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Motivation

• Simulation of macroscopic dynamics for 3D magnetic confinement devices (Tokamaks
and Stellerators)

• Goal: E�cient simulation of 3D nonlinear viscous and resistive MHD (VRMHD) in realistic
geometry

• Conservative (mass, momentum and energy)
• Structure preserving by construction (Divergence-free; symmetry)
• Shock-capturing and robust against nonlinear instabilities
• CFL based only on the hydrodynamic convection
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MHD as a non-canonical Hamiltonian system

• Many plasma (and fluid, ...) models can be expressed by an action principle or
Hamiltonian systems (Morrison 1998)

dF (Q)

dt
= {F, H}

• Poisson bracket encodes many invariants of the system:
Hamiltonian H, Casimir invariants in particular r · B, magnetic helicity

R
A · B dx,

symmetry, ...
• FEEC discretization enables to obtain a finite dimensional hamiltonian system
• Idea recently applied to Vlasov-Maxwell, MHD and MHD-kinetic hybrid models.
• Issue: only works on smooth solutions. Cannot handle shocks.
• Our idea. Couple Finite Volume (FV) with FEEC, following ideas from FV community

staggering some quantities.
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Hamiltonian systems

• Canonical Hamiltonian system

dq

dt
= rpH,

dp

dt
= �rqH with z = (q,p) :

dz

dt
= J rzH

where J =

✓
0N IN

�IN 0N

◆

• Non canonical Hamiltonian structure with Poisson matrix J (z)

dz

dt
= J (z)rzH, Poisson bracket: {F, G} = (rzF )J (z)rzG

• Also in infinite dimensional case replacing gradient by functional derivative and where J is
a di�erential operator

dU

dt
= J (U)

�H

�U

• J can be degenerate: C s.t. J (U) �C
�U = 0 are Casimir invariants.
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Gradient flows

• Dissipative systems with increase of entropy or dissipation of free energy

dU

dt
= �K(U)

�S

�U

• K(U) is a possibly degenerate semi-positive operator hence:

dS(U)

dt
= �

�S

�U
· K(U)

�S

�U
 0.

• Choose dissipation mechanism K(U) and dissipated functional S, e.g
1. Heat equation: S =

R
log T

2. Particle collisions: S = kB
R
f log f
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Combining hamiltonian and dissipative dynamics

• Dynamical systems arising in physics often combine a hamiltonian and a dissipative part
• Introducing a hamiltonian H which is conserved and a free energy (or entropy) S which is

dissipated,

dF

dt
= {F , H} � (F , S) ⌘

dU

dt
= J (U)

�H

�U
� K(U)

�S

�U

with J a Poisson operator and K a symmetric semi-definite positive operator, F , S, H

functionals of U .
• Entropy is preserved by Poisson bracket and energy is preserved by dissipative bracket

{S, H} = 0, (H, S) = 0.

) Exact energy preservation and production of entropy

dH

dt
= {H, H} � (H, S) = 0,

dS

dt
= {S, H} � (S, S)  0.
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Example: the Vlasov-Maxwell-Landau kinetic model

@f

@t
+ v · rxf +

q

m
(E + v ⇥ B) · rvf = Q(f, f)

• Fits into the metriplectic framework
d

dt
F = {F , H} + (F , S), S =

Z
f ln f dx dv

H =
m

2

Z
fv

2 dx dv +
✏0

2

Z
E

2 dx +
1

2µ0

Z
B

2 dx

• Metriplectic bracket preserves mass, momentum, total energy, divergence constraints on
E and B, and satisfies an H-theorem (monotonic dissipation of entropy, unique equilibrium
state)

• discretisation of the brackets instead of the dynamical equation guarantees these
properties at the discrete level and can be achieved by di�erent numerical methods (FEM,
DG, PIC,...)
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Coming back to MHD

• Couple Finite Element Exterior Calculus to handle symmetric terms appearing in brackets
and robust shock capturing Finite Volume scheme for convection.

• Features of our problem:

• high characteristic wave speeds
• high mesh resolution

=)

computational time-step
�t severely constrained by CFL

(Alfvén and magnetosonic speeds)
• Implicit or semi-implicit methods are a must. Computationally e�cient and robust methods

for long-time simulations of 3D plasma flows

• Explicit high-order FV or DG for convection
• Implicit Structure Preserving Finite Elements for acoustic and Alfvénic steps

First implementation: low order FV/FEEC on Cartesian grids
Ongoing implementation: high-order FV and FEEC in AMReX framework (block structured
AMR on cartesian grids)
 Performance portability on novel architectures including di�erent kinds of GPU
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Governing equations (VRMHD) in conservative form

The viscous and resistive MHD equations can be cast in the following conservative form

