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Motivation

« Simulation of macroscopic dynamics for 3D magnetic confinement devices (Tokamaks
and Stellerators)

+ Goal: Efficient simulation of 3D nonlinear viscous and resistive MHD (VRMHD) in realistic
geometry

« Conservative (mass, momentum and energy)

« Structure preserving by construction (Divergence-free; symmetry)
» Shock-capturing and robust against nonlinear instabilities

« CFL based only on the hydrodynamic convection



MHD as a non-canonical Hamiltonian system
» Many plasma (and fluid, ...) models can be expressed by an action principle or

Hamiltonian systems (Morrison 1998)

dF(Q)
dt

:{F7H}

« Poisson bracket encodes many invariants of the system:
Hamiltonian H, Casimir invariants in particular V - B, magnetic helicity [ A - Bdx,
symmetry, ...

» FEEC discretization enables to obtain a finite dimensional hamiltonian system
+ ldea recently applied to Vlasov-Maxwell, MHD and MHD-kinetic hybrid models.
« Issue: only works on smooth solutions. Cannot handle shocks.

« Our idea. Couple Finite Volume (FV) with FEEC, following ideas from FV community
staggering some quantities.



Hamiltonian systems

+ Canonical Hamiltonian system

dq dp . dz
—=V,H, — =-V,H withz= : —=JV.H
dt Pty dt q z (qv p) dt j z
(O In
where J = (—IN 0N>

+ Non canonical Hamiltonian structure with Poisson matrix 7 (z)

% — J(2)V.H, Poissonbracket {F,G} = (V.F)J(2)V.G

+ Also in infinite dimensional case replacing gradient by functional derivative and where 7 is

a differential operator

dU OH
pratACh

+ J can be degenerate: C s.t. j(U)g—g = 0 are Casimir invariants.



Gradient flows

+ Dissipative systems with increase of entropy or dissipation of free energy

dU 0S
o -~ U

« K(U) is a possibly degenerate semi-positive operator hence:

AS(U) _ 35 138

_e <0.
dt oU 0

E_

» Choose dissipation mechanism K(U) and dissipated functional S, e.g

1. Heat equation: S = [logT
2. Particle collisions: S = kg [ flog f




Combining hamiltonian and dissipative dynamics

» Dynamical systems arising in physics often combine a hamiltonian and a dissipative part

« Introducing a hamiltonian ‘H which is conserved and a free energy (or entropy) S which is
dissipated,
)
dF dU OH (U S

CFM - (FS) = =IO -KU)5

with 7 a Poisson operator and K a symmetric semi-definite positive operator, F, S, H
functionals of U.

» Entropy is preserved by Poisson bracket and energy is preserved by dissipative bracket
{§,H} =0, (H,S)=0.
= Exact energy preservation and production of entropy

d
% ={H,H}— (H,S) =0, Tf ={S,H} - (5,5) <0.



Example: the Vlasov-Maxwell-Landau kinetic model

of

8t+v Vaof + = (E+v><B) Vof =Q(f, f)

+ Fits into the metriplectic framework

%f:{f,HH(F,S), S:/flnfdxdv

1
H:ﬁ/fﬁdxdwrio/E?der—/B?dx
2 2 210

» Metriplectic bracket preserves mass, momentum, total energy, divergence constraints on
E and B, and satisfies an H-theorem (monotonic dissipation of entropy, unique equilibrium
state)

« discretisation of the brackets instead of the dynamical equation guarantees these
properties at the discrete level and can be achieved by different numerical methods (FEM,
DG, PIC,..))



Coming back to MHD

« Couple Finite Element Exterior Calculus to handle symmetric terms appearing in brackets
and robust shock capturing Finite Volume scheme for convection.
+ Features of our problem:
) o computational time-step
* high characteristic wave speeds — At severely constrained by CFL
« high mesh resolution (Alfvén and magnetosonic speeds)
« Implicit or semi-implicit methods are a must. Computationally efficient and robust methods
for long-time simulations of 3D plasma flows

« Explicit high-order FV or DG for convection
« Implicit Structure Preserving Finite Elements for acoustic and Alfvénic steps
First implementation: low order FV/FEEC on Cartesian grids
Ongoing implementation: high-order FV and FEEC in AMReX framework (block structured

AMR on cartesian grids)
~» Performance portability on novel architectures including different kinds of GPU



Governing equations (VRMHD) in conservative form

The viscous and resistive MHD equations can be cast in the following conservative form

0
§Q+V'(F—Fd)=0 (1)
: (%)
pv pvav+(p+B)I-BeB
= ; F=F = 2 2
« rE @ (pE+p+iB*)v—B(v-B) @)
B Brv—-v®B
0
_ o p (Vv + Vvl —2(V.v)I)
Fi=Fa(QVQ) = (Vv+ Vvl —2(V-v)I) + VT + {£B (VB — VBT) ®)
n (VB - VBT)

with the identity matrix I, T is the temperature that refers to a thermal equation of state
T =T(p,p), p is the kinematic viscosity, « is the thermal conductivity and 7 is the electric
resistivity of the fluid.



