A posteriori goal-oriented error estimators based on equilibrated flux and potential reconstructions

Emmanuel Creusé

CERAMATHS
Université Polytechnique \& INSA Hauts-de-France

New Trends in Numerical Analysis of PDEs
June 10-13, 2024

Université
Polytechnique HAUTS-DE-FRANCE
INSAN $=$

Joint work with
Serge Nicaise (CERAMATHS) and Zuqi Tang (L2EP, ULille)

Introduction

Introduction

- Many engineering problems require computing some quantities of interest, which are usually linear functionnals applied to the solution of a PDE.
- Error estimation on such functionals is called goal-oriented error estimation.
- Such estimations are based on the resolution of a adjoint problem, which solution is used in the estimator definition, and the use of some energy-norm error estimators.

Introduction

Introduction

- Many engineering problems require computing some quantities of interest, which are usually linear functionnals applied to the solution of a PDE.
- Error estimation on such functionals is called goal-oriented error estimation.
- Such estimations are based on the resolution of a adjoint problem, which solution is used in the estimator definition, and the use of some energy-norm error estimators.
- Goal of this talk :
- Give an overview of such techniques in different contexts,
- Provide an upper-bound of the error which can be totally and explicitly computed,
- Test the behaviour of such estimators on some numerical benchmarks.

Introduction

Introduction

- Many engineering problems require computing some quantities of interest, which are usually linear functionnals applied to the solution of a PDE.
- Error estimation on such functionals is called goal-oriented error estimation.
- Such estimations are based on the resolution of a adjoint problem, which solution is used in the estimator definition, and the use of some energy-norm error estimators.
- Goal of this talk :
- Give an overview of such techniques in different contexts,
- Provide an upper-bound of the error which can be totally and explicitly computed,
- Test the behaviour of such estimators on some numerical benchmarks.
- Two models are considered :
- The reaction-diffusion problem,
- An eddy-current problem.

Table of contents

(1) The reaction-diffusion problem

2 An eddy-current problem

Table of contents

(1) The reaction-diffusion problem
2) An eddy-current problem

The reaction-diffusion problem

Problem definition (Primal problem / Primal solution)

$$
\left\{\begin{array}{rll}
-\operatorname{div}(D \nabla u)+r u & =f & \text { in } \Omega \in \mathbb{R}^{d}, \\
u & =0 & \text { on } \partial \Omega,
\end{array}\right.
$$

- $D \in L^{\infty}\left(\Omega ; \mathbb{R}^{d \times d}\right)$, symmetric matrix-valued function such that

$$
D(x) \xi \cdot \xi \gtrsim|\xi|^{2}, \forall \xi \in \mathbb{R}^{d}, \text { and a.e. } x \in \Omega,
$$

- $r \in L^{\infty}(\Omega)$ supposed to be nonnegative,
- f is supposed to be in $L^{2}(\Omega)$.

The reaction-diffusion problem

Problem definition (Primal problem / Primal solution)

$$
\left\{\begin{array}{rll}
-\operatorname{div}(D \nabla u)+r u & =f & \text { in } \Omega \in \mathbb{R}^{d}, \\
u & =0 & \text { on } \partial \Omega,
\end{array}\right.
$$

- $D \in L^{\infty}\left(\Omega ; \mathbb{R}^{d \times d}\right)$, symmetric matrix-valued function such that

$$
D(x) \xi \cdot \xi \gtrsim|\xi|^{2}, \forall \xi \in \mathbb{R}^{d}, \text { and a.e. } x \in \Omega,
$$

- $r \in L^{\infty}(\Omega)$ supposed to be nonnegative,
- f is supposed to be in $L^{2}(\Omega)$.

Variational formulation

$$
\begin{aligned}
B(u, v) & =\int_{\Omega}(D \nabla u \cdot \nabla v+r u v) d x, \forall u, v \in H_{0}^{1}(\Omega), \\
F(v) & =\int_{\Omega} f v d x, \forall v \in H_{0}^{1}(\Omega), \\
B(u, v) & =F(v), \forall v \in H_{0}^{1}(\Omega), \\
& \Rightarrow \text { unique (weak) solution } u \text { in } H_{0}^{1}(\Omega) .
\end{aligned}
$$

Goal-oriented functional and adjoint problem

Output functional

$$
q \in L^{2}(\Omega) \text { and } Q(v)=\int_{\Omega} q v d x, \forall v \in L^{2}(\Omega)
$$

Question : How to compute an approximation of $Q(u)$?

