Basics for polynomial interpolation on simplices

Francesca Rapetti

Laboratoire de Mathématiques J.A. Dieudonné, Université Cote d'Azur, France

Lille, June 10th, 2024

Joint work over the years with

Alain Bossavit (Laboratoire Génie Electrique de Paris \& EdF)

Richard Pasquetti (Lab. J.A. Dieudonné \& CNRS, Nice)

Ana Maria Alonso Rodríguez (Univ. Trento)

Outline

Introduction
$n=1$ and $k=0$
$n>1$ and $k=0$
$n=1$ and $k=1$
Polynomial differential forms
Degrees of freedom
Interpolation of differential forms
Lebesgue constant
From interpolation at nodes to interpolation at edges
Numerical results
Conclusions
Last achievements

Polynomial interpolation

of scalar values over an interval $I \subset \mathbb{R}$

The discrete representation of I depends on the type of scalar values

Definition of the polynomial interpolation problem

$I \subset \mathbb{R}$ interval and $\mathbb{P}_{r}(I)$ polynomial space
$N_{r}=\operatorname{dim}\left(\mathbb{P}_{r}(I)\right)=\binom{n+r}{r}$
We have $\left\{y_{i}\right\}$ values at points $\left\{x_{i}\right\}$ in $l, i=1, \ldots, N_{r}$
** We wish to represent $\left\{y_{i}\right\}$ by a polynomial function $\Pi_{r} f$ and here, we construct $\Pi_{r} f$ that interpolates the $\left\{y_{i}\right\}$ at the $\left\{x_{i}\right\}^{* *}$
$\Pi_{r} f$ is function such that
(1) $\quad \Pi_{r} f \in \mathbb{P}_{r}(I)$,
(2) $\quad \Pi_{r} f\left(x_{i}\right)=y_{i}, \quad \forall i=1, \ldots, N_{r} \quad\left(x_{i} \neq x_{j}\right.$ for $\left.i \neq j\right)$

Prop. $\exists!\Pi_{r} f \in \mathbb{P}_{r}(I)$ that interpolates $\left\{y_{i}\right\}_{i}$ at the $\left\{x_{i}\right\}_{i}$
\rightarrow ! (Uniqueness) as if there were two, their difference would be a polynomial of degree $\leq r$ (here $N_{r}=r+1$) with $r+1$ zeros in I, so it would be identically zero on I.
$\rightarrow \exists$ (Existence) by construction

$$
\Pi_{r} f(x)=\sum_{k=1}^{N_{r}} y_{k} \varphi_{k}(x), \quad \varphi_{k}(x)=\prod_{\substack{j=1 \\ j \neq k}}^{N_{r}} \frac{\left(x-x_{j}\right)}{\left(x_{k}-x_{j}\right)}
$$

φ_{k} is the Lagrangian ${ }^{1}$ polynomial in $\mathbb{P}_{r}(I)$ associated with x_{k}
$\left\{\varphi_{k}\right\}$ is the basis of $\mathbb{P}_{r}(I)$ in duality with the values at the $\left\{x_{k}\right\}$

$$
\varphi_{k}\left(x_{j}\right)=\delta_{j, k}= \begin{cases}1 & j=k \\ 0 & j \neq k\end{cases}
$$

${ }^{1}$ Giuseppe Ludovico De la Grange Tournier (1736-1813)

To compute the function φ_{k}

To compute φ_{k} with a general technique we can

- choose a basis $\left\{\psi_{\ell}\right\}$ in $\mathbb{P}_{r}(I)$ and set $(V)_{j, \ell}=\psi_{\ell}\left(x_{j}\right)$
- write $\varphi_{k}(x)=\sum_{\ell=1}^{N_{r}} c_{\ell}^{k} \psi_{\ell}(x)$
- find the vector \mathbf{c}^{k} of coefficient c_{ℓ}^{k} by solving $V \mathbf{c}^{k}=\mathbf{e}_{k}$.
V is the generalised V andermonde matrix ${ }^{2}$ as if $\psi_{\ell}(x)=x^{\ell-1}$ then

$$
\operatorname{det}(V)=\operatorname{det}\left(\begin{array}{cccc}
1 & x_{1} & \ldots & x_{1}^{r} \\
1 & x_{2} & \ldots & x_{2}^{r} \\
\ldots & \ldots & \ldots & \ldots \\
1 & x_{N_{r}} & \ldots & x_{N_{r}}^{r}
\end{array}\right)=\prod_{1 \leq j \leq \ell \leq N_{r}}\left(x_{\ell}-x_{j}\right)
$$

cond (V) matters (for high r) and it depends on the basis $\left\{\psi_{\ell}\right\}$

