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Cross-diffusion systems

o multi-component systems arise in physics, ecology, biology, and chemistry
e.g. gas mixtures, competing population species, pattern formation, chemical reactions

o cross diffusion: the flux of one component is driven by the gradient of another
(uphill diffusion, segregation)
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Model problem

e space-time cylinder Q7 = Q x (0,T], Q C R? Lipschitz polytope, d € {1,2,3}

o densities/concentrations p := (p1,...,pn) : Qr — RY, N > 1 number of species
o diffusion matrix A : RN — RVNXN

e reaction f: RNV — RN

reaction-diffusion system
Oep— Vo (A(p)Vp) = f(p) inQr
(A(p)Vp)no =0 on 00 x (0,T)
p=po  onQx{0}

e AccP (5; RNXN) and f €Y (5; ]RN)7 for a bounded domain D C (0, 00)
® pp €D ae. in
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Example: the Shigesada-Kawasaki-Teramoto system

[Shigesada-Kawasaki-Teramoto, 1979]

e modeling spatial segregation and pattern formation of (two) competing species
including cross-diffusion effects
@ applications: ecology, environmental sciences, conservation biology

SKT system (/N = 2)

o)
e _ a10Ap; — V - (pl (2a11Vp1 + a12Vp2) + al2p2vp1) = p1(bio — b11p1 — b12p2)

ot
o)
% — a20lp2 — V- <p2(a21Vp1 + 2a22Vp2) + a21P1VP2) = p2(b20 — b21p1 — b22p2)
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Figure: SKT system with data as in [Jiingel & Zurek, 2021] (p1|,_, two bumps, p2),_, = 0.5):
p1 (left) and pa (right) at t = 0.5 (top) and ¢ = 10 (bottom).
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Main challenges

@ nonlinearity and coupled nature of equations

o the diffusion matrix A(-) may not be symmetric or positive definite
@ a maximum principle may not be available
°

positivity /boundedness of solutions

cross-diffusion systems with entropy structure

— boundedness-by-entropy framework [Jiingel, 2015]
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Boundedness- ntropy framework

[Jiingel, 2015]

Aeco (5; ]RNXN) and f € CY (f; RN), for a bounded domain D C (0, c0)

assumptions

there exists a convex function s € C2 (D; (0,00)) N C° (D; (0,00)) satisfying

o s’ : D — RY invertible with inverse u := (s')~! € ¢! (]RN;'D)
o there exists a constant v > 0 such that

z- (s"(p)A(p)z) > v |z|” vzeRY, peD  (“coerd”)
o there exists a constant Cy > 0 such that
£(p) s'(p)<C; VpED  (“contf”)

o the initial datum satisfies py € D a.e. in Q so that

/ s(pg)de < oo
Q

s(+) entropy density function

entropy H(p) :z/g}s(p)dm

Discretization of cross-diffusion systems
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Boundedness-by-entropy framework

o introduce the entropy variable w := s’(p)
o s invertible = p =(s')"}(w) = u(w)
e D bounded, u € C! (RN; D) = pointwise boundedness of u(w) = p
(no max. princ. used)

e regularity of s = Vw =V (s'(p)) = s’ (p)Vp (chain rule)

entropy-stability estimate

test with w = s’(p), use the chain rule and “coerA”, “contf”:

i
/ el P +n,/ IV P11, oy At < / s(po)de +7C4|Q]  forall0<7<T
Q 0 Q
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Example: the Shigesada-Kawasaki-Teramoto system S IgﬁrSI’[at

0,
% —a10Apy — V - (p1(2a11Vp1 +a12Vp2) + (112ﬂ2vpl) = p1(b1o — b11p1 — b12p2)
0,
% — ag0Aps — V- (pg(azlvpl + 2a22Vp2) + a21p1Vp2) = p2(b2o0 — b21p1 — b22p2)

modified Boltzmann-Shannon entropy

s(p) = m1 (p1(logp1 — 1) + 1) + w2 (p2(log p2 — 1) + 1)

with 71, w2 > 0, ma;; = wja;; for i # j (detailed balance condition)

[Chen, Daus, Jiingel, 2018]
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Numerical approximation: desired properties

o arbitrary degrees of approximation (in space)

@ positivity /boundedness of numerical solutions with no postprocessing or slope limiters
o discrete version of the entropy-stability estimate of the continuous problem

@ nonlinearities not appearing within spatial differential operators or interface terms

— natural parallelizable structure and high efficiency

positivity preservation in high-order methods (with no postprocessing/slope limiters)

o [Barrenechea, John, Knobloch, 2024]: recent survey
o [Barrenechea, Georgoulis, Pryer, Veeser, 2023] nodally bound-preserving FEM

@ entropy variable
[Bonizzoni, Braukhoff, Jiingel, Perugia, 2020], [Corti, Bonizzoni, Antonietti, 2023]: IPDG
[Braukhoff, Perugia, Stocker, 2022]: space-time FEM
[Lemaire & Moatti, 2024]: HHO
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A conforming space-time discretization