Goal-oriented functional and adjoint problem

Output functional

$$
q \in L^{2}(\Omega) \text { and } Q(v)=\int_{\Omega} q v d x, \forall v \in L^{2}(\Omega)
$$

Question : How to compute an approximation of $Q(u)$?

Adjoint problem (Dual problem / Dual solution)

- We now define $u^{*} \in H_{0}^{1}(\Omega)$ solution of the adjoint problem

$$
B\left(v, u^{*}\right)=Q(v), \forall v \in H_{0}^{1}(\Omega)
$$

- The associated strong formulation is

$$
\left\{\begin{array}{rlll}
-\operatorname{div}\left(D \nabla u^{*}\right)+r u^{*} & = & \text { in } \Omega, \\
u^{*} & = & 0 & \text { on } \partial \Omega .
\end{array}\right.
$$

- We clearly have

$$
Q(u)=B\left(u, u^{*}\right)=F\left(u^{*}\right)
$$

- Since B is here symmetric, we also have

$$
B\left(u^{*}, v\right)=Q(v), \forall v \in H_{0}^{1}(\Omega) .
$$

Discrete setting

Mesh and discrete spaces

- Let us introduce a triangulation \mathcal{T} of Ω made of polygonal elements T that covers exactly Ω,
- We assume that the mesh is simplicial and matching,
- We introduce the so-called broken Sobolev space

$$
H^{1}(\mathcal{T})=\left\{v \in L^{2}(\Omega) \mid v_{\mid T} \in H^{1}(T), \forall T \in \mathcal{T}\right\}
$$

- We are looking for:
- $u_{h} \in V_{h} \subset H^{1}(\mathcal{T})$ approximation of u,
- $u_{h}^{*} \in V_{h}^{*} \subset H^{1}(\mathcal{T})$ approximation of u^{*}.
- Let us define :

$$
H(\operatorname{div}, \Omega)=\left\{\xi \in L^{2}(\Omega)^{d} ; \operatorname{div} \xi \in L^{2}(\Omega)\right\}
$$

Error estimation

[Mozolevski and Prudhomme CMAME 2015]
[Mallik, Vohralik and Yousef JCAM 2020]

Theorem 1

Let $s_{h} \in H_{0}^{1}(\Omega), \theta_{h} \in H(\operatorname{div}, \Omega)$ and $\theta_{h}^{*} \in H(\operatorname{div}, \Omega)$. Then we have :

$$
\mathcal{E}=Q(u)-Q\left(u_{h}\right)=Q\left(u-u_{h}\right)=\eta_{Q O I}+\mathcal{R},
$$

where the estimator $\eta_{Q O I}$ is given by

$$
\begin{aligned}
& \eta_{Q O I}=\left(q, s_{h}-u_{h}\right)_{\Omega}+\left(f-\operatorname{div} \theta_{h}-r u_{h}, u_{h}^{*}\right)_{\Omega} \\
& +\left(\theta_{h}+D \nabla s_{h}, D^{-1} \theta_{h}^{*}\right)_{\Omega}-\left(r u_{h}^{*}, s_{h}-u_{h}\right)_{\Omega},
\end{aligned}
$$

while the remainder term \mathcal{R} is defined by

$$
\begin{aligned}
& \mathcal{R}=\mathcal{R}_{1}+\mathcal{R}_{2}+\mathcal{R}_{3} \quad \text { with } \\
&\left\{\begin{array}{l}
\mathcal{R}_{1} \\
=\left(f-\operatorname{div} \theta_{h}-r u_{h}, u^{*}-u_{h}^{*}\right)_{\Omega} \\
\mathcal{R}_{2}
\end{array}=-\left(\theta_{h}+D \nabla s_{h}, D^{-1} \theta_{h}^{*}+\nabla u^{*}\right)_{\Omega},\right. \\
& \mathcal{R}_{3}=\left(r\left(u^{*}-u_{h}^{*}\right), s_{h}-u_{h}\right)_{\Omega}
\end{aligned}
$$

Error estimation

[Mozolevski and Prudhomme CMAME 2015]
[Mallik, Vohralik and Yousef JCAM 2020]

Theorem 1

Let $s_{h} \in H_{0}^{1}(\Omega), \theta_{h} \in H(\operatorname{div}, \Omega)$ and $\theta_{h}^{*} \in H(\operatorname{div}, \Omega)$. Then we have :

$$
\mathcal{E}=Q(u)-Q\left(u_{h}\right)=Q\left(u-u_{h}\right)=\eta_{Q O I}+\mathcal{R},
$$

where the estimator $\eta_{Q O I}$ is given by

$$
\begin{aligned}
\eta_{Q O I} & =\left(q, s_{h}-u_{h}\right)_{\Omega} \\
& +\left(\theta_{h}+D \nabla s_{h}, D^{-1} \theta_{h}^{*}\right)_{\Omega}-\left(r-\operatorname{div} \theta_{h}-r u_{h}, u_{h}^{*}\right)_{\Omega} \\
& -\left(r u_{h}^{*}, s_{h}-u_{h}\right)_{\Omega}
\end{aligned}
$$