@

@t
Q + r · (F � Fd) = 0 (1)

Q :=

0

BB@

⇢

⇢v
⇢E

B

1

CCA ; F = F(Q) :=

0

BBB@

⇢v

⇢v ⌦ v +
⇣
p + B2

2

⌘
I � B ⌦ B

�
⇢E + p + 1

2B
2
�
v � B (v · B)

B ⌦ v � v ⌦ B

1

CCCA
(2)

Fd = Fd(Q, rQ) :=

0

BB@

0
µ
�
rv + rvT

�
2
3 (r · v) I

�

µv
�
rv + rvT

�
2
3 (r · v) I

�
+ rT + ⌘

4⇡B
�
rB � rBT

�

⌘
�
rB � rBT

�

1

CCA (3)

with the identity matrix I, T is the temperature that refers to a thermal equation of state
T = T (p, ⇢), µ is the kinematic viscosity,  is the thermal conductivity and ⌘ is the electric
resistivity of the fluid.
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Ideal MHD: characteristics wave speeds

Considering ideal plasma flow in one single space dimension:

@Q

@t
+

@F

@x
= 0. (4)

For Bx = const. one can easily compute its eight eigenvalues

�
MHD
1,8 = u ⌥ cf , �

MHD
2,7 = u ⌥ ca, �

MHD
3,6 = u ⌥ cs, �

MHD
4 = u, �

MHD
5 = 0, (5)

where
ca = Bx/

p
4⇡⇢ Alfvén speed,

c
2
s = 1

2

⇣
b
2 + c

2
�

p
(b2 + c2)2 � 4c2

ac2
⌘

slow magnetosonic,

c
2
f = 1

2

⇣
b
2 + c

2 +
p

(b2 + c2)2 � 4c2
ac2

⌘
fast magnetosonic.

(6)

c: adiabatic sound speed: (EOS) p = p(e, ⇢) as c
2 = @p/@⇢ + p/⇢

2
@p/@e, e.g. c

2 = �p/⇢ for
the ideal gas EOS. b

2 = B2
/⇢.
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Splitting between slow and fast parts

• In a magnetic fusion plasma convection is slow, but other waves very fast.
• We split the flux in 3 parts F = Fv + Fp + Fb with

Q :=

0

BB@

⇢

⇢v
⇢E

B

1

CCA ; Fv :=

0

BB@

⇢v
⇢v ⌦ v
1
2v⇢v2

0

1

CCA Fp :=

0

BB@

0
pI

�
��1pv

0

1

CCA Fb :=

0

BB@

0�
1
2B

2I � B ⌦ B
�

vB2
� (v · B)B

B ⌦ v � v ⌦ B

1

CCA (7)

as ⇢E + p + 1
2B

2 = �
��1p + 1

2⇢v2 + B2 for a perfect gas.
• Convection step (Fv) explicit, acoustic and Alfvénic steps (Fp and Fb) implicit
• Properties:

• Magnetic field B stays constant in convection and acoustic steps.
• Density ⇢ stays constant in acoustic and Alfvénic steps.
• Energy ⇢E is decoupled from v and B in Alfvénic step.
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Characteristic wave speeds for split parts

i) explicit (Convection) @tQ + @xFv = 0, �
v
1,2,3,4 = 0, �

v
5,6,7,8 = vx, (8)

ii) implicit (Acoustic) @tQ + @xFp = 0, �
p
1,8 =

1

2

⇣
vx ⌥

p
v2

x + 4c2
⌘

, (9)

ToroVazquez2012 �
p
2,3,4,5,6,7 = 0,

iii) implicit (Alfvénic) @tQ + @xFb = 0. �
B
1,8 =

1

2

0

@vx ⌥

s

v2
x + 4

✓
|B|

p
4⇡⇢

◆2
1

A ,

(10)

Fambri2021 �
B
2,7 =

1

2

0

@vx ⌥

s

v2
x + 4

✓
Bx

p
4⇡⇢

◆2
1

A ,

�
B
3,4,5,6 = 0.
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3-split time-integration (VRMHD)

The summary of the chosen split systems will be

@tQ + r · F = 0, F := (Fv � Fµ) Explicit in time (11)
+ (Fb � F⌘) Implicit in time (12)
+ Fp. Implicit in time (13)

Implicit steps will be based on Finite Element Exterior Calculus spaces to enforce r · B = 0
and keep the symmetries needed for e�cient implicit solves.
Finite Volume variables (dual-cell averages, centered in the nodes of the main grid):

⇢, m = ⇢v, ⇢E

Finite Element variables (in appropriate Finite Element spaces)

me, p, Bf

Note that Bf is a purely Finite Element variable, m is a Finite Volume variable, which has a
corresponding Finite Element variable me.
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(I) Explicit terms: nonlinear convection and viscous subsystems