[^0]
Runge phenomenon ${ }^{4}$

The approximation of f by $\Pi_{r} f$ may give bad results ${ }^{3}$

$$
\lim _{r \rightarrow+\infty}\left\|f-\Pi_{r} f\right\| \neq 0 \quad \text { if } f(x)=\frac{1}{\left(1+x^{2}\right)} \text { on } I=[-5,5]
$$

${ }^{3}$ Maria Gaetana Agnesi (1718-1799), look for "Witch of Agnesi"
${ }^{4}$ Carl David Tolmé Runge (1856-1927) discovered it in 1901

Introduction
$n=1$ and $k=0$
$n>1$ and $k=0$
$n=1$ and $k=1$
Polynomial differential forms
Degrees of freedom

Runge phenomenon

Taking other distributions of points, things improve.

The distribution of $\left\{x_{i}\right\}$ has to be optimized! Yes, but how ?

The Lebesgue ${ }^{5}$ constant \wedge

Prop. There exists a constant Λ such that

$$
\left\|f-\Pi_{r} f\right\| \leq(1+\Lambda)\left\|f-f^{*}\right\|
$$

where $\|g\|=\sup _{x \in I}|g(x)|$ and $\left\|f-f^{*}\right\|=\inf _{g \in \mathbb{P}_{r}(I)}\|f-g\|$
Proof.

$$
\begin{aligned}
\left\|f-\Pi_{r} f\right\| & =\left\|f-f^{*}+f^{*}-\Pi_{r} f\right\| \\
& =\left\|f-f^{*}+\Pi_{r} f^{*}-\Pi_{r} f\right\| \\
& \leq\left\|f-f^{*}\right\|+\left\|\Pi_{r}\left(f-f^{*}\right)\right\| \\
& \leq\left(1+\left\|\Pi_{r}\right\|\right)\left\|f-f^{*}\right\| \leq(1+\Lambda)\left\|f-f^{*}\right\| .
\end{aligned}
$$

since $\left\|\Pi_{r}\right\|=\sup _{g,\|g\|=1}\left\|\Pi_{r} g\right\|$ and

$$
\left\|\Pi_{r}\right\|=\sup _{g,\|g\|=1} \max _{x \in I}\left|\sum_{i} g\left(x_{i}\right) \varphi_{i}(x)\right| \leq \max _{x \in I} \sum_{i}\left|\varphi_{i}(x)\right|=\Lambda
$$

Λ is the condition number for the interpolation problem
Prop. If $\left\{\tilde{y}_{i}\right\}$ are perturbations of $\left\{y_{i}\right\}$ with $\max _{i}\left|y_{i}-\tilde{y}_{i}\right| \leq \epsilon$, then

$$
\left\|\Pi_{r} f-\Pi_{r} \tilde{f}\right\| \leq \epsilon \Lambda
$$

where $\Pi_{r} \tilde{f}$ interpolates $\left\{\tilde{y}_{i}\right\}$

Proof.

$$
\begin{aligned}
\left\|\Pi_{r} f-\Pi_{r} \tilde{f}\right\| & =\max _{x \in I}\left|\sum_{i}\left(y_{i}-\tilde{y}_{i}\right) \varphi_{i}(x)\right| \\
& \leq\left(\max _{i}\left|y_{i}-\tilde{y}_{i}\right|\right)\left(\max _{x \in I} \sum_{i}\left|\varphi_{i}(x)\right|\right) \leq \epsilon \Lambda .
\end{aligned}
$$

* Small changes on y_{i} yield small changes on $\Pi_{r} f$ only if Λ is small

Remarks

We have $\lim _{r \rightarrow+\infty}(1+\Lambda)\left\|f-f^{*}\right\|=\infty .0$

* If Λ grows faster in r than the best-fit error dies away, convergence in r may be impossible to attain (cf. Runge)
* If Λ grows slowly with r, then $\Pi_{r} f$ is as good as the f^{*} ($\Pi_{r} f$ is easier than f^{*} to compute !)
* Λ does not depend on the basis $\left\{\psi_{\ell}\right\}$ used to have small cond (V)
* Λ depends heavily on the distribution of points x_{i} in $/$

Introduction
$n=1$ and $k=0$ $n>1$ and $k=0$ $n=1$ and $k=1$ Polynomial differential forms

How to compute $\Lambda=\max _{x \in I} \sum_{i=1}^{N_{r}}\left|\varphi_{i}(x)\right|$?
We replace the interval $/$ by a discrete repres. of same type as $\left\{x_{i}\right\}$

- $S=\left\{z_{q}\right\}$ is a finite set of points $z_{q} \in I$
- $\operatorname{card}(S) \gg N_{r}$
and compute ${ }^{6} \Lambda \approx \Lambda_{h}=\max _{z_{q} \in S} \sum_{i=1}^{N_{r}}\left|\varphi_{i}\left(z_{q}\right)\right|$

${ }^{6}$ If $S \equiv\left\{x_{i}\right\}$, then $\Lambda_{h}=1$.