We have three contributions:

- $\left(f-\operatorname{div} \theta_{h}-r u_{h}, u_{h}^{*}\right)_{\Omega}$ represents the data oscillation with respect to the primal problem weighted by the dual approximate solution if $\operatorname{div} \theta_{h}+r u_{h}$ is equal to the $L^{2}(\Omega)$ projection of f on the approximation space used to compute u_{h},
- $\left(\theta_{h}+D \nabla s_{h}, D^{-1} \theta_{h}^{*}\right)_{\Omega}$ measures the deviation of $-D \nabla s_{h}$ from the reconstructed flux θ_{h},
- $\left(q, s_{h}-u_{h}\right)_{\Omega}-\left(r u_{h}^{*}, s_{h}-u_{h}\right)_{\Omega}$ measures the deviation of u_{h} from $H_{0}^{1}(\Omega)$.

Error estimation

[Mozolevski and Prudhomme CMAME 2015]
[Mallik, Vohralik and Yousef JCAM 2020]

Theorem 1

Let $s_{h} \in H_{0}^{1}(\Omega), \theta_{h} \in H(\operatorname{div}, \Omega)$ and $\theta_{h}^{*} \in H(\operatorname{div}, \Omega)$. Then we have :

$$
\mathcal{E}=Q(u)-Q\left(u_{h}\right)=Q\left(u-u_{h}\right)=\eta_{Q O I}+\mathcal{R},
$$

where the estimator $\eta_{Q O I}$ is given by

$$
\begin{aligned}
& \eta_{Q O I}=\left(q, s_{h}-u_{h}\right)_{\Omega}+\left(f-\operatorname{div} \theta_{h}-r u_{h}, u_{h}^{*}\right)_{\Omega} \\
& +\left(\theta_{h}+D \nabla s_{h}, D^{-1} \theta_{h}^{*}\right)_{\Omega}-\left(r u_{h}^{*}, s_{h}-u_{h}\right)_{\Omega},
\end{aligned}
$$

while the remainder term \mathcal{R} is defined by

$$
\begin{aligned}
& \mathcal{R}=\mathcal{R}_{1}+\mathcal{R}_{2}+\mathcal{R}_{3} \quad \text { with } \\
& \begin{cases}\mathcal{R}_{1} & =\left(f-\operatorname{div} \theta_{h}-r u_{h}, u^{*}-u_{h}^{*}\right)_{\Omega} \\
\mathcal{R}_{2} & =-\left(\theta_{h}+D \nabla s_{h}, D^{-1} \theta_{h}^{*}+\nabla u^{*}\right)_{\Omega} \\
\mathcal{R}_{3} & =\left(r\left(u^{*}-u_{h}^{*}\right), s_{h}-u_{h}\right)_{\Omega}\end{cases}
\end{aligned}
$$

Potential and Flux reconstructions

Remarks

- If $V_{h} \subset H_{0}^{1}(\Omega)$, then we can take $s_{h}=u_{h}$ and the blue terms vanish.
- This result occurs whatever the values of

$$
\begin{aligned}
s_{h} & \in H_{0}^{1}(\Omega), \theta_{h} \in H(\operatorname{div}, \Omega) \text { and } \theta_{h}^{*} \in H(\operatorname{div}, \Omega) \\
& \Rightarrow\left|\eta_{Q O I}\right| \text { and }|\mathcal{R}| \text { can both be very high... }
\end{aligned}
$$

Potential and Flux reconstructions

Remarks

- If $V_{h} \subset H_{0}^{1}(\Omega)$, then we can take $s_{h}=u_{h}$ and the blue terms vanish.
- This result occurs whatever the values of

$$
\begin{aligned}
& s_{h} \in H_{0}^{1}(\Omega), \theta_{h} \in H(\operatorname{div}, \Omega) \text { and } \theta_{h}^{*} \in H(\operatorname{div}, \Omega) . \\
& \quad \Rightarrow\left|\eta_{Q O I}\right| \text { and }|\mathcal{R}| \text { can both be very high... }
\end{aligned}
$$

Potential and Flux reconstructions

[Ern \& Vohralik : A unified framework for a posteriori error estimation in elliptic and parabolic problems with application to finite volumes. FVCA6, 2011]