The chosen procedure for discretizing the nonlinear convection and the viscous terms that are
summarized in the first subsystem

@tQ + r · (Fv � Fµ) = 0 (14)

A conservative explicit finite-volume scheme of the type

Q⇤
i,j,k = Qn

i,j,k �
�t
�x

⇣
fi+ 1

2 ,j,k � fi� 1
2 ,j,k

⌘
�

�t
�y

⇣
gi,j+ 1

2 ,k � gi,j� 1
2 ,k

⌘
+

�
�t
�z

⇣
hi,j,k+ 1

2
� hi,j,k� 1

2

⌘
,

(15)

is adopted, where the star symbol ⇤ is used to indicate that Q⇤ is only a local solution of
sub-system (I). In particular, one has numerical (Rusanov, or local Lax-Friedrichs) fluxes of
the type

fi+ 1
2 ,j,k := 1

2

⇣
Fv(Q�

i+ 1
2 ,j,k

) + Fv(Q+
i+ 1

2 ,j,k
)
⌘

�
1
2s

x
max

⇣
Q+

i+ 1
2 ,j,k

� Q�
i+ 1

2 ,j,k

⌘
+

�
�
hFµ(Vh, rVh)iyz

 
i+ 1

2 ,j,k

(16)
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Symmetric formulations of acoustic and Alfvénic systems

• In the Acoustic step ⇢ and B are constant, so that we solve for m = ⇢v and p

@m

@t
+ rp = 0 (17)

@

@t

✓
p

� � 1
+

1

2⇢
m2

◆
+

�

� � 1
r ·

✓
p

⇢
m

◆
= 0 (18)

• The Alfvénic step involves a coupled system in m and B

@m

@t
� (r ⇥ B) ⇥ B = 0 (19)

@B

@t
� r ⇥

✓
1

⇢
m ⇥ B

◆
+ ⌘r ⇥ (r ⇥ B) = 0 (20)

and a decoupled energy equation:
@⇢E

@t
+ r ·

1

⇢

�
B2m � (m · B)B

�
= 0. (21)

June 11, 2024 FV-FEEC for MHD 15/45



Finite Element Exterior Calculus

Acoustic and Alfvénic steps will be discretized with compatible Finite Elements . These
are based on the following commuting diagram involving a continuous and a discrete deRham
complex as well as commuting projectors:

2 F. FAMBRI AND E. SONNENDRÜCKER

• the acoustic part reads:25

@⇢

@t
= 0(3.5)26

@⇢u

@t
+ rp = 0(3.6)27

@B

@t
= 0(3.7)28

1

� � 1

@p

@t
+ pr · u = 0(3.8)29

30

We can rewrite this system by taking the dot product of (3.9) with u and31

adding it to (3.10). Thus in this step ⇢ and B are constant and the momentum32

m = ⇢u and p are the solutions of the following system33

@m

@t
+ rp = 0(3.9)34

@

@t

✓
p

� � 1
+

1

2
u · m

◆
+ r · (pu) = 0(3.10)35

36

• and the alfvenic part reads:37

@⇢

@t
= 0(3.11)38

@m

@t
� (r ⇥ B) ⇥ B = 0(3.12)39

@B

@t
+ r ⇥ (�u ⇥ B + ⌘r ⇥ B) = 0(3.13)40

@p

@t
= 0(3.14)41

42

We note that as ⇢ and p are constant in this split step.43

3.2. The Finite Element spaces and operators.44

3.2.1. The DeRham Complex. The convective part will be discretized with a45

classical conservative Finite Volume scheme, where the discrete unknowns ⇢, u, m, B46

and p are characterized by their cell average. On the other hand, the last two parts will47

be discretized with compatible Finite Elements coming from Finite Element Exterior48

Calculus (FEEC). These are based on the following commuting diagram involving a49

continuous and a discrete deRham complex as well as commuting projectors:50

(3.15)

H
1(�) H(curl, �) H(div, �) L

2(�)

V0 V1 V2 V3

�0

grad

�1

grad

�2 �3

curl

curl

div

div

divw curlw gradw

51

This manuscript is for review purposes only.

where the weak discrete di�erential operators are defined by
Z

grad ph · vh dx = �
Z

divw vh · ph dx, ph 2 V0,vh 2 V1, (22)
Z

curluh ·Bh dx =

Z
curlw Bh · uh dx, Bh 2 V2,uh 2 V1, (23)

Z
qhdivBh dx = �

Z
gradw qh ·Bh dx, qh 2 V3,Bh 2 V2, (24)
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Example: two options for linearized acoustics

@u

@t
+ rp = 0

@p

@t
+ r · u = 0

(25)