Polynomial interpolation of a scalar field over a n-simplex $T \subset \mathbb{R}^{n}$, with $n>1$
T is a triangle (2-simplex) or a tetra (3-simplex)

Runge phenomenon in a triangle with equally spaced points

(a) Witch of Agnesi

(c) Degree 9

(b) Degree 6

(d) Degree 12

Figure: From the PhD of Michael James Roth, Univ. of Victoria, 2005

Which distribution of points in a n-simplex ?

Straightforward extension to higher dimension on tensorial domains (products of 1D intervals)

What can we do on n-simplices ?
Lebesgue points minimizing Λ are not known in 2D and 3D
Fekete points ${ }^{7}$ are among the best for $r>10$ and $\Lambda \leq N_{r}$

Warp\&blend points \approx Fekete points and have explicit formula

$$
\Lambda=\max _{(x, y) \in T} \sum_{i}\left|\varphi_{i}(x, y)\right|, \quad(n=2)
$$

[^1]
Fekete points ($N=r$ and $n=N_{r}$)

Let $\mathcal{P}_{N}(T)$ the space of polynomials over T of degree $\leq N$ and $\operatorname{dim} \mathcal{P}_{N}=n$

Given the basis $\left\{\psi_{j}\right\}_{j=1}^{n}$ of $\mathcal{P}_{N}(T)$, Fekete's points $\left\{\mathbf{x}_{i}\right\}$ maximize over T the determinant of the Vandermonde matrix V, with $V_{i j}=\psi_{j}\left(\mathbf{x}_{i}\right)$, $i, j=1, \cdots, n$.

The cardinal function associated to the node $\left(\xi_{i}, \eta_{i}\right)$ is

$$
\phi_{i}(x, y)=\frac{\operatorname{det} V\left(x_{1}, y_{1}, \ldots, x_{i-1}, y_{i-1}, x, y, x_{i+1}, y_{i+1}, \ldots, x_{n}, y_{n}\right)}{\operatorname{det} V\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)}, \quad i=1, n
$$

We remark that $\left|\phi_{i}(x, y)\right| \leq 1$.

Fekete points $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}$ do not depend on the choice of the basis $\left\{\psi_{j}\right\}_{j=1}^{n}$.

Introduction
Interpolation of differential forms Numerical results

Conclusions Last achievements
$n=1$ and $k=0$
$n>1$ and $k=0$
$n=1$ and $k=1$
Polynomial differential forms
Degrees of freedom

The Lebesgue constant $k=0, n=2$

Francesca Rapetti

Runge phenomenon in a triangle with Fekete points

(a) Witch of Agnesi

(c) Degree 9

(b) Degree 6

(d) Degree 12

Figure: From the PhD of Michael James Roth, Univ. of Victoria, 2005

If instead of values at points, we used averages ...

$$
I=\bigcup_{i=1}^{N_{r}-1}\left[x_{i}, x_{i+1}\right]=\bigcup_{i=1}^{N_{r}-1} \sigma_{i}, \quad a_{i}=\int_{x_{i}}^{x_{i+1}} f d x=\int_{\sigma_{i}} f d x
$$

We have $\left\{a_{i}\right\}$ averages on sub-intervals $\left\{\sigma_{i}\right\}$ in $I, i=1, \ldots, N_{r}-1$
** We wish to represent $\left\{a_{i}\right\}$ by a polynomial function $\Pi_{r-1} f$ and here, we construct $\Pi_{r-1} f$ that interpolates the $\left\{a_{i}\right\}$ on the $\left\{\sigma_{i}\right\}^{* *}$

We assume $\sigma_{i} \cap \sigma_{j}=\emptyset$, for $i \neq j$, thus $\Pi_{r-1} f$ is function such that
(1) $\quad \Pi_{r-1} f \in \mathbb{P}_{r-1}(I)$,
(2) $\quad \int_{\sigma_{i}} \Pi_{r-1} f d x=\int_{\sigma_{i}} f d x, \quad \forall i=1, \ldots, N_{r}-1$

$$
\Pi_{r-1} f(x)=\sum_{i=1}^{N_{r}-1}\left(\int_{\sigma_{i}} f d x\right) \varphi_{i}(x), \quad \int_{\sigma_{j}} \varphi_{i} d x=\delta_{i, j}
$$

To compute φ_{i} use general technique (as before)

- choose a basis $\left\{\psi_{\ell}\right\}$ in $\mathbb{P}_{r-1}(I)$ and set $(V)_{j, \ell}=\int_{\sigma_{j}} \psi_{\ell} d x$
- write $\varphi_{i}(x)=\sum_{\ell=1}^{N_{r}-1} c_{\ell}^{i} \psi_{\ell}(x)$
- find the vector \mathbf{c}^{i} of coefficient c_{ℓ}^{k} by solving $V \mathbf{c}^{i}=\mathbf{e}_{i}$.