- We assume that a potential reconstruction s_{h} of u_{h} is available :

$$
s_{h} \in H_{0}^{1}(\Omega) \text { and } s_{h} \sim u_{h},
$$

- We assume that some flux reconstructions θ_{h} and θ_{h}^{*} are available, using respectively $\left(u_{h}, f\right)$ and $\left(u_{h}^{*}, q\right)$:

$$
\left\{\begin{array}{c}
\theta_{h} \in H(\operatorname{div}, \Omega) \text { and }\left(\operatorname{div} \theta_{h}+r u_{h}-f, 1\right)_{T}=0, \forall T \in \mathcal{T} \\
\Rightarrow \theta_{h} \sim-D \nabla u_{h}, \\
\theta_{h}^{*} \in H(\operatorname{div}, \Omega) \text { and }\left(\operatorname{div} \theta_{h}^{*}+r u_{h}^{*}-q, 1\right)_{T}=0, \forall T \in \mathcal{T} \\
\Rightarrow \theta_{h}^{*} \sim-D \nabla u_{h}^{*} .
\end{array}\right.
$$

Estimation of the remainder \mathcal{R}

Question...

- Once the primal and dual problems have been solved, the value of $\eta_{Q O I}$ can be computed (up to oscillation terms).
- Nevertheless, the value of \mathcal{R} can not be evaluated, because of the value of u^{*} in its definition.
- Question :

Can the value of \mathcal{R} be bounded by known quantities?

Estimation of the remainder \mathcal{R}

Some definitions

- $\forall w \in H_{0}^{1}(\Omega) \cup V_{h},\|w\|_{h}^{2}=\left\|D^{\frac{1}{2}} \nabla_{h} w\right\|^{2}+\left\|r^{\frac{1}{2}} w\right\|^{2}$,
- $\eta^{2}=\sum_{T \in \mathcal{T}}\left(\eta_{N C, T}^{2}+\eta_{R, T}^{2}+\eta_{D F, T}^{2}\right)$, with :

$$
\begin{aligned}
& \eta_{N C, T}=\left\|u_{h}-s_{h}\right\|_{h, T}, \\
& \eta_{R, T}=m_{T}\left\|f-\operatorname{div} \theta_{h}+r u_{h}\right\|_{T}, \\
& \eta_{D F, T}=\left\|D^{-\frac{1}{2}}\left(\theta_{h}+D \nabla u_{h}\right)\right\|_{T}, \\
& m_{T}=\min \left\{\pi^{-1} h_{T}\left\|D^{-\frac{1}{2}}\right\|_{\infty, T},\left\|r^{-\frac{1}{2}}\right\|_{\infty, T}\right\}, \text { when } T \text { is convex. }
\end{aligned}
$$

Estimation of the remainder \mathcal{R}

Some definitions

- $\forall w \in H_{0}^{1}(\Omega) \cup V_{h},\|w\|_{h}^{2}=\left\|D^{\frac{1}{2}} \nabla_{h} w\right\|^{2}+\left\|r^{\frac{1}{2}} w\right\|^{2}$,
- $\eta^{2}=\sum_{T \in \mathcal{T}}\left(\eta_{N C, T}^{2}+\eta_{R, T}^{2}+\eta_{D F, T}^{2}\right)$, with :

$$
\begin{aligned}
& \eta_{N C, T}=\left\|u_{h}-s_{h}\right\|_{h, T}, \\
& \eta_{R, T}=m_{T}\left\|f-\operatorname{div} \theta_{h}+r u_{h}\right\|_{T}, \\
& \eta_{D F, T}=\left\|D^{-\frac{1}{2}}\left(\theta_{h}+D \nabla u_{h}\right)\right\|_{T}, \\
& m_{T}=\min \left\{\pi^{-1} h_{T}\left\|D^{-\frac{1}{2}}\right\|_{\infty, T},\left\|r^{-\frac{1}{2}}\right\|_{\infty, T}\right\}, \text { when } T \text { is convex. }
\end{aligned}
$$

Known results

[Ern \& Vohralik : A unified framework for a posteriori error estimation in elliptic and parabolic problems with application to finite volumes. FVCA6, 2011]

$$
\begin{gathered}
\left\|u-u_{h}\right\|_{h} \leq \eta \\
\left\|u^{*}-u_{h}^{*}\right\|_{h} \leq \eta^{*}
\end{gathered}
$$

Estimation of the remainder \mathcal{R}

Theorem 2

With η and η^{*} as defined before, we have

$$
|\mathcal{R}| \leq 4 \eta \eta^{*}
$$

Sketch of the proof

We estimate each term of \mathcal{R} separetely.