Ideal MHD: characteristics wave speeds

Considering ideal plasma flow in one single space dimension:

0Q
ot + ax =0

For B, = const. one can easily compute its eight eigenvalues

)\MHD )\MHD )\E\fHD )\g/IHD

MHD
—U?Cf7 )\2’7 =UF Cq, = Uu ¥ Cg, = u,

where
¢q = By //4mp Alfvén speed,
b +c? — /(2 +c2)? — 40302% slow magnetosonic,

1
2
cf %(bz—&—c +\/b2+02) —4c2c?

fast magnetosonic.

=0, ()

(6)

c: adiabatic sound speed: (EOS) p = p(e, p) as ¢ = dp/dp + p/p?0p/de, €.9. ¢ = vp/p for

the ideal gas EOS. v? = B?/p.



Splitting between slow and fast parts

+ In a magnetic fusion plasma convection is slow, but other waves very fast.
+ We split the flux in 3 parts F = F,, + F, + F;, with

p pv 0 0
o) o ey o [ ) . _[gBu-BeB
Q T ,DE ) F’U = %VpV2 FP T %pv Fb = VB2 _ (V . B)B (7)
B 0 0 Bov-vRB

as pE +p+ 3B* = -Z3p + 5pv? + B for a perfect gas.
+ Convection step (F,) explicit, acoustic and Alfvénic steps (F, and F;) implicit
* Properties:
* Magnetic field B stays constant in convection and acoustic steps.

» Density p stays constant in acoustic and Alfvénic steps.
* Energy pE is decoupled from v and B in Alfvénic step.



Characteristic wave speeds for split parts

1) explicit (Convection)
1) implicit (Acoustic)

ToroVazquez2012

i#4) implicit (Alfvénic)

Fambri2021

atQ + 827Fv = 07
0 Q + 0, F, =0,
0:Q+ 9, F, = 0.

)\11),2,3,4 =0, )‘}5),6,7,8 = Vg, (8)
1

A g = 3 (vw F U2+ 462) , (9)

/\12),3,4,5,6,7 =0,

B _
Aig =




3-split time-integration (VRMHD)

The summary of the chosen split systems will be

0Q+ V- -F =0, F:=(F,—-F,) Explicit in time (11)
+ (Fy, —Fy) Implicit in time (12)
+F,. Implicit in time (13)

Implicit steps will be based on Finite Element Exterior Calculus spaces to enforce V- B =0
and keep the symmetries needed for efficient implicit solves.
Finite Volume variables (dual-cell averages, centered in the nodes of the main grid):

p, m=pv, pE
Finite Element variables (in appropriate Finite Element spaces)
me, P, Bf

Note that B is a purely Finite Element variable, m is a Finite Volume variable, which has a
corresponding Finite Element variable m..



(I) Explicit terms: nonlinear convection and viscous subsystems

The chosen procedure for discretizing the nonlinear convection and the viscous terms that are
summarized in the first subsystem

#Q+V-(F,—F,) =0 (14)J
A conservative explicit finite-volume scheme of the type
* _ On At At
ik = Qe —as \Fiv1m— fi—%,j,k) ~ Ay (gi,j+g,k - gi,j—%,k) + (15)

At
—ae Mijers —hije-z),
is adopted, where the star symbol * is used to indicate that Q* is only a local solution of

sub-system (l). In particular, one has numerical (Rusanov, or local Lax-Friedrichs) fluxes of
the type

— 1 — + 1.z + -
e ngU( i+3) T i+%u%k))’55max(Qi+é’j,f z‘%mk)* (16)
<Fu (Vha Vvh)>yz }

i+3.5.k



Symmetric formulations of acoustic and Alfvénic systems

+ In the Acoustic step p and B are constant, so that we solve for m = pv and p

om
o( »p Lo, Y P\ _
7 <W_1+2pm>+7_1v (pm>0 (18)