Runge phenomenon if $\left\{\sigma_{i}\right\}$ is a uniform distribution in I

Similar estimates on the interpolation error ... the norm changes

Generalized Lebesgue constant Λ^{1} (Alonso \& R., JCP'21)

The mass ${ }^{8}$ of a segment s (1-simplex) is $|s|_{0}=\operatorname{diam}(s)$
If $s=\sum_{j \in J} c_{j} s_{j}$ then $|s|_{0}=\sum_{j \in J}\left|c_{j}\right|\left|s_{j}\right|_{0}$

$$
\Lambda^{1}=\max _{s \subset 1} \frac{1}{|s|_{0}} \sum_{i}\left|\sigma_{i}\right|_{0}\left|\int_{\sigma_{i}} \varphi_{i} d x\right| \quad\left(\varphi_{i} d x \text { is a } 1-\text { form }\right)
$$

* the mass of any point x (0-simplex) is $|x|_{0}=1$
* $\int_{x} \varphi_{i} d x=\varphi_{i}(x)$
* If $\sigma_{i} \leadsto x_{i}$ and $s \leadsto x$, then $\Lambda^{1} \leadsto \Lambda^{0}=\Lambda \quad\left(\|g\|_{0} \leadsto\|g\|\right)$

We can still prove that

$$
\left\|f-\Pi_{r-1} f\right\|_{0} \leq\left(1+\Lambda^{1}\right)\left\|f-\tilde{f}^{*}\right\|_{0}, \quad\|g\|_{0}=\sup _{s \neq 0, s \subset 1} \frac{\left|\int_{s} g d x\right|}{|s|_{0}}
$$

${ }^{8}$ The mass $|\sigma|_{0}$ of a k-simplex σ is its k-dimensional Hausdorff measure.

Estimated Λ_{h}^{0} and Λ_{h}^{1} for $n=1$

Estimated generalised Lebesgue constants in an interval associated with the uniform and the GLLobatto distribution of nodes.

$k=0$	$\Lambda_{U_{n}}$	$\Lambda_{L b}$
3	1.63	1.66
4	2.21	1.80
5	3.11	1.99
6	4.55	2.08
7	6.93	2.20
8	10.95	2.27
9	17.85	2.36
10	29.90	2.42
11	51.21	2.49
12	89.32	2.54
13	158.09	2.60
14	283.18	2.64

$k=1$	$\Lambda_{U n}$	$\Lambda_{L b}$
3	3.32	2.66
4	5.31	3.15
5	8.47	3.54
6	13.71	3.85
7	22.68	4.12
8	38.30	4.34
9	65.97	4.52
10	115.57	4.67
11	205.40	4.79
12	369.40	4.89
13	670.91	4.97
14	1228.48	5.03

In the first column the number of subintervals. On the left it is the degree of the polynomial differential form, on the right it is the degree plus one.

Λ_{h}^{0} and Λ_{h}^{1} for $n=1$

Francesca Rapetti

Polynomial interpolation of any field over
a n-simplex $T \subset \mathbb{R}^{n}$

Can we still talk about Lebesgue constant, etc. ?

Fields of any type

Let $T \subset \mathbb{R}^{3}$ be a tetrahedron.

$$
\begin{aligned}
& \text { grad curl div } \\
& H^{1}(T) \quad \longrightarrow H(\text { curl; } T) \quad \longrightarrow H(\operatorname{div} ; T) \quad \longrightarrow \quad L^{2}(T) \\
& L_{r}(T) \quad \longrightarrow \quad N_{r}(T) \quad \longrightarrow \quad R T_{r}(T) \quad \longrightarrow \quad D P_{r-1}(T) \\
& L_{r}(T) \text { is } \mathbb{P}_{r}(T)=W_{r}^{0}(T) \\
& N_{r}(T) \text { is } W_{r}^{1}(T) \\
& R T_{r}(T) \text { is } W_{r}^{2}(T) \\
& D P_{r-1}(T) \text { is discontinuous- } \mathbb{P}_{r-1}(T)=W_{r-1}^{3}(T) .
\end{aligned}
$$

They can be identified with the spaces of trimmed polynomial differential k-forms

$$
\mathcal{P}_{r}^{-} \wedge^{k}(T) \quad k=0,1,2,3 \text { respectively. }
$$

Notation

Given a 3-simplex $T=\left[\mathbf{v}_{0}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]$ and $j \in\{0,1,2,3\}$

- $\Delta_{j}(T)$ denotes the set of j-subsimplices of T;
- $\lambda_{j}(\mathbf{x})$ denote the barycentric coordinates of the point \mathbf{x} with respect to the vertices of t.
The principal lattice of order r of t is the set of points

$$
\Sigma_{r}(t)=\left\{\mathbf{x} \in t: \lambda_{j}(\mathbf{x}) \in\left\{0, \frac{1}{r}, \ldots \frac{r-1}{r}, 1\right\} \quad \forall j \in\{0,1,2,3\}\right\}
$$

Figure: The principal lattice of a triangle for $r=4$.