1. ph 2 V0, uh 2 V1

@uh

@t
+ rph = 0 (26)

d

dt

Z
phqh dx �

Z
uh · rqh dx = 0 8qh 2 V0

✓
@ph

@t
+ rw · uh = 0

◆
(27)

2. ph 2 V3, uh 2 V2

d

dt

Z
uh · vh dx �

Z
phr · vh dx = 0 8vh 2 V2

✓
@uh

@t
+ rwph = 0

◆
(28)

@ph

@t
+ r · uh = 0 (29)
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Choice of the Finite Element spaces (Acoustic and Alfvén steps)

Both systems involve two coupled equations involving di�erential operators and their dual
• grad and �div for the acoustic step
• curl and curl for the Alfvénic step

In the context of FEEC one of these must be treated strongly and the other one weakly. This
holds at the discrete level with appropriate choice of Finite Element spaces.
Two natural choices

1. p 2 V0 (node), m 2 V1 (edge), B 2 V2 (face)
• B strongly divergence free, strong momentum equation
• Discretization of resistive term more “complicated” .

2. p 2 V3 (volume), m 2 V2 (face), B 2 V1 (edge)
• B weakly divergence free
• Discretization of resistive term straightforward

We choose a hybrid option : ideal MHD step on a main grid (strong div), resistive step
on a dual grid (strong curl).
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Discrete di�erential operators in matrix form

Equations in strong form can be expressed directly as an algebraic relation between the
degrees of freedom:

ue = r', for ' 2 V0,ue 2 V1 () Ue = G'

Applying the weak di�erential operators, involves the inversion of a mass matrix:
G, C, D: discrete strong di�erential operators;
G̃, C̃, D̃: weak di�erential operators;
Mi for i = 0, 1, 2, 3: mass matrix of Vi.

4 F. FAMBRI AND E. SONNENDRÜCKER

We then define vectors containing all the degrees of freedom stacked in some order
of the indices: for the elements of V3 we have P = (pi,j,k)i,j,k, � = (⇢i,j,k)i,j,k, and
for the vector based unknowns each (i, j, k) index contains a small vector with three
components:

(Uf )i,j,k =

0

@
(uf,x)i� 1

2 ,j,k

(uf,y)i,j� 1
2 ,k

(uf,z)i,j,k� 1
2

1

A (Be)i,j,k =

0

@
(Be,x)i,j� 1

2 ,k� 1
2

(Be,y)i� 1
2 ,j,k� 1

2

(Be,z)i� 1
2 ,j� 1

2 ,k

1

A

and finally for the node based degrees of freedom we define the node associated to cell88

i, j, k to be the node at (xi� 1
2
, yj� 1

2
, zk� 1

2
). On our periodic mesh, there is exactly89

one such node for each cell and so the node based quantities are characterized by the90

degrees of freedom Hn = (hi� 1
2 ,j� 1

2 ,k� 1
2
)i,j,k.91

We denote by �0, �1, �2, �3 the corresponding set of degrees of freedom, so that92

P, � 2 �3, Uf 2 �2, Be 2 �1, Hn 2 �0.93

3.3. Discrete gradient, divergence and curl matrices. Let us now define
the discrete gradient matrix associated to our degrees of freedom, denoted by G, that
applied to a vector Hn 2 �0, describing a scalar variable with N components, to a
vector Be describing a vector variable with altogether 3N components. We have

(Be)i,j,k = (GHn)i,j,k =

0

BB@

h
i+ 1

2
,j� 1

2
,k� 1

2
�h

i� 1
2

,j� 1
2

,k� 1
2

�x
h

i� 1
2

,j+ 1
2

,k� 1
2

�h
i� 1

2
,j� 1

2
,k� 1

2
�y

h
i� 1

2
,j� 1

2
,k+ 1

2
�h

i� 1
2

,j� 1
2

,k� 1
2

�z

1

CCA .

Then we can define the discrete curl matrix for an edge based quantity Be as94

(3.25)

(CBe)i,j,k =

0

BBB@

(Be,z)
i� 1

2
,j+ 1

2
,k

�(Be,z)
i� 1

2
,j� 1

2
,k

�y �
(Be,y)

i� 1
2

,j,k+ 1
2

�(Be,y)
i� 1

2
,j,k� 1

2
�z

(Be,x)
i,j� 1

2
,k+ 1

2
�(Be,x)

i,j� 1
2

,k� 1
2

�z �
(Be,z)

i+ 1
2

,j� 1
2

,k
�(Be,z)

i� 1
2

,j� 1
2

,k

�x
(Be,y)

i+ 1
2

,j,k� 1
2

�(Be,y)
i� 1

2
,j,k� 1

2
�x �

(Be,x)
i,j+ 1

2
,k� 1

2
�(Be,x)