$$
\begin{aligned}
& \mathcal{R}_{1}=\left(f-\operatorname{div} \theta_{h}-r u_{h}, u^{*}-u_{h}^{*}\right)_{\Omega} \\
\left|\mathcal{R}_{1}\right| & =\left|\int_{\Omega}\left(f-\operatorname{div} \theta_{h}-r u_{h}\right)\left(u^{*}-u_{h}^{*}\right) d x\right| \\
& =\left|\sum_{T \in \mathcal{T}} \int_{T}\left(f-\operatorname{div} \theta_{h}-r u_{h}\right)\left(\left(u^{*}-u_{h}^{*}\right)-\mathcal{M}_{T}\left(u^{*}-u_{h}^{*}\right)\right) d x\right| \\
& \leq \sum_{T \in \mathcal{T}}\left\|f-\operatorname{div} \theta_{h}-r u_{h}\right\|_{T} m_{T}\left\|u^{*}-u_{h}^{*}\right\|_{h, T} \\
\leq & \eta \eta^{*} .
\end{aligned}
$$

Estimation of the remainder \mathcal{R}

Theorem 2

With η and η^{*} as defined before, we have

$$
|\mathcal{R}| \leq 4 \eta \eta^{*}
$$

Sketch of the proof

We estimate each term of \mathcal{R} separetely.

$$
\begin{aligned}
& \quad \mathcal{R}_{2}=-\left(\theta_{h}+D \nabla s_{h}, D^{-1} \theta_{h}^{*}+\nabla u^{*}\right)_{\Omega} \\
& \left|\mathcal{R}_{2}\right| \leq\left\|D^{-\frac{1}{2}}\left(\theta_{h}+D \nabla s_{h}\right)\right\|\left\|D^{-\frac{1}{2}}\left(\theta_{h}^{*}+D \nabla u^{*}\right)\right\| \\
& \leq\left\|D^{-\frac{1}{2}}\left(\theta_{h}+D \nabla s_{h}\right)\right\|\left(\left\|D^{-\frac{1}{2}}\left(\theta_{h}^{*}+D \nabla_{h} u_{h}^{*}\right)\right\|+\left\|D^{\frac{1}{2}} \nabla_{h}\left(u^{*}-u_{h}^{*}\right)\right\|\right) \\
& \leq 2 \eta \eta^{*} .
\end{aligned}
$$

Estimation of the remainder \mathcal{R}

Theorem 2

With η and η^{*} as defined before, we have

$$
|\mathcal{R}| \leq 4 \eta \eta^{*}
$$

Sketch of the proof

We estimate each term of \mathcal{R} separetely.

$$
\begin{aligned}
\mathcal{R}_{3} & =\left(r\left(u^{*}-u_{h}^{*}\right), s_{h}-u_{h}\right)_{\Omega} \\
\left|\mathcal{R}_{3}\right| & =\left|\int_{\Omega} r\left(u^{*}-u_{h}^{*}\right)\left(s_{h}-u_{h}\right) d x\right| \\
& \leq\left\|r^{\frac{1}{2}}\left(u^{*}-u_{h}^{*}\right)\right\|\left\|r^{\frac{1}{2}}\left(s_{h}-u_{h}\right)\right\| \\
& \leq \eta \eta^{*} .
\end{aligned}
$$

Some remarks

Some remarks

（1）Thms 1 and $2 \Rightarrow$

$$
|\mathcal{E}| \leq\left|\eta_{Q O I}\right|+4 \eta \eta^{*} .
$$

Nevertheless，such an estimator can overestimate the error．

Some remarks

Some remarks

(1) Thms 1 and $2 \Rightarrow$

$$
|\mathcal{E}| \leq\left|\eta_{Q O I}\right|+4 \eta \eta^{*}
$$

Nevertheless, such an estimator can overestimate the error.
(2) We can estimate the ratio

$$
\frac{|\mathcal{R}|}{\eta_{Q O I}}
$$

by computing $\frac{4 \eta \eta^{*}}{\eta_{Q O I}}$, during a refinement procedure based on the use of $\eta_{Q O I}$ and check if it tends to zero or not.

Some remarks

Some remarks

(1) Thms 1 and $2 \Rightarrow$

$$
|\mathcal{E}| \leq\left|\eta_{Q O I}\right|+4 \eta \eta^{*} .
$$

Nevertheless, such an estimator can overestimate the error.
(2) We can estimate the ratio

$$
\frac{|\mathcal{R}|}{\eta_{Q O I}}
$$

by computing $\frac{4 \eta \eta^{*}}{\eta_{Q O I}}$, during a refinement procedure based on the use of $\eta_{Q O I}$ and check if it tends to zero or not.
(3) In the positive case, since $\mathcal{E}=\eta_{Q O I}+\mathcal{R}$, this means that the ratio $\frac{\mathcal{E}}{\eta_{Q O I}}$ tends to one and will validate the asymptotic exactness of the estimator $\eta_{Q O I}$.