1
2
3
4

[Braukhoff, Perugia, Stocker, 2022]

. space-time variational formulation
. transformation to entropy variables
. regularization

. monolithic space-time Galerkin discretization

structure preservation

o space-time approach to the proof of existence of bounded, nonnegative weak solutions
(space-time version of the boundedness-by-entropy method, [Jiingel, 2015])

@ space-time continuous Galerkin discretization preserving the entropy structure of the
continuous problem

arbitrary degrees of approximation (in space and time)
positivity /boundedness of numerical solutions with no postprocessing or slope limiters

discrete version of the entropy-stability estimate of the continuous problem

x NN SN

nonlinearities not appearing within spatial differential operators or interface terms

— natural parallelizable structure and high efficiency
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Auxiliary variables and re-formulation

dtp— Vo (A(p)Vp) = f(p) inQr J
entropy variable w:=s(p), p=(s)""(w)=u(w)
chain rule Vw =V (s'(p)) =s"(p)Vp [Jiingel & Zurek, 2021]

auxiliary variables & re-formulation (recall: p = u(w))
¢:=—-Vw
AP)Ts"(p)o ==~ A(p)Ts" (p) Vp & A(p)T¢ ~ a=-Vp
—_———— —_————
pos. def. pos. def.
q:= A(p)o ~  q= —A(p)Vp

Otp+Vog=f(p)

with boundary and initial conditions:

gong =0 on 9Q x (0,T), p = py on 2 x {0}
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Spatial discretization: LDG method

with boundary and initial conditions

e introduce a triangular mesh 7} of Q, multiply by discontinuous PP test functions
@ the 1st equation is linear — standard DG discretization (wp = {wr})
@ the 4th equation is linear in ¢ — standard DG discretization of V o q

@n = {an} + nrlwnln)

nonlinearities do not appear within spatial differential operators

nonlinearities do not appear within interface (coupling) terms

Discretization of cross-diffusion systems



Spatial discretization: LDG method ; Wl\e/ﬁm'tat

o the 2nd equation is linear in ¢ and local

¢=—-Vw — given wy,, o, is computed by solving
A (u(w))T s (u(w))o = A (u(w))T ¢ 1.ndependent (naturally parallelizable)
" linear problems on each mesh element
g=A(w(w)e @ the 3rd equation is linear in g and local
Oy (u(w)) + Vogq = f(u(w)) — same as above

semidiscrete formulation in operator form

(In® M)Z), = (In ® B)W},
N,(Wp)=), = A,(Wp) Tz,
(In ® M)Qj, = A, (W)

%uh(wh) +(In ® BT)Qp + (In ® )Wy, = Fp,(Wp,)

where Iy denotes the identity matrix of size NV and ® the Kronecker product

o the blue matrices are block diagonal
o the only non-block-diagonal matrices are B and S (standard LDG matrices)

o M block-diagonal mass matrix — eliminate Z; and Qp,
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Spatial discretization: LDG method

(In®@M)Z), = (IN ® BYW},
N, (W), = A,(Wy)T Z),
(In ® M)Q), = Ap(W,)Z),

eliminate Z; and Qp,

1
d system in (Wpy,Xy)
ZUr(Wa) +(In ® BT)Qp + (In ® S)Wy, = Fp(Wp)

theoretical results

e given Wy, the 2nd equation defines ¥ in a unique way

2y =Np(Wi)LA,(W)T (Iy @ M™1B)W),
—
Zp,

e any solution (wp, o) satisfies a space-semidiscrete version of the entropy inequality

Discretization of cross-diffusion systems



Spatial discretization: LDG method

semidiscrete formulation: compact form

d _
auh(wh) + Br(Wi)Wy, = F,(Wp)

with By, := (Iy @ BT M 1) A (W)N ;. (Wi) ™ Ap (W) (Iy © M~ B) + (Iy ® 5)
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Fully discrete formulation

o backward Euler time discretization with time steps 7, 1 < n < N¢
o initialization with the L2 projection of po onto the discrete space
o additional regularization term

e(In @ C)Wy,

with € > 0 and C corresponding to a spatial H’-type DG inner product (£ =1 or 2)
to provide control of wy, in the corresponding norm

fully discrete formulation

° R% := vector representation of ngo; compute W;’l, Ei’l by solving
1 —
Iy © OW3 + = (Un(W5) — RE) + Ba(WE Wi = 7, (Wi
o forn=1,..., Ny — 1, compute WZ’"Jrl, EZ’"Jrl by solving