i,j� 1
2

,k� 1
2

�y

1

CCCA
95

and the discrete divergence matrix for a face based quantity Uf96
97

(3.26) (DUf )i,j,k =

�
(uf,x)i+ 1

2 ,j,k � (uf,x)i� 1
2 ,j,k

�x
+

(uf,y)i,j+ 1
2 ,k � (uf,y)i,j� 1

2 ,k

�y
98

+
(uf,z)i,j,k+ 1

2
� (uf,z)i,j,k� 1

2

�z

�
99

100

Let us now compute the matrices corresponding to the weak di�erential operators101

as defined by (3.16), (3.18), denoted respectively by G̃, C̃ and D̃. Denoting the mass102

matrix of Vi by Mi for i = 0, 1, 2, 3. The definition relations immediately yield103

(3.27) M2G̃ = �D>M3, M1C̃ = C>M2, M0D̃ = �G>M1.104

We can summarize the action of these discrete di�erential operators on the degrees105

of freedom in the following deRham complexes106

(3.28) �0 �1 �2 �3
G

D̃

C

C̃

D

G̃
107

where we have CG = DC = 0 and also on the dual sequence C̃G̃ = D̃C̃ = 0.108

This manuscript is for review purposes only.

M2G̃ = �D>M3, M1C̃ = C>M2, M0D̃ = �G>M1. (30)
Important property: discrete primal sequence discrete dual sequence
curl � grad = 0 CG = 0 C̃G̃ = 0
div � curl = 0 DC = 0 D̃C̃ = 0
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Special case: low order and Cartesian grid

We consider in this talk low order Finite Elements: Let us denote by 'i� 1
2
(x) the linear hat

functions associated to the node xi� 1
2

in 1D

'i� 1
2
(x) =

8
>><

>>:

x�x
i� 3

2
�x xi� 3

2
 x  xi� 1

2

�
x�x

i+ 1
2

�x xi� 1
2

 x  xi+ 1
2

0 else

and by �i the piecewise constant basis functions in 1D

�i(x) =

⇢
1 xi� 1

2
 x  xi+ 1

2

0 else

• Then functions in V0, V1, V2, V3 can be expressed as tensor product bases.
• e.g, V0 = Q1 the tensor product piecewise linear element (Lagrange Polynomials);
• e.g., V3 = Q0, piecewise constant;
• V1 and V2, “mixed” tensor product spaces...
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Special case: low order and Cartesian grid
For any ph 2 V0 ph(x, y, z) =

X

i,j,k

pi� 1
2 ,j� 1

2 ,k� 1
2
'i� 1

2
(x)'j� 1

2
(y)'k� 1

2
(z),

for any uh 2 V1 = V x
1 ⇥ V y

1 ⇥ V z
1 uh,x(x, y, z) =

X

i,j,k

(ue,x)i,j� 1
2 ,k� 1

2
�i(x)'j� 1

2
(y)'k� 1

2
(z),

uh,y(x, y, z) =
X

i,j,k

(ue,y)i� 1
2 ,j,k� 1

2
'i� 1

2
(x)�j(y)'k� 1

2
(z),

uh,z(x, y, z) =
X

i,j,k

(ue,z)i� 1
2 ,j� 1

2 ,k'i� 1
2
(x)'j� 1

2
(y)�k(z),

for any Bh 2 V2 = V x
2 ⇥ V y

2 ⇥ V z
2 Bh,x(x, y, z) =

X

i,j,k

(Bf,x)i� 1
2 ,j,k'i� 1

2
(y)�j(x)�k(z),

Bh,y(x, y, z) =
X

i,j,k

(Bf,y)i,j� 1
2 ,k�i(x)'j� 1

2
(y)�k(z),

Bh,z(x, y, z) =
X

i,j,k

(Bf,z)i,j,k� 1
2
�i(x)�j(y)'k� 1

2
(z),

and for any qh 2 V3 qh(x, y, z) =
X

i,j,k

qi,j,k�i(x)�j(y)�k(z).
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Location of FEEC degrees of freedom
z

k �
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Figure: Barycenters (top left), vertices (bottom left), faces (3 components, top right) and edges (3
components, bottom right) on a three-dimensional Cartesian structured grid.

⇢n, ⇢vn, ⇢En, pn 2 V0(nodes) me,ve 2 V1(edges) Bf 2 V2(faces)
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Special case: low order and Cartesian grid

• Approximating integrals in mass matrices (complex based on Q1)
with the trapezoidal rule:

M0 = M3 = �x�y�zIN , M1 = M2 = �x�y�zI3N .