« The Alfvénic step involves a coupled system in m and B

om

On’B—Vx<1m><B)+nV><(V><B):0 (20)
ot P
and a decoupled energy equation:

ag—tE-i—V-%(BQm—(m-B)B)zo. (21)



Finite Element Exterior Calculus

Acoustic and Alfvénic steps will be discretized with compatible Finite Elements . These
are based on the following commuting diagram involving a continuous and a discrete deRham
complex as well as commuting projectors:

grad curl div

HY(Q) H(curl, Q) ——— H(div,Q) ———— L?(Q)
Iy T, I, l 113 l
rad i
Vo g v curl v, div v,
divy, curly,, grad,,

where the weak discrete differential operators are defined by

/gradph svpdx = —/divw Vi -prdx, pn € Vo,vnp € V1, (22)
/curl u, - Bpdx = /curlw By -updx, Bp € Va,up € V4, (23)

/qhdivBh dx = —/gradw qn -Brdx, qn € V3, By e Vs, (24)



Example: two options for linearized acoustics

d .
i 7(Q) 2 H(eurl, Q) H(div,Q) — I 12(q)
— +Vp=0
5 ot (25) 11y 11, I, I3
B—Zt) +V-u=0 Vi grad " v, div Vi
divy, grad,,
1. pn € Vo, up € V4
ou
2 V=0 (26)
d Opn
E Prqn dx — u,-Vgrodr =0 Vg, € V) E—l—vw'uhzo (27)
2. phpeVg,u, €Vs
d 8uh
pr up-vpder — [ ppV-vpdr =0 Vv, €15 W—i—vahzo (28)

)
%Jrv-uh:o (29)



Choice of the Finite Element spaces (Acoustic and Alfvén steps)

Both systems involve two coupled equations involving differential operators and their dual
+ grad and —div for the acoustic step
« curl and curl for the Alfvénic step
In the context of FEEC one of these must be treated strongly and the other one weakly. This
holds at the discrete level with appropriate choice of Finite Element spaces.
Two natural choices
1. p € V; (node), m € V; (edge), B € V; (face)

* B strongly divergence free, strong momentum equation
« Discretization of resistive term more “complicated”.

2. p € V3 (volume), m € V; (face), B € V; (edge)
* B weakly divergence free
 Discretization of resistive term straightforward
We choose a hybrid option : ideal MHD step on a main grid (strong div), resistive step
on a dual grid (strong curl).



Discrete differential operators in matrix form

Equations in strong form can be expressed directly as an algebraic relation between the
degrees of freedom:

u.=Vy, forpeVpu.eVy < U.,=Gp

Applying the weak differential operators, involves the inversion of a mass matrix:
G, C, D: discrete strong differential operators;
G, C, D: weak differential operators;
M; for i = 0,1,2,3: mass matrix of V;.
G C D

EO 21 22 23
D C G
M,G = —D"M3, M;C =C'M,, MD=-G"M,. (30)
Important property: discrete primal sequence discrete dual sequence
curl o grad =0 CG=0 CG=0

divocurl =0 DC=0 DC =0



Special case: low order and Cartesian grid

We consider in this talk low order Finite Elements: Let us denote by ¢; 1 (z) the linear hat
functions associated to the node z;_1in1D

Az ‘Ti*% Srgql*%
. r—T. 1 - -
/ﬁ.il € f— i+ 5 = .
¥i z() AJI,‘Z X, 1§=L<‘Li,+%
0 else

+ Then functions in Vg, V1, V5, V3 can be expressed as tensor product bases.

» e.g, Vo = Q, the tensor product piecewise linear element (Lagrange Polynomials);
* e.g., V3 = Qq, piecewise constant;

V1 and Vs, “mixed” tensor product spaces...




Special case: low order and Cartesian grid

For any pi, € Vo T,9,2) = Y Pi1 1121 (@, 1 (W)en_1(2),
i,5,k

foranyu, € Vi = Vi x V! X Vi wuno(z,y,2) = Z(ue,x)i,jf%,kféxz'(m)%f% W)er_1(2),

1,7,k
Un,y(7,y,2) = Z(ue y)z——,j,k—%@i—% (.T)Xj(y)cpk,% (2),
1,7,k
Up,z(2, Y, 2) = Z(ue,z)i_%,j_%,k%f%(l)%,%(y)Xk(Z),
1,7,k
forany By, € Vo = V¥ x V¥ x V& Bno(z,y,2) = Z(Bf’w)i_%,j,kgpi_% ()x; (@)xr(2),
1,7,k
Buy(2,y,2) = Y (Bry)s - 1.uXi(@)e, 1 (y)xk(2),
1,7,k
B2 (z,y,2) = Z(Bf,z)i,j,k—%xi(m)xj' W) ¢er—1(2),
ik
and for any g, € Vs (z,y, 2 Z @i,5. 6 (@) X5 () xk(2).