Some remarks

Some remarks

(1) Thms 1 and $2 \Rightarrow$

$$
|\mathcal{E}| \leq\left|\eta_{Q O I}\right|+4 \eta \eta^{*} .
$$

Nevertheless, such an estimator can overestimate the error.
(2) We can estimate the ratio

$$
\frac{|\mathcal{R}|}{\eta_{Q O I}}
$$

by computing $\frac{4 \eta \eta^{*}}{\eta_{Q O I}}$, during a refinement procedure based on the use of $\eta_{Q O I}$ and check if it tends to zero or not.
(3) In the positive case, since $\mathcal{E}=\eta_{Q O I}+\mathcal{R}$, this means that the ratio $\frac{\mathcal{E}}{\eta_{Q O I}}$ tends to one and will validate the asymptotic exactness of the estimator $\eta_{Q O I}$.
(9) In any case, we can use the estimate

$$
|\mathcal{E}| \leq\left|\eta_{Q O I}\right|+4 \eta \eta^{*},
$$

and then choose as estimator $\left|\eta_{Q O I}\right|+4 \eta \eta^{*}$ to implement an adaptive algorithm.

Numerical results

Primal problem : Regular solution

- $d=2, \Omega=] 0,1\left[{ }^{2}, D=I_{\mathbb{R}^{2}}\right.$ and $r=0$.
- $u(x, y)=10^{4} x(1-x) y(1-y) e^{-100(\rho(x, y))^{2}}$, with

$$
\rho(x, y)=\left((x-0.75)^{2}+(y-0.75)^{2}\right)^{1 / 2} .
$$

- The right-hand side f is computed accordingly such that $f=-\operatorname{div}(D \nabla u)$.

Numerical results

Primal problem : Regular solution

- $d=2, \Omega=] 0,1\left[^{2}, D=I_{\mathbb{R}^{2}}\right.$ and $r=0$.
- $u(x, y)=10^{4} x(1-x) y(1-y) e^{-100(\rho(x, y))^{2}}$, with

$$
\rho(x, y)=\left((x-0.75)^{2}+(y-0.75)^{2}\right)^{1 / 2} .
$$

- The right-hand side f is computed accordingly such that $f=-\operatorname{div}(D \nabla u)$.

Dual problem : Regular solution

- $q=1_{\omega}$, with

$$
\omega=\{(x, y) \in \Omega: 1.5 \leq x+y \leq 1.75\}
$$

Numerical results

Numerical parameters

- For u_{h} : standard conforming \mathbb{P}_{1} finite elements,
- For θ_{h} : standard $\mathbb{R T}_{1}$ finite elements,
- For u_{h}^{*} : standard conforming \mathbb{P}_{2} finite elements,
- For θ_{h}^{*} : standard $\mathbb{R T}_{2}$ finite elements.

Meshes

Numerical results

Regular solution

$I_{e f f}=\left|\mathcal{E} / \eta_{Q O I}\right|$

$I_{e f f}^{t o t}=|\mathcal{E}| /\left(\left|\eta_{Q O I}\right|+4 \eta \eta^{*}\right)$

Remarks

Remarks

－If we had chosen ：
－For u_{h} ：standard conforming \mathbb{P}_{1} finite elements，
－For θ_{h} ：standard $\mathbb{R} \mathbb{T}_{1}$ finite elements，
－For u_{h}^{*} ：standard conforming \mathbb{P}_{1} finite elements，
－For θ_{h}^{*} ：standard $\mathbb{R} \mathbb{T}_{1}$ finite elements，
then the quantity $\eta \eta^{*}$ is no more superconvergent，even if $I_{e f f}$ remains going towards one．

Numerical results

Primal problem : Singular solution

- $d=2, \Omega=]-1,1\left[{ }^{2}\right.$ and $r=0$,
- D is piecewise constant in $\Omega:\left|\begin{array}{|l|l}\hline 1 & a \\ \hline a & 1 \\ \hline\end{array}\right|, 0<a<1$.
- $\alpha=\frac{4}{\pi} \arctan (\sqrt{a})$ and $u(x, y)=p(x, y) S(x, y)$, where
- $p(x, y)=\left(1-x^{4}\right)\left(1-y^{4}\right)$ is a truncation function
- $S(x, y)=\rho^{\alpha} v(\theta)$
- The right-hand side f is computed accordingly.