This implies that the relation between primal and dual di�erential
operators (30) becomes

G̃ = �D>, C̃ = C>, D̃ = �G>. (31)

• In this case discrete expression between degrees of freedom is equivalent to Finite Di�erences on
staggered meshes, e.g.

(GP)xi = (pi+ 1
2
� pi� 1

2
)/�x
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(II) Implicit integration of pressure terms.
@t(⇢v) + rp = 0, (32)
� � 1

�
@t(⇢E) + r · (pv) = 0 (33)

First as ph 2 V0, we have rph 2 V1. So as mh 2 V1, an implicit Euler discretization in time of
equation (49) yields

mn+1
h = mn

h � �trp
n+1
h 2 V1.

On the other hand, a weak form of (33) reads: Find p 2 V0 such that

� � 1

�

d

dt

Z ✓
ph

� � 1
+

1

2
uh · mh

◆
qh �

Z
ph

⇢
mh · rqh = 0 8qh 2 V0 (34)

Discretize in time, linearize and plug in the expression for mn+1
h

1

�

Z
p

n+1,r+1
h qh dx + �t

2

Z
p

n+1,r
h

⇢n
rp

n+1,r+1
h · rqh dx = F

n,r
8qh 2 V0 (35)

symmetric positive definite linear system at each Picard iteration.
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(II) Implicit integration of pressure terms: full algorithm

@t(⇢v) + rp = 0, (36)
� � 1

�
@t(⇢E) + r · (pv) = 0 (37)

1. Implicit iterative solve of symmetric and positive definite nonlinear system for p 2 V0,
mf 2 V1:

(M0 + �t
2GT M

p
⇢

1 G)Pn+1,r+1 = H
n,r
n , (38)

M
n+1,r+1
e = M

m
e � �tGP

n+1,r+1 (39)

2. Update (dual-) barycentric variables mn+1 = ⇢vn+1 and ⇢E
n+1 with Finite Volume fluxes

from Finite Element variables p
n+1

2 V0 and me 2 V1.

Q
⇤⇤
i,j,k = Q

n
i,j,k �

�t

�x

⇣
f⇤
i+ 1

2 ,j,k � f⇤
i� 1

2 ,j,k

⌘
f⇤ = f⇤(Q,P

n+1,r+1
,M

n+1,r+1
e )
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(III) Implicit and divergence-free integration of the Faraday equation.

@t⇢v � (r ⇥ B) ⇥ B = 0 (40)
@tB + r ⇥ (�v ⇥ B + ⌘r ⇥ B) = 0, (41)

• We look for Bh 2 V2 and mh 2 V1, so that r · Bh 2 V3 is defined strongly.
• Problem (!!): this implies rw ⇥ Bh 2 V1 defined weakly .
• Solution: we will split the resistivity term, and solve it on a new De-Rham complex

on a dual-grid , for which exist r̃ so that r̃ ⇥ B̃ is defined strongly (as done in
Fambri2021).

Resistivity step (strong curl):

@tB̃ + r ⇥

⇣
⌘r ⇥ B̃

⌘
= 0, (42)

ideal-Alfvénic step (strong div):

@t⇢v � (r ⇥ B) ⇥ B = 0 (43)
@tB + r ⇥ (�v ⇥ B) = 0, (44)
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(III) 1/2 Resistivity step: on a dual grid

@tB̃ + r ⇥

⇣
⌘r ⇥ B̃

⌘
= 0, (45)

2 F. FAMBRI AND E. SONNENDRÜCKER

• the acoustic part reads:25

@⇢

@t
= 0(3.5)26

@⇢u

@t
+ rp = 0(3.6)27

@B

@t
= 0(3.7)28

1

� � 1

@p

@t
+ pr · u = 0(3.8)29

30

We can rewrite this system by taking the dot product of (3.9) with u and31

adding it to (3.10). Thus in this step ⇢ and B are constant and the momentum32

m = ⇢u and p are the solutions of the following system33

@m

@t
+ rp = 0(3.9)34

@

@t

✓
p

� � 1
+

1

2
u · m

◆
+ r · (pu) = 0(3.10)35

36

• and the alfvenic part reads:37

@⇢

@t
= 0(3.11)38

@m

@t
� (r ⇥ B) ⇥ B = 0(3.12)39

@B

@t
+ r ⇥ (�u ⇥ B + ⌘r ⇥ B) = 0(3.13)40

@p

@t
= 0(3.14)41

42

We note that as ⇢ and p are constant in this split step.43

3.2. The Finite Element spaces and operators.44

3.2.1. The DeRham Complex. The convective part will be discretized with a45

classical conservative Finite Volume scheme, where the discrete unknowns ⇢, u, m, B46

and p are characterized by their cell average. On the other hand, the last two parts will47

be discretized with compatible Finite Elements coming from Finite Element Exterior48

Calculus (FEEC). These are based on the following commuting diagram involving a49

continuous and a discrete deRham complex as well as commuting projectors:50

(3.15)

H
1(�) H(curl, �) H(div, �) L

2(�)

V0 V1 V2 V3

�0

grad

�1

grad

�2 �3

curl

curl

div

div

divw curlw gradw

51

This manuscript is for review purposes only.

