <i>k</i> = 2 | <i>k</i> = 3 | <i>k</i> = 4 | k = 5     |  |  |  |  |
| M <sub>c</sub> | 1.606E+01                          | 4.489E-01    | 1.529E-01    | 4.832E-02    | 1.529E-02    | 4.832E-03 |  |  |  |  |
| b              | 1.549E-01                          | 4.900E-01    | 1.549E+00    | 4.900E+00    | 1.549E+01    | 4.900E+01 |  |  |  |  |



L

| $ ho_0$   | $N_x = N_y$ | ρ        |      | и         |      | р        |      | $B_{x}$  |      | $A_z$    |      |
|-----------|-------------|----------|------|-----------|------|----------|------|----------|------|----------|------|
| $10^{0}$  | 32          | 7.13e-02 |      | 4.40e-02  |      | 5.86e-02 |      | 8.26e-02 |      | 4.94e-02 |      |
|           | 64          | 1.63e-02 | 2.13 | 9.16e-03  | 2.26 | 1.65e-02 | 1.83 | 2.20e-02 | 1.91 | 1.25e-02 | 1.99 |
|           | 128         | 3.79e-03 | 2.10 | 2.18e-03  | 2.07 | 4.19e-03 | 1.98 | 5.66e-03 | 1.96 | 3.14e-03 | 1.99 |
|           | 256         | 9.26e-04 | 2.03 | 6.79e-04  | 1.69 | 1.05e-03 | 1.99 | 1.54e-03 | 1.88 | 8.12e-04 | 1.95 |
|           | 32          | 2.33e-03 |      | 3.50e-02  |      | 6.84e-03 |      | 8.21e-02 |      | 4.84e-02 |      |
| 10-1      | 64          | 6.39e-04 | 1.87 | 8.55e-03  | 2.04 | 1.91e-03 | 1.84 | 2.17e-02 | 1.92 | 1.23e-02 | 1.98 |
| 10        | 128         | 1.62e-04 | 1.98 | 2.14e-03  | 2.00 | 4.90e-04 | 1.96 | 5.53e-03 | 1.97 | 3.09e-03 | 1.99 |
|           | 256         | 4.08e-05 | 2.00 | 6.71e-04  | 1.67 | 1.24e-04 | 1.99 | 1.51e-03 | 1.87 | 7.99e-04 | 1.95 |
|           | 32          | 4.12e-04 |      | 9.14e-02  |      | 3.90e-03 |      | 9.05e-02 |      | 5.02e-02 |      |
| $10^{-2}$ | 64          | 7.64e-05 | 2.43 | 2.45e-02  | 1.90 | 9.82e-04 | 1.99 | 2.32e-02 | 1.96 | 1.24e-02 | 2.02 |
|           | 128         | 1.63e-05 | 2.23 | 6.27 e-03 | 1.97 | 2.69e-04 | 1.87 | 5.85e-03 | 1.99 | 3.08e-03 | 2.00 |
|           | 256         | 3.92e-06 | 2.06 | 1.63e-03  | 1.95 | 6.83e-05 | 1.98 | 1.58e-03 | 1.89 | 7.95e-04 | 1.95 |
|           | 32          | 2.80e-04 |      | 2.07e-01  |      | 3.45e-03 |      | 9.44e-02 |      | 4.80e-02 |      |
| 10-3      | 64          | 4.50e-05 | 2.64 | 5.88e-02  | 1.81 | 9.63e-04 | 1.84 | 2.06e-02 | 2.20 | 8.76e-03 | 2.46 |
| 10        | 128         | 5.95e-06 | 2.92 | 1.72e-02  | 1.77 | 1.98e-04 | 2.28 | 4.45e-03 | 2.21 | 1.79e-03 | 2.29 |
|           | 256         | 8.10e-07 | 2.88 | 4.69e-03  | 1.88 | 4.74e-05 | 2.06 | 1.19e-03 | 1.90 | 4.61e-04 | 1.96 |
|           | 32          | 1.55e-04 |      | 1.67e-00  |      | 1.28e-02 |      | 2.60e-01 |      | 2.15e-01 |      |
| $10^{-4}$ | 64          | 4.98e-05 | 1.64 | 2.25e-01  | 2.89 | 4.49e-03 | 1.51 | 8.01e-02 | 1.70 | 4.92e-02 | 2.12 |
| 10        | 128         | 5.87e-06 | 3.09 | 3.44e-02  | 2.71 | 8.21e-04 | 2.45 | 1.55e-02 | 2.37 | 7.77e-03 | 2.66 |
|           | 256         | 7.22e-07 | 3.02 | 9.02e-03  | 1.93 | 1.30e-04 | 2.66 | 2.45e-03 | 2.66 | 1.14e-03 | 2.76 |
| 10-5      | 32          | 1.85e-05 |      | 8.14e-00  |      | 1.32e-02 |      | 2.85e-01 |      | 2.35e-01 |      |
|           | 64          | 9.85e-06 | 0.91 | 8.62e-01  | 3.24 | 6.75e-03 | 0.96 | 1.24e-01 | 1.20 | 8.47e-02 | 1.47 |
| 10        | 128         | 1.41e-06 | 2.81 | 8.42e-02  | 3.36 | 1.64e-03 | 2.04 | 3.04e-02 | 2.03 | 1.70e-02 | 2.32 |
|           | 256         | 1.61e-07 | 3.12 | 2.05e-02  | 2.04 | 2.71e-04 | 2.60 | 4.85e-03 | 2.65 | 2.54e-03 | 2.74 |