- For any $\varepsilon>0$ we have $u \in H^{1+\alpha-\varepsilon}(\Omega)$

Numerical results

Primal problem : Singular solution

- $d=2, \Omega=]-1,1\left[{ }^{2}\right.$ and $r=0$,
- D is piecewise constant in $\Omega:\left|\begin{array}{|l|l}\hline 1 & a \\ \hline a & 1 \\ \hline\end{array}\right|, 0<a<1$.
- $\alpha=\frac{4}{\pi} \arctan (\sqrt{a})$ and $u(x, y)=p(x, y) S(x, y)$, where
- $p(x, y)=\left(1-x^{4}\right)\left(1-y^{4}\right)$ is a truncation function
- $S(x, y)=\rho^{\alpha} v(\theta)$
- The right-hand side f is computed accordingly.

- For any $\varepsilon>0$ we have $u \in H^{1+\alpha-\varepsilon}(\Omega)$

Dual problem : Singular solution

- $q=1_{\omega}$, with

$$
\omega=(0,0.5) \times(-0.25,0.25) .
$$

Numerical results

Singular solution with $a=5$ so that $\alpha \approx 0.53$

$I_{e f f}=\left|\mathcal{E} / \eta_{Q O I}\right|$

Ieff $_{\text {tot }}^{\text {ef }}=|\mathcal{E}| /\left(|\eta Q O I|+4 \eta \eta^{*}\right)$

Remarks

Remarks

- The error, the estimator $\eta_{Q O I}$ and $4 \eta \eta^{*}$ all converge towards zero with order $O\left(h^{2 \alpha}\right)$.
- $I_{e f f}$ remains in the order of unity but is no more close to one.
- The remainder \mathcal{R} seems to be no more superconvergent.
- For such problems with singular solutions, an adaptive algorithm should be based on the sum of the estimator $\left|\eta_{Q O I}\right|$ and of the product $4 \eta \eta^{*}$,

An eddy-current problem

Table of contents

(1) The reaction-diffusion problem
(2) An eddy-current problem

The eddy-current problem

Problem definition

Find the electric field \mathbf{E} and the magnetic field \mathbf{H} solution of

$$
\left\{\begin{array} { r l l }
{ \operatorname { c u r l } \mathbf { E } } & { = } & { - j \omega \mathbf { B } } \\
{ \text { in } D , } \\
{ \operatorname { c u r l \mathbf { H } } } & { = } & { \mathbf { J } _ { s } + \mathbf { J } _ { e } } \\
{ \text { in } D , } \\
{ \operatorname { d i v } \mathbf { B } } & { = } & { 0 }
\end{array} \quad \text { in } D , \quad \text { with } \left\{\begin{array}{rll}
\mathbf{B} & =\mu \mathbf{H} & \text { in D, } \\
\mathbf{J}_{e} & = & \sigma \mathbf{E} \\
\text { in } D_{c} .
\end{array}\right.\right.
$$

Properties and boundary conditions

- $\operatorname{div} \mathbf{J}_{e}=0$ in D_{c},
- $\mathbf{J}_{e} \cdot \mathbf{n}=0$ on ∂D_{c},
- B $\cdot \mathbf{n}=0$ on $\Gamma=\partial D$.

The eddy-current problem

Magnetic vector and electric scalar potentials

$$
\begin{array}{lll}
\mathbf{B} & = & \operatorname{curl} \mathbf{A} \\
\mathbf{E}= & \text { in } D, \\
-j \omega \mathbf{A}-\nabla \varphi & \text { in } D_{c} .
\end{array}
$$

The eddy-current problem

Magnetic vector and electric scalar potentials

$$
\begin{array}{lll}
\mathbf{B}= & \operatorname{curl} \mathbf{A} & \text { in } D, \\
\mathbf{E}=-j \omega \mathbf{A}-\nabla \varphi & \text { in } D_{c} .
\end{array}
$$

Harmonic A- φ formulation

$$
\begin{array}{rll}
\operatorname{curl}\left(\mu^{-1} \operatorname{curl} \mathbf{A}\right)+\sigma(j \omega \mathbf{A}+\nabla \varphi) & =\mathbf{J}_{s} & \text { in } D \\
\operatorname{div}(\sigma(j \omega \mathbf{A}+\nabla \varphi)) & =0 & \text { in } D_{c}
\end{array}
$$

with the boundary conditions

$$
\begin{aligned}
& \mathbf{A} \times \mathbf{n}=0 \\
& \sigma(j \omega \mathbf{A}+\nabla \varphi) \cdot \mathbf{n}=0 \\
& \text { on } \Gamma \\
& \text { on } \partial D_{c}
\end{aligned}
$$