1,5,k



Location of FEEC degrees of freedom
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Figure: Barycenters (top left), vertices (bottom left), faces (3 components, top right) and edges (3
components, bottom right) on a three-dimensional Cartesian structured grid.

Prs PVns PER, pr € Vo(nodes) m,, v, € V;(edges) B € Va(faces)



Special case: low order and Cartesian grid

main grid (FEEC)
» Approximating integrals in mass matrices (complex based on Q1) N ;"“'ﬂ"“'“")
with the trapezoidal rule: o
Ty e —é—TyA;.,,;
My = M3 = AzAyAzly, M; =M = AzAyAzlsN.
Tivj Tij Tifr,

This implies that the relation between primal and dual differential .
operators (30) becomes R B

~ ~ ~ R Ty - Tiprg-1

G=-D", C=C", D=-G". (31)

* In this case discrete expression between degrees of freedom is equivalent to Finite Differences on
staggered meshes, e.g.

(GP)i = (p¢+% _pif%)/Ax



(1N Implicit integration of pressure terms. grad

HY(Q) H(curl, Q)

IIo 1L,

Y=L 0pE) + V- (pv) = 0 (33)

O(pv) + Vp =0, (SZ)J

grad

Vo 1

divy, ..
First as p;, € Vi, we have Vp, € V4. So as m;, € V4, an implicit Euler discretizé¥ion in time of
equation (49) yields
m " =m} — AtVppt € V.
On the other hand, a weak form of (33) reads: Find p € V such that
y—1d P
v dt

1
+uh'mh> Qh—/plmh'VQh:O Yan € Vo (34)
y—1 2 p

Discretize in time, linearize and plug in the expression for m}f*l

1 n+1,r
; /pZ'H’T'th dx + At? / prn VpZH’H_l -Vqp,dx = F™" Vg, € Vy (35)

symmetric positive definite linear system at each Picard iteration.



(I Implicit integration of pressure terms: full algorithm

9(pv) +Vp =0, (36)
-1
S OpB) + V- (pv) =0 (37)J
1. Implicit iterative solve of symmetric and positive definite nonlinear system for p € V4,
my € Vq:
(Mo + A2GTM{ G)P" 17+ =y (38)
MZFLTH = M — AtGP™ T (39)

2. Update (dual-) barycentric variables m"*! = pv"*! and pE"*! with Finite Volume fluxes
from Finite Element variables p”*! € 1V, and m. € V;.

At
% __ N * * * _ pxk n+1,74+1 n+1,r+1
Qijk = Qijk ~ Ay (B ysn—ts) £=£@QP M )



(Ill) Implicit and divergence-free integration of the Faraday equation.

opv—(VxB)xB=0 (40)
OB+ VX (—vxB+nV xB)=0, (41)
» We look for B;, € V, and m;, € Vi, so that V - By, € V3 is defined strongly.
» Problem (!!): this implies V., x By, € V; defined weakly .

+ Solution: we will split the resistivity term, and solve it on a new De-Rham complex
on a dual-grid , for which exist V so that V x B is defined strongly (as done in
Fambri2021).

Resistivity step (strong curl): ideal-Alfvénic step (strong div):

OB+ V x (—v xB) =0, (44)

B+ V x (nV X B) =0, (42)J opv—(VxB)xB=0 (43)J




(1l1) 1/2 Resistivity step: on a dual grid

aB + V x (nv x B) —0, (45)J
d .
71Q) —2C . H(ewl, ) — L v, o) — L 12
11, 11, I, II3
rad i
Ve g Vi curl v, div Vs
div,, curly, grad,,

« We look for By, € V4, so that V x B, € V; is defined strongly .
+ The Galerkin approximation of (45) then reads

d ~ - -
E/Bh-ch-F/nVXBh-VXCh:OVChEVl (46)



(11 1/2 Resistivity step: Time discretization
The semi-discretization in time yields

/B;}+1.Ch+At/anBZ+l~VXCh:/BZ'ChVCh6‘71 (47)