$L_{r}(T)$: degrees of freedom

Classical degrees of freedom for $f_{h} \in L_{r}(T)$ are the values (weights) of f_{h} at the points of the principal lattices of T

$$
f_{h}\left(\mathbf{x}_{i}\right) \text { for each } \mathbf{x}_{i} \in \Sigma_{r}(T)
$$

Alternative degrees of freedom are the moments:
Nodal $\varphi\left(\mathbf{v}_{i}\right)$ for $i=0,1,2,3$;
Edge $\int_{e} \varphi q$ for each $e \in \Delta_{1}\left(\mathcal{T}_{h}\right)$ and $q \in \mathbb{P}_{r-2}(e)$;
Face $\int_{f} \varphi q$ for each $f \in \Delta_{2}\left(\mathcal{T}_{h}\right)$ and $q \in \mathbb{P}_{r-3}(f)$;
Element $\int_{t} \varphi q$ for each $t \in \mathcal{T}_{h}$ and $q \in \mathbb{P}_{r-4}(t)$.
There is a clear correspondence with "nodal", "edge", "face" and "element" points of the principal lattice of T.

How is it possible to define weights for other types of fields ?

Introduction
$n=1$ and $k=0$
$n>1$ and $k=0$
$n=1$ and $k=1$
Polynomial differential forms
Degrees of freedom

Figure: D.N.Arnold, Periodic table of FEs

Weights for fields in $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$

The weights were introduced by R. and Bossavit (2009).
The degrees of freedom for a k-form $\omega \in \mathcal{P}_{r}^{-} \Lambda^{k}$ are integrals ${ }^{9}$ on k-chains $\sigma \in C_{k}(T)$:

$$
\int_{\sigma} \omega
$$

Consider in particular the integrals on the so-called small k-simplices associated with the principal lattice of order r of T

$$
\sigma=\sum_{\alpha, s} c_{\{\alpha, s\}}\{\alpha, s\}, \quad \int_{\sigma} \omega=\sum_{\alpha, s} c_{\{\alpha, s\}} \int_{\{\alpha, s\}} \omega
$$

${ }^{9}$ If $k=0, \sigma$ is a point and $\int_{\sigma} \omega=\omega(\sigma)$. If $k=1,2$ then $\int_{\sigma} \omega$ is the circulation or the flux on σ respectively.

Small k-simplices in a simplex T (R. \& Bossavit, 2009)

- The small volumes are $\frac{1}{r}$ homothetic to T and their vertices are points of the principal lattice $\Sigma_{r}(T)$
- Small edges and small faces are edges and faces of the small volumes. Small nodes are the points of $\Sigma_{r}(T)$.
- A small k-simplex is $\{\alpha, s\}, \alpha \in \mathcal{I}(r-1, n), s \in \Delta_{k}(T)$.

For $r=3$ (left): small edge $\left\{(1,1,0,0),\left[v_{0}, v_{1}\right]\right\}$,
small face $\left\{(0,1,0,1),\left[v_{1}, v_{2}, v_{3}\right]\right\}$, small tetra $\{(0,0,0,2), t\}$.

Unisolvence

The integrals of a k-form $\omega \in \mathcal{P}_{r}^{-} \Lambda^{k}$ on the small k simplices of T are determinant, namely, if $X_{r}^{k}(T)$ denotes the set of small k simplices of order r in T then

$$
\text { if } \omega \in \mathcal{P}_{r}^{-} \Lambda^{k}, \quad \int_{\sigma} \omega=0 \quad \forall \sigma \in X_{r}^{k} \Rightarrow \omega=0
$$

For the proof see Christiansen and R. (2016).
However, for $k=1$ and $k=2$ in \mathbb{R}^{3}, the number of elements of X_{r}^{k} is greater than the dimension of $\mathcal{P}_{r}^{-} \Lambda^{k}$.
Unisolvence for $k=1,2$: find $S_{r}^{k} \subset X_{r}^{k}$ s.t. $\# S_{r}^{k}=\operatorname{dim} P_{r}^{-} \Lambda^{k}$. (See Alonso, Bruni Bruno and R. (2019).)