• We look for B̃h 2 Ṽ1, so that r ⇥ B̃h 2 Ṽ2 is defined strongly .
• The Galerkin approximation of (45) then reads

d

dt

Z
B̃h · Ch +

Z
⌘r ⇥ B̃h · r ⇥ Ch = 0 8Ch 2 Ṽ1 (46)
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(III) 1/2 Resistivity step: Time discretization

The semi-discretization in time yields
Z

B̃n+1
h · C̃h + �t

Z
⌘r ⇥ B̃n+1

h · r ⇥ C̃h =

Z
B̃n

h · C̃h 8C̃h 2 Ṽ1 (47)

• We notice that the left-hand-side is a symmetric positive definite bilinear form .
• then we update the original B 2 V2 via an implicit strong Galerkin discretization that reads

Bn+1
h + �tr ⇥

⇣
P1(⌘r ⇥ B̃n+1

h )
⌘

= Bn
h, (48)

Then, by construction r · Bh stays zero if it is zero at the initial time (strongly).
• ⌘ may eventually account also of numerical stabilization (“upwind penalization” ), inspired

by Multi-Dimensional-Riemann Solvers (see Balsara2010);
n

[⌘r ⇥ B]x

o

i+ 1
2 ,j,k

:=
⇥
(⌘ + s

x
y)@yBz

⇤
i+ 1

2 ,j,k
� [(⌘ + s

x
z )@zBy]i+ 1

2 ,j,k
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(III) 2/2 Ideal-Alfvénic step

@t(⇢v) � (r ⇥ B) ⇥ B = 0 (49)
@tB + r ⇥ (�v ⇥ B) = 0, (50)

• We look for Bh 2 V2 and mh 2 V1, so that r · Bh 2 V3 is defined strongly .
• However vh ⇥ Bh is not in V1. So we will project it with the orthogonal projection in V1 that

we denote by P1:
• The Galerkin approximation of (49)-(50) then reads

d

dt

Z
⇢vh · Ch +

Z
r ⇥ P1(Ch ⇥ Bh) · Bh = 0 8Ch 2 V1 (51)

@Bh

@t
+ r ⇥ P1 (�vh ⇥ Bh) = 0 (52)
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Time discretization

The semi-discretization in time yields respectively

Bn+1
h = Bn

h + �tr ⇥ P1

�
vn+1

h ⇥ Bn+1
h

�
(53)

and
Z

⇢hv
n+1
h · wh + �t

Z
r ⇥ P1(wh ⇥ Bn+1

h ) · Bn+1
h =

Z
⇢hv

n
h · wh 8wh 2 V1 (54)

Let us first observe that r · Bh stays zero if it is zero at the initial time. Indeed, applying a
strong divergence to equation (53) we get

r · Bn+1
h = r · Bn

h
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Implicit equation for vn+1
h

• Plugging (53) into (54) and introducing nonlinear iterations yields
Z

⇢hv
n+1,r+1
h · wh + �t

2

Z
r ⇥ P1

⇣
wh ⇥ Bn+1,r

h

⌘
· r ⇥ P1

⇣
vn+1,r+1

h ⇥ Bn+1,r
h

⌘

= ��t

Z
r ⇥ P1(wh ⇥ Bn+1,r

h ) · Bn
h +

Z
⇢hv

n
h · wh 8wh 2 V1 (55)

• We notice that the left-hand-side is a symmetric positive definite bilinear form at each
nonlinear iteration.

• This can be solved for vn+1
h by Picard iterations.

• The nonlinear system for Ve is decoupled from Bf
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Full algorithm for (ideal) Alfvénic subsystem

1. Implicit iterative solve of symmetric and positive definite nonlinear system for Ve 2 V1:

(M⇢
2 + �t

2PT
Br CT M2CPBr )Vn+1,r+1

e = H
n,r
e (Mn

e ) (56)

where PBrV
n+1,r+1
e is associated to P1(v

n+1,r+1
h ⇥ Bn+1,r

h )

2. Update Bn+1,r+1
h

Bn+1,r+1
h = Bn

h + CPBrV
n+1,r+1
e (57)

3. Update (dual-) barycentric variables mn+1 = ⇢vn+1 and ⇢E
n+1 with Finite Volume fluxes

from Finite Element variables B
n+1
f 2 V2.