» We notice that the left-hand-side is a symmetric positive definite bilinear form .
- then we update the original B € V; via an implicit strong Galerkin discretization that reads

B! + AtV x (Pl(nV x Bg“)) ~ B, (48)

Then, by construction V - B, stays zero if it is zero at the initial time (strongly).
+ n may eventually account also of numerical stabilization (“upwind penalization”), inspired

by Multi-Dimensional-Riemann Solvers (see Balsara2010);

{WVxBl,} | = [0+s)0,B],y , — 01+ D0:B), 5

i+35.,5,k



(Ill) 2/2 Ideal-Alfvénic step

O(pv) — (VxB)xB=0 (49)
6B+ V x (—=v x B) =0, (50)

* We look for B;, € V, and m;, € Vi, so that V - B;, € V3 is defined strongly .

» However v, x By is not in V1. So we will project it with the orthogonal projection in V; that
we denote by P;:

» The Galerkin approximation of (49)-(50) then reads

d
a pVh~Ch+/VXP1(ChXBh)'BhZOVChEVl (51)
0B
=h + V x P1 (—Vh X Bh) =0 (52)

ot



Time discretization

The semi-discretization in time yields respectively
Bit = Bj + AtV x Py (viith x Bpt) (53)

and

/phvz+1 -wp, + At/V x Py (wp, % BZH) . BZ“ = /phvﬁ -wyp, Ywy, € 1] (54)

Let us first observe that V - B, stays zero if it is zero at the initial time. Indeed, applying a
strong divergence to equation (53) we get

V-Bt'=Vv.B}



Implicit equation for v; !
+ Plugging (53) into (54) and introducing nonlinear iterations yields
/phv;;“f“ Wi+ At2/v x Py (Wi x BRT) Vo Py (vt Bl
= —At/V x Py(wy, x BPTUT) . BY + /phv;; -wy, Ywy, € V) (55)
+ We notice that the left-hand-side is a symmetric positive definite bilinear form at each
nonlinear iteration.

« This can be solved for v}'*' by Picard iterations.
+ The nonlinear system for V. is decoupled from B



Full algorithm for (ideal) Alfvénic subsystem

1. Implicit iterative solve of symmetric and positive definite nonlinear system for V. € V;:
(M5 + At?PL, CTM,CP )V = H Y (MT) (56)

where P V"1 is associated to P (v tH" T x BIFT)
2. Update B} 17!
B, = B 4 CPp VT (57)

3. Update (dual-) barycentric variables m™*! = pv™*! and pE"+! with Finite Volume fluxes
from Finite Element variables B}‘+1 e V.

Qb= Qe oo

kT Ay

(momentum and energy conservation)

f:j%’j’k _ f**l ) f** _ f**(Q,VZ+1,BZ+1)

i—L1.5.k



Time discretization with Operator-Splitting
Given an initial value problem

924 41(Q) + A2(Q) =0, te(0,T)
{ 3(0) = Qo 0

Defining X" % = X"+ + (1 — ) X™, the Douglas-Rachford 1956 (¢ = 1) scheme or
Douglas-Kim (2001; 8 = %) scheme read as

An+1 _ n R

% + A1 Q") + Ay (Q™, ") =0 (59)
n+1 _ n R

% + A1 Q") + A(Q™) =0 (60)

In this way the nonlinear implicit system for (Q"*!, A, ) is decoupled from (Q™*!, A,). Note
that this algorithm has clearly a predictor-corrector flavor.



Following these ideas, we approach a semi-implicit discretization of the nonlinear MHD system

Qn+1 — Qn _ puin b Hn+06, p(Hn+0
T—£(Q)+£(Q )+ LP(Q"T)
Then we linearize in time in the sense of Picard obtaining
Qn+1,r+l - Qn — LV n LAb n+0y,7\ | An+0y,r+1 Ap(n+0p,rY . n+0,,r+1
s =L@+ LQ) - Q +L7(Q"T) - Q (61

(see also Fambri 2021), and approximate it with the following recursive and operator-splitting
algorithm

Qn,+1,7-+1 _Qn v n Ab yn+0p,r An—+6y,r+1 Fp (O t0pir nt0p,r
e = L@ LNQ ) QU Lr(Q ) T, (62)
Q“*l:"‘H:erl — Qn _ aviAn Ab [ Ayn+0p,r An4-0p,r+1 Ap (yn+0p,1,s n+0p,,r+1,s+1
Al = L°(Q") + LY(Q) - Q +L7(Q )-Q ’

(63)

fors=0,...,5,andr =0,..., R, where r is the recursive Picard index that cycles over the
two equations (62-63), while s cycles only over the last equation (63). In the practice, we
choose R = S = 1. This scheme may recall a recursive Alternating Direction Implicit (ADI)
method adapted to a three-operator splitting of the type Explicit-Implicit-Implicit.