1 ——
ey ® YW 4+ — (Ln (W) U (Wi ™)) + Br(Wi T hwi

= Fa(W;,")
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Existence of solutions and h-convergence

ny N

@ any solution {’wz n— satisfies a discrete version of the entropy inequality

o forn=0,..., Ny — 1, there exists a solution 'w‘;’n+1 (Leray-Schauder/Schaefer)
o h-convergence: for any n = 1,..., N¢, there exists w®" € H(Q)N with
u (w™) € HY(Q)YN such that, up to a subsequence, as h — 0,
p;" i=u (wy") = po" = u (w) strongly in L™(2) for all 7 € [1, 00)

where {w® ’”}71:[; solves an e-perturbed time-semidiscrete problem and satisfies a
time-discrete entropy inequality
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Full convergence

o this limit problem is the one used in the analysis of [Jiingel, 2015]
e p(&:7) .= piecewise linear reconstruction in time of {ps’"}gio
@ (g, 7)-convergence: there exists a continuous weak solution p to the cross-diffusion
problem such that, up to a subsequence, as (¢, 7) — (0,0),
p5™) = p strongly in L"(0,T; L™ (Q)") for any r < oo & a.e. in Q X (0,T]
Vp'&™) —~ Vp weakly in L2(0,T; [L2(2)4N)
p(SvT) — s_rp(av'r)

— 8yp weakly in L2(0,T; [HY(Q)N])
o

continuous weak solution:
o pe 20, T; H ()N)n B Y0, T; [H ()N))nL" (0, T; L™ (V) for all r < o
@ p(z,t) € D a.e. in Q x (0,7]

@ p(-,t) = pg(-) in the sense of HY ()N

T T } T ) 5 N
° /Owtp,)\)dt-s-/oan(p)Vp.vxdwdt_/O/Q f(p) - Adadt VA e L0, T; HY()N)
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Choice of the regularization term

e H'-type DG inner product if d =1 or d = 2,3 and s” A € C° (D; ]RNXN)
(wn,vR)e ¢=/ whvhdw-i-/ Vbewp, - VDthdiB-i-/ h™ ! [wr]n - [vnlndS
Q Q FE

properties from [Buffa & Ortner, 2009]

e H?-type DG inner product otherwise
(whvvh)C = / wpvpde +/ Vogwp - Vpgupda +/ Hpewp : Hpgupde
Q Q Q
+ [ n U Vhwnl  [VhonldS + [ b~ wnlu - [onInds
Fi Fi
properties from [Bonito, Guignard, Nochetto, Yang, 2023]
o auxiliary result (needed if s” A ¢ CO (D; RNV*N))

DG Sobolev embedding lwnllLeo () S llwnllc

o the assumption that D is bounded can be removed
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Tests 1: One-dimensional porous medium equation

One-dimensional porous medium equation (N = 1)

dp—Ap" =0 inQr (A(p)=mp™ ", F=0; me(1,2)

e D=(0,1),s: D — (0,00)
s(p) := plog(p) + (1 — p) log(1 — p) + log(2)

o s'(p) =log (1£), 5" (p) = sy ulw) = T5ow

e “coerA” with v =m, “contf” with Cy =0
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test with exact solution
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Figure: h-convergence of the errors at time T' = 1 with e = 0 (7 = O(hPT1))
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Tests 1: One-dimensional porous medium equation

test with Q = (—n/4,57/4), m = 2, initial datum

sinz/(m_l)(wx) ifo<z<m,
po(z) = .
0 otherwise,

exact solution supported in [0, 7] until the waiting time ¢t* = (m — 1)/(2m(m + 1))
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Figure: Evolution of pp, := u(wp) at = 0, t* = 0.83 (left); entropy values (center); error in the
mass conservation, due to the regularization (right); e = 10-9, p=>5h~0.04, 7 = 1073,
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Tests 2: Two-dimensional SKT system et Igﬁl‘Sl’[at

Two-dimensional Shigesada-Kawasaki-Teramoto system (N = 2)

9

% = @A = 7 - (p1(2a11Vp1 +a12Vp2) + a12p2Vp1) = p1(b1o — b11p1 — b12p2)
0p2

i ag0Aps — V- (p2(1121vpl + 2a22Vp2) + azlplvpz) = p2(b2o0 — b21p1 — b22p2)

e N=2,D=(0,+0c0), s: (0,00)? = (0, 00)
5(p) = 71 (p1(l0g p1 — 1) + 1) + 2 (pa(log ps — 1) + 1)

o s'(p) = (m1 log p1,m2 log p2), s (p) = diag(mi/p:), u(w) = (exp(w1/m1), exp(wz/m2))
@ “coerA” with v = min{7mia11,m2a22}, “cont f” compensated with 7 suff. small

Discretization of cross-diffusion systems



Tests 2: Two-dimensional SKT system

test with a10 = a20 =0, a12 = a21 = 1 (m1 = m2 = 1) and exact solution
p1(z,y,t) = 0.25 cos(2mz) cos(my) exp(—t) + 0.5
p2(z,y,t) = 0.25 cos(mzx) cos(2my) exp(—t) + 0.5
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Figure: h-convergence of the errors at time T' = 0.5 with ¢ = 0 (7 = O(h?T1))
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Conclusion

structure-preserving LDG method
@ postitivity
@ chain rule
@ entropy stability inequality

@ local nonlinear terms

[S. Gémez, A. Jingel, and I. Perugia, Structure-preserving discretization
of nonlinear cross-diffusion systems, in preparation]

ongoing work
@ high-order discretization in time

@ extensive numerical testing

Thank you for your attention!
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