Q
n+1
i,j,k = Q

⇤⇤
i,j,k �

�t

�x

⇣
f⇤⇤
i+ 1

2 ,j,k � f⇤⇤
i� 1

2 ,j,k

⌘
f⇤⇤ = f⇤⇤(Q,V

n+1
e ,Bn+1

h )

(momentum and energy conservation)
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Time discretization with Operator-Splitting

Given an initial value problem
⇢

dQ
dt + A1(Q) + A2(Q) = 0, t 2 (0, T )
Q(0) = Q0

(58)

Defining X
n+✓ = ✓X

n+1 + (1 � ✓)Xn, the Douglas-Rachford 1956 (✓ = 1) scheme or
Douglas-Kim (2001; ✓ = 1

2 ) scheme read as

Q̂
n+1

� Q
n

�t
+ A1(Q̂

n+✓) + A2(Q
n
, t

n) = 0 (59)

Q
n+1

� Q
n

�t
+ A1(Q̂

n+✓) + A2(Q
n+✓) = 0 (60)

In this way the nonlinear implicit system for (Q̂n+1
, A1) is decoupled from (Qn+1

, A2). Note
that this algorithm has clearly a predictor-corrector flavor.

June 11, 2024 FV-FEEC for MHD 32/45



Following these ideas, we approach a semi-implicit discretization of the nonlinear MHD system
Q

n+1
� Q

n

�t
= L

v(Qn) + L
b(Qn+✓b) + L

p(Qn+✓p)

Then we linearize in time in the sense of Picard obtaining
Q

n+1,r+1
� Q

n

�t
= L

v(Qn) + L̂
b(Qn+✓b,r) · Q

n+✓b,r+1 + L̂
p(Qn+✓p,r) · Q

n+✓p,r+1
, (61)

(see also Fambri 2021), and approximate it with the following recursive and operator-splitting
algorithm

Q̃
n+1,r+1

� Q
n

�t
= L

v(Qn) + L̂
b(Qn+✓b,r) · Q̃

n+✓b,r+1 + L̂
p(Qn+✓p,r) · Q

n+✓p,r
, (62)

Q
n+1,r+1,s+1

� Q
n

�t
= L

v(Qn) + L̂
b(Qn+✓b,r) · Q̃

n+✓b,r+1 + L̂
p(Qn+✓p,r,s) · Q

n+✓p,r+1,s+1
,

(63)

for s = 0, . . . , S, and r = 0, . . . , R, where r is the recursive Picard index that cycles over the
two equations (62-63), while s cycles only over the last equation (63). In the practice, we
choose R = S = 1. This scheme may recall a recursive Alternating Direction Implicit (ADI)
method adapted to a three-operator splitting of the type Explicit-Implicit-Implicit.
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MHD Shock tube problem (Brio-Wu)

initial data (⇢,v, p,B) =

⇢
( 1 ,(0, 0, 0), 1 ,( 34 ,+1, 0)

p
4⇡) x  0

(0.125,(0, 0, 0),0.1,( 34 ,�1, 0)
p
4⇡) x > 0

time

C
G

 #
it

e
r

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

CG #iter - B

CG #iter - P

CG #iter - η

x

ρ

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2 Reference solution (3x104 p.)
FV2-FEEC θ=1, ∆t(λv)
FV2-FEEC θ=1, ∆t(λMHD)
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2d tests: low Mach Alfvén-Wave test
• 2nd order of accuracy in space and time with Crank-Nicolson

initial data:

⇢ = 1,
v = ↵ (�ny cos('), nx cos('), sin(')) ,
p = 102

Bx =
p

2⇡ [nx + ny↵ cos(')] ,
By =

p
2⇡ [ny � nx↵ cos(')] ,

Bz =
p

2⇡ [�↵ sin(')] ,

where

' = 2⇡
ny

[nx (x � nxt) + ny (y � nyt)] .

The direction of propagation is designed
in order to be non-aligned with the grid,
i.e.

n = (nx, ny, nz) = (1, 2, 0) /
p

5.
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CG iterations
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Summary

Semi implicit 3D FV/FEEC scheme for VR-MHD:
• Conservative (mass, momentum and energy);
• Structure preserving (Divergence-free and SYMMETRIC by construction);
• 2nd order accurate;
• Shock-capturing;
• CFL based only on the hydrodynamic convection (flow velocity);
• Nonlinear Solver built as

• Nested and recursive Picard procedure;
• symmetric algebraic systems (matrix-free CG method);
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Perspectives

• extension to high order FV/FEEC or DG/FEEC (Cartesian grid);

• extension of DG/FEEC to realistic curved geometries;

• other physical models (e.g extended MHD, two-fluid MHD);

• (Adaptive) Mesh Refinement and well-balancing;
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