Ínría\_

Andrea Thomann

Semi-implicit IMEX FV scheme for the MHD equations

NAPDE

| Case |                | ρ         | и       | v      | w         | р       | $B_X$             | $B_y$          | $B_z$    | $t_f$ |
|------|----------------|-----------|---------|--------|-----------|---------|-------------------|----------------|----------|-------|
| RP1  | L:             | 1.0       | 0.0     | 0.0    | 0.0       | 1.0     | $0.75\sqrt{4\pi}$ | $+\sqrt{4\pi}$ | 0.0      | 0.10  |
|      | R:             | 0.125     | 0.0     | 0.0    | 0.0       | 0.1     | $0.75\sqrt{4\pi}$ | $-\sqrt{4\pi}$ | 0.0      |       |
| RP2  | L:             | 1.08      | 1.2     | 0.01   | 0.5       | 0.95    | 2.0               | 3.6            | 2.0      | 0.2   |
|      | $\mathbf{R}$ : | 0.9891    | -0.0131 | 0.0269 | 0.010037  | 0.97159 | 2.0               | 4.0244         | 2.0026   |       |
| RP3  | L:             | 1.7       | 0.0     | 0.0    | 0.0       | 1.7     | 3.899398          | 3.544908       | 0.0      | 0.15  |
|      | $\mathbf{R}$ : | 0.2       | 0.0     | 0.0    | -1.496891 | 0.2     | 3.899398          | 2.785898       | 2.192064 |       |
| RP4  | L:             | 1.0       | 0.0     | 0.0    | 0.0       | 1.0     | $1.3\sqrt{4\pi}$  | $+\sqrt{4\pi}$ | 0.0      | 0.16  |
|      | $\mathbf{R}$ : | 0.4       | 0.0     | 0.0    | 0.0       | 0.4     | $1.3\sqrt{4\pi}$  | $-\sqrt{4\pi}$ | 0.0      |       |
| RP5  | L:             | 0.15      | 21.55   | 1.0    | 1.0       | 0.28    | 0.05              | -2.0           | -1.0     | 0.04  |
|      | $\mathbf{R}$ : | 0.10      | -26.45  | 0.0    | 0.0       | 0.10    | 0.05              | +2.0           | +1.0     |       |
| RP6  | L:             | 1.0       | 36.87   | -0.115 | -0.0386   | 1.0     | 4.0               | 4.0            | 1.0      | 0.03  |
|      | $\mathbf{R}$ : | 1.0       | -36.87  | 0.0    | 0.0       | 1.0     | 4.0               | 4.0            | 1.0      |       |
| BP7  | L:             | $1/\mu_0$ | -1.0    | +1.0   | -1.0      | 1.0     | 1.0               | -1.0           | 1.0      | 0.25  |
| nr ( | R:             | $1/\mu_0$ | -1.0    | -1.0   | -1.0      | 1.0     | 1.0               | +1.0           | 1.0      |       |



### RP2 - RP3









### Blast problem [Balsara (1999)]



(nría-

# Time step comparison and divergence free property





# **Orszag-Tang vortex**



Ínría\_

Andrea Thomann

Low acoustic Mach number regime

$$\rho = 1$$
,  $(u, v, w) = (2, 1, 0)$ ,  $p = 10^5$ 

The velocity field is such that advection does not occure along a diagonal, so the fluxes in *x*- and *y*-directions are different

Magnetic vector potential scalable with  $A_0 > 0$ : cylindrical current distribution

$$A_z = \begin{cases} A_0(R-r) & \text{if } r \leqslant R, \\ 0 & \text{else,} \end{cases}$$



Andrea Thomann

Semi-implicit IMEX FV scheme for the MHD equations

NAPDE



Ínría\_

Andrea Thomann

#### Semi-implicit IMEX FV scheme for the MHD equations

NAPDE









# 3D cloud-shock interaction problem [Helzel (2013)]





Andrea Thomann

#### Semi-implicit IMEX FV scheme for the MHD equations

NAPDE

Conclusions

Ínría

### Conclusions

- novel flux splitting for the ideal MHD equations;
- linear implicit-explicit time marching scheme;
- · time step restriction dictated by transport velocity;
- cell-centered 2<sup>nd</sup> order in space and time;
- · compatible discrete div-curl operator on collocated grids;
- by construction asymptotic preserving for the low acoustic Mach number limit.

### Outlook

- Extension to Resistive MHD with implicit viscosity;
- Well-balancing?

# Thank you for your attention!

W. Boscheri and A. Thomann. A structure-preserving semi-implicit IMEX finite volume scheme for ideal magnetohydrodynamics at all Mach and Alfvén numbers. Under revision in J. Sci. Comput. 2024

### andrea.thomann@inria.fr

WB received financial support by Fondazione Cariplo and Fondazione CDP (Italy) under the project No. 2022-1895 and by the Italian Ministry of University and Research (MUR) with the PRIN Project 2022 No. 2022N9BM3N. WB is member of the GNCS-INdAM (Istituto Nazionale di Alta Matematica) group.



Andrea Thomann

# Rotor problem



(nría\_