Example

Sets of unisolvent small edges $(k=1)$.

- 2D $(r=4)$ (interior of a face f, small edges $\|$ to 2 sides of f)

- 3D $(r=3)$ (interior of T, small edges $\|$ to 3 sides of T)

Interpolation of differential k-forms

- A set S_{r}^{k} of k-simplices $\sigma=\{\boldsymbol{\alpha}, s\} \boldsymbol{\alpha} \in \mathcal{I}(r-1, n), s \in \Delta_{k}(T)$, is unisolvent in $\mathcal{P}_{r}^{-} \Lambda^{k}$ then the weight matrix V is invertible

$$
V_{i, j}=\int_{\sigma_{i}} \psi^{\sigma_{j}}, \quad i, j=1, \ldots, \# S_{r}^{k}, \quad \psi^{\sigma}=B_{\alpha}^{n} \omega^{s}
$$

$B_{\alpha}^{n}=\binom{n}{\alpha} \lambda^{\alpha}$ Bernstein polyn., ω^{s} Whitney k-form of deg. 1.

- Given a set S_{r}^{k} of k-simplices that are unisolvent in $\mathcal{P}_{r}^{-} \Lambda^{k}$ the associated canonical basis $\left\{\varphi_{\sigma}\right\}_{\sigma \in S_{r}^{k}}$ is such that

$$
\int_{\sigma^{\prime}} \varphi_{\sigma}=\left\{\begin{array}{ll}
1 & \text { if } \sigma=\sigma^{\prime} \\
0 & \text { otherwise }
\end{array} \quad \psi^{\sigma_{j}}=\sum_{\ell} V_{\ell, j} \varphi_{\sigma_{\ell}}\right.
$$

Interpolation of differential k-forms

- If ω is a differential k-form we denote $\Pi_{r}^{k} \omega$ the unique element of $\mathcal{P}_{r}^{-} \Lambda^{k}$ such that

$$
\int_{\sigma} \omega=\int_{\sigma} \Pi_{r}^{k} \omega \quad \forall \sigma \in S_{r}^{k} .
$$

- If $\left\{\varphi_{\sigma}\right\}_{\sigma \in S_{r}^{k}}$ is the canonical basis associated with S_{r}^{k} then

$$
\Pi_{r}^{k} \omega=\sum_{\sigma \in S_{r}^{k}}\left(\int_{\sigma} \omega\right) \varphi_{\sigma}
$$

Interpolation of differential k-forms: Lebesgue constant

 Let ω and $\widetilde{\omega}$ be two differential k-forms such that for any k-simplex σ of measure $|\sigma|$$$
\frac{1}{|\sigma|}\left|\int_{\sigma}(\omega-\widetilde{\omega})\right| \leq \epsilon . \quad 10
$$

Then

$$
\begin{equation*}
\frac{1}{|c|}\left|\int_{c}\left(\Pi_{r}^{k} \omega-\Pi_{r}^{k} \widetilde{\omega}\right)\right| \leq \epsilon \sum_{\sigma \in S_{r}^{k}} \frac{1}{|c|}|\sigma|\left|\int_{c} \varphi_{\sigma}\right| . \tag{1}
\end{equation*}
$$

The generalised Lebesgue constant for differential k-forms is defined as

$$
\Lambda\left(S_{r}^{k}\right):=\sup _{c} \sum_{\sigma \in S_{r}^{k}} \frac{1}{|c|}|\sigma|\left|\int_{c} \varphi_{\sigma}\right| .
$$

being $\left\{\varphi_{\sigma}\right\}_{\sigma \in S_{r}^{k}}$ the canonical basis associated with S_{r}^{k}.
(See Alonso and Rapetti (2021)).
${ }^{10}|\omega|_{0}:=\sup _{c} \frac{1}{|c|}\left|\int_{c} \omega\right|$ is a norm for regular k - forms.

Proof of (1)

$$
\begin{gathered}
\frac{1}{|c|}\left|\int_{c}\left(\Pi_{r}^{1} \omega-\Pi_{r}^{1} \widetilde{\omega}\right)\right|=\frac{1}{|c|}\left|\int_{c} \sum_{\sigma \in S_{r}^{k}}\left(\int_{\sigma}(\omega-\widetilde{\omega})\right) \varphi_{\sigma}\right| \\
=\frac{1}{|c|}\left|\sum_{\sigma \in S_{r}^{k}} \int_{\sigma}(\omega-\widetilde{\omega}) \int_{c} \varphi_{\sigma}\right| \leq \frac{1}{|c|} \sum_{\sigma \in S_{r}^{k}}\left|\int_{\sigma}(\omega-\widetilde{\omega})\right|\left|\int_{c} \varphi_{\sigma}\right| \\
\quad \leq \frac{1}{|c|} \sum_{\sigma \in S_{r}^{k}} \epsilon|\sigma|\left|\int_{c} \varphi_{\sigma}\right|=\epsilon \sum_{\sigma \in S_{r}^{k}} \frac{1}{|c|}|\sigma|\left|\int_{c} \varphi_{\sigma}\right|
\end{gathered}
$$