MHD Shock tube problem (Brio-Wu)

3 /
S <
initial data ~ (p,v,p,B) = {( L (0,0,0), 1 ’(%’ 1’8) dm) w <0
1

5r - 12~
4 L
| :
\
23\,
k) 08
B2 r
| AVA M), [
1 e AUALOM™P), o061
% 0.02 004 yme 0.06 04}

0.2

CG #iter - B|
CG #iter - P
CG #iter -0

Reference solution (3x10° p.)
— —— — FV2-FEEC 6=1, At(A")
— —— - FV2-FEEC 6=1, AtA\""°)
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2d tests: low Mach Alfvén-Wave test

- 2" order of accuracy in space and time with Crank-Nicolson J

Low Mach Alfvén-wave test
Nolement 11 error Lo error Lo error Ljor. Lyor. Ly or. Th.
20 0.6767E-02 0.3761E-02 0.2936E-02

initial data:

, 407 01641E-02 0.9144E-03 0.7123E-03 204 204 204 p=1 .
802 0.4100E-03 0.2285E-03 0.1789E-03 2.00 200 1.99 v = & (—ny cos(p), e cos(), sin(p))
160>  0.1038E-03 0.5791E-04 0.4558E-04 198 198 1.7 p=10
20 0.1435E-01 0.8187E-02 0.6305E-02 - - By = V27 [ng + nyacos(e)],
, 407 0.3820E-02 0.2116E-02 0.1667E-02 196 195 192 o By = V27 [ny, — npacos(p)],
802 0.9620E-03 0.5338E-03 0.4239E-03 1.99 1.99  1.98 B. = /2r [—asin(p)],
1602  0.2420E-03 0.1345E-03 0.1071E-03 1.99 1.99 1.9
207 0.6401E-02 0.4171E-02 0.3714E-02 - where
p 40 01598E-02 0.9965E-03 0.8678E-03 202 207 210
802  0.4010E-03 0.2463E-03 0.2132E-03 1.99 202  2.03 )
1602 0.1002E-03 0.6176E-04 0.5478E-04 2.00 2.00  1.96 ¢ =y [Me (@ —nat) +ny (y —nyt)] -
207 0.4917E-01 0.2744E-01 0.2262E-01 -
B, 402 0.1248E-01 0.6981E-02 0.5847E-02 1.98 1.98 1.95 2 The direction of propagation is designed
802 0.3125E-02 0.1751E-02 0.1470E-02 2.00 1.99 1.99 in order to be non.aﬁgned with the grid‘
1602 0.7814E-03 0.4381E-03 0.3684E-03 2.00 2.00  2.00 ie.
TABLE 2

L1, Ly and Loc errors and convergence rates for the low Mach Alfvén wave test.

n=(ng,ny,n:) = (1,2,0) /\/5



CG iterations

i . CG #iter- B
MHD Orszag-Tan . CG #iter-B MHD Rotor test i
40r (25012 pointgs) 9 . CG #iter - P 50 (55072 points) . gg z!:er- P
. cG#iter-n | e fter - n
40} ETERPRRNIY
sor - . _
5 o~ "t . 830 i~
®20f e I T e S
8 820t
10 10k
g PR T W L W g .
05— 0
0 1 2 time 3 4 5 0.05 0T timed- 15 0.2 0.25



Summary

Semi implicit 3D FV/FEEC scheme for VR-MHD:
+ Conservative (mass, momentum and energy);
« Structure preserving (Divergence-free and SYMMETRIC by construction);
« 2" order accurate;
» Shock-capturing;
« CFL based only on the hydrodynamic convection (flow velocity);
» Nonlinear Solver built as

» Nested and recursive Picard procedure;
» symmetric algebraic systems (matrix-free CG method);
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Perspectives

extension to high order FV/FEEC or DG/FEEC (Cartesian grid);

extension of DG/FEEC to realistic curved geometries;

other physical models (e.g extended MHD, two-fluid MHD);

(Adaptive) Mesh Refinement and well-balancing;
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