Interpolation nodes and edges on the simplex

We investigate if spatial distributions of nodes that are suitable for high-order Lagrange interpolation on the triangle and tetrahedron ${ }^{11}$ induce (by a simplicial map) small k-simplices suitable for the interpolation in $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$.

Interpolation nodes: Uniform, Lobatto, and symmetrised Lobatto.

[^2]
Estimated Lebesgue constant

We estimate the generalised Lebesgue constant for different configurations of nodes.

- We consider a "reference" mesh \mathcal{T}_{R} of t and compute

$$
\max _{c \in \Delta_{k}\left(\mathcal{T}_{R}\right)} \sum_{\sigma \in S_{r}^{k}} \frac{1}{|c|}|\sigma|\left|\int_{c} \varphi_{\sigma}\right| \approx \Lambda\left(S_{r}^{k}\right) .
$$

We compare the classical results for $k=0$ with those obtained for $k=1$ in dimension 1,2 and 3 when increasing the polynomial degree.

Estimated Lebesgue constant: $d=2, k=0$

$k=0$ r	uniform in 2D $\Lambda_{U n}$	nonuniform in 2D $\Lambda_{\text {Lb sym }}$							
$\Lambda_{W B}$				$	$	3	2.27	2.11	2.11
:---:	:---:	:---:	:---:						
4	3.47	2.66	2.66						
5	5.45	3.14	3.12						
6	8.75	3.87	3.70						
7	14.35	4.66	4.27						
8	24.01	5.93	4.96						
9	40.92	7.39	5.74						
10	70.89	9.83	6.67						
11	124.53	12.92	7.90						
12	221.41	17.78	9.36						

Lebesgue constants in a triangle T associated with a uniform and nonuniform (symmetrised Lobatto and "warp and blend") distribution of nodes for different polynomial degrees $r \geq 3$, as computed in Warburton (2006).

Estimated Lebesgue constant: $n=2, k=1$

$k=1$	uniform in 2D	nonuniform in 2D		
r	$\Lambda_{U_{n}}$	$\Lambda_{L b}$	$\Lambda_{L b \text { sym }}$	$\Lambda_{W B}$
3	7.92	6.67	6.71	6.71
4	12.17	9.17	8.16	8.16
5	18.92	14.51	9.61	9.60
6	29.95	23.49	11.80	11.62
7	48.31	41.55	14.71	14.51
8	79.45	77.15	18.13	17.65
9	133.03	154.18	20.99	20.32
10	226.20	327.36	28.74	24.44
11	389.59	827.80	38.15	29.19
12	678.10	2142.45	52.97	35.85

Lebesgue constants in a triangle T, associated with uniform and nonuniform distributions of small edges for different polynomial degrees.

The ending points of the small edges are either in the uniform or in the nonuniform (Lobatto, symmetrised Lobatto and "warp and blend") sets.

Estimated Lebesgue constant: $n=3, k=0$

$k=0$	uniform in 3D	nonuniform in 3D	
r	$\Lambda_{U n}$	$\Lambda_{\text {Lb sym }}$	$\Lambda_{W B}$
3	2.94	2.93	3.11
4	4.88	4.07	4.07
5	8.09	5.38	5.32
6	13.66	7.53	7.01
7	23.38	10.17	9.21
8	40.55	14.63	12.54
9	71.15	20.46	17.02

Lebesgue constants in a tetrahedron T associated with a uniform and nonuniform (symmetrised Lobatto and "warp and blend") distributions of nodes for different polynomial degrees $r \geq 3$, as computed in Warburton (2006).

Estimated Lebesgue constant: $n=3, k=1$

$k=1$	uniform in 3D	nonuniform in 3D		
r	$\Lambda_{U n}$	$\Lambda_{L b}$	$\Lambda_{L b \text { sym }}$	$\Lambda_{W B}$
3	11.23	11.40	10.80	10.80
4	18.04	22.38	15.25	15.25
5	29.37	69.45	20.09	20.79
6	46.76	274.58	26.73	28.32
7	74.19	1168.36	36.57	36.03
8	127.53	5433.19	48.66	45.82
9	218.19	26323.67	61.90	57.24

Lebesgue constants in a tetrahedron T, associated with uniform and nonuniform distributions of small edges for different polynomial degrees $r \geq 3$. The ending points of the small edges are either in the uniform or in the nonuniform (Lobatto, symmetrised Lobatto or "warp and blend") sets.

Legend

- $k=0 \sim * \quad k=1 \sim \square$
- Uniform nodes \leadsto red Nonuniform nodes \leadsto blue (or cyan)
- $d=1 \leadsto \cdots$
$d=2 \sim-\quad d=3 \sim-\cdot$

The $*$ lines and the \square lines are almost parallel.

Estimated Lebesgue constant: $k=0$ and $k=1$

Estimated Lebesgue constant for $\mathrm{n}=1,2$, and 3

Conclusions

The $*$ lines and the \square lines are essentially parallel.
So, the well-known results for $k=0$ hold also true for $k=1$:

- the interpolation on uniform distribution of the support of the degrees of freedom is not stable on the polynomial degree;
- the problem increases with the dimension of the space;
- the Lebesgue constant "measures" the stability on the polynomial degree of the polynomial interpolation problem;
- the distribution of the supports that minimises the Lebesgue constant is not uniform.

For $k=1$ (and $k=2$), the generalized Lebesgue constant depends on the shape of the element.

Last achievements

Weights

allow to extend naturally the matrix of the gradient operator: if $\left\{\phi_{i}^{0}\right\}$ is the cardinal basis in L_{r} and $\left\{z_{j}^{1}\right\}$ is the one for N_{r}, verifying

$$
\phi_{i}^{0}\left(n_{k}\right)=\delta_{i, k}, \quad \int_{e_{\ell}} z_{j}^{1}=\delta_{j, \ell}
$$

then, $\forall \varphi_{h} \in L_{r}$ and $\forall w_{h} \in N_{r}$ we have, respectively,

$$
\varphi_{h}=\sum_{n_{i}} \varphi_{h}\left(n_{i}\right) \phi_{i}^{0}, \quad w_{h}=\sum_{e_{\ell}}\left(\int_{e_{j}} w_{h}\right) z_{j}^{1}
$$

In particular:

$$
\operatorname{grad} \varphi_{h}=\sum_{e_{j}}\left(\int_{e_{j}} \operatorname{grad} \varphi_{h}\right) z_{j}^{1}=\sum_{e_{j}}\left(\varphi_{h}\left(n_{j e n d}\right)-\varphi_{h}\left(n_{j i n i}\right)\right) z_{j}^{1}
$$

Graph techniques

Related with this topic recently we have

- proposed an algorithm for the construction of the high order tree and, in the case of not simply connected domains, a high order belted tree;

- proved that there exists a particular set of moments and an isomorphism between weights and this set of moments that preserves the matrix of the grad operator;
- used the tree-cotree decomposition for the construction of a basis of divergence free Raviart-Thomas finite element space of arbitrary polynomial degree.

References

- A. Alonso Rodríguez, L. Bruni Bruno and F. Rapetti, Towards nonuniform distributions of unisolvent weights for Whitney finite element spaces on simplices: the edge element case. Calcolo, 59 (2022).
- A. Alonso Rodríguez and F. Rapetti, On a generalization of the Lebesgue's constant, J. Comput. Phys., 428 (2021).
- D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15 (2006).
- M. G. Blyth, H. Luo and C. Pozrikidis, A comparison of interpolation grids over the triangle or the tetrahedron, J. Engrg, Math., 56 (2006).
- S. H. Christiansen and F. Rapetti, On high order finite element spaces of differential forms, Math. Comp., 85 (2016).
- R. Pasquetti and F. Rapetti, Spectral element methods on unstructured meshes: Which interpolation points ?, Numer. Algor., 55 (2010).
- F. Rapetti and A. Bossavit, Whitney forms of higher degree, SIAM J. Numer. Anal., 47, (2009).
- T. Warburton, An explicit construction of interpolation nodes on the simplex, J. Engrg. Math., 56 (2006).

References

- E. De Los Santos, A. Alonso Rodríguez, and F. Rapetti, Construction of a spanning tree for high-order edge elements, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 36, (2023).
- A. Alonso Rodríguez, J Camano, E. De Los Santos and F. Rapetti, Weights for moments' geometrical localization: a canonical isomorphism, https://hal.science/hal-04443059.
- A. Alonso Rodríguez, J Camano, E. De Los Santos and F. Rapetti, Basis for high order divergence-free finite element space, https://hal.science/hal-02429500

[^0]: ${ }^{2}$ Alexandre-Théophile Vandermonde (1735-1796)

[^1]: ${ }^{7}$ Michael Fekete (1886-1957) Hungarian mathematician

[^2]: ${ }^{11}$ See Blyth, Luo, and Pozrikidis (2006), Warburton (2006).