The eddy-current problem

Magnetic vector and electric scalar potentials

$$
\begin{array}{lll}
\mathbf{B}= & \operatorname{curl} \mathbf{A} & \text { in } D \\
\mathbf{E}=-j \omega \mathbf{A}-\nabla \varphi & \text { in } D_{c} .
\end{array}
$$

Harmonic A- φ formulation

$$
\begin{array}{rll}
\operatorname{curl}\left(\mu^{-1} \operatorname{curl} \mathbf{A}\right)+\sigma(j \omega \mathbf{A}+\nabla \varphi) & =\mathbf{J}_{s} & \text { in } D \\
\operatorname{div}(\sigma(j \omega \mathbf{A}+\nabla \varphi)) & =0 & \text { in } D_{c}
\end{array}
$$

with the boundary conditions

$$
\begin{aligned}
\mathbf{A} \times \mathbf{n} & =0 \\
\sigma(j \omega \mathbf{A}+\nabla \varphi) \cdot \mathbf{n} & =0
\end{aligned} \quad \text { on } \Gamma,
$$

Functional spaces definitions

$$
\begin{aligned}
H_{0}(\operatorname{curl}, \mathcal{D}) & =\left\{\mathbf{F} \in L^{2}(\mathcal{D})^{3}: \operatorname{curl} \mathbf{F} \in L^{2}(\mathcal{D})^{3}, \mathbf{F} \times \mathbf{n}=0 \text { on } \partial \mathcal{D}\right\} \\
\widetilde{X}(\mathcal{D}) & =\left\{\mathbf{F} \in H_{0}(\operatorname{curl}, \mathcal{D}):(\mathbf{F}, \nabla \xi)_{\mathcal{D}}=0, \forall \xi \in H_{0}^{1}(\mathcal{D})\right\} \\
\widetilde{H^{1}}(\mathcal{D}) & =\left\{f \in H^{1}(\mathcal{D}):(f, 1)_{\mathcal{D}}=0\right\}
\end{aligned}
$$

The eddy-current problem

Variational formulation

Find $(\mathbf{A}, \varphi) \in \widetilde{X}(D) \times \widetilde{H^{1}}\left(D_{c}\right)$ such that

$$
B\left((\mathbf{A}, \varphi),\left(\mathbf{A}^{\prime}, \varphi^{\prime}\right)\right)=\left(\mathbf{J}_{s}, \mathbf{A}^{\prime}\right), \quad \forall\left(\mathbf{A}^{\prime}, \varphi^{\prime}\right) \in \widetilde{X}(D) \times \widetilde{H^{1}}\left(D_{c}\right)
$$

where

$$
\begin{aligned}
& B\left((\mathbf{A}, \varphi),\left(\mathbf{A}^{\prime}, \varphi^{\prime}\right)\right)=\left(\mu^{-1} \operatorname{curl} \mathbf{A}, \operatorname{curl} \mathbf{A}^{\prime}\right)_{D} \\
& \quad+j \omega^{-1}\left(\sigma(j \omega \mathbf{A}+\nabla \varphi),\left(j \omega \mathbf{A}^{\prime}+\nabla \varphi^{\prime}\right)\right)_{D_{c}}, \forall(\mathbf{A}, \varphi),\left(\mathbf{A}^{\prime}, \varphi^{\prime}\right) \in \widetilde{X}(D) \times \widetilde{H^{1}}\left(D_{c}\right) .
\end{aligned}
$$

The eddy-current problem

Variational formulation

Find $(\mathbf{A}, \varphi) \in \widetilde{X}(D) \times \widetilde{H^{1}}\left(D_{c}\right)$ such that

$$
B\left((\mathbf{A}, \varphi),\left(\mathbf{A}^{\prime}, \varphi^{\prime}\right)\right)=\left(\mathbf{J}_{s}, \mathbf{A}^{\prime}\right), \quad \forall\left(\mathbf{A}^{\prime}, \varphi^{\prime}\right) \in \widetilde{X}(D) \times \widetilde{H^{1}}\left(D_{c}\right)
$$

where

$$
\begin{aligned}
& B\left((\mathbf{A}, \varphi),\left(\mathbf{A}^{\prime}, \varphi^{\prime}\right)\right)=\left(\mu^{-1} \operatorname{curl} \mathbf{A}, \operatorname{curl} \mathbf{A}^{\prime}\right)_{D} \\
& \quad+j \omega^{-1}\left(\sigma(j \omega \mathbf{A}+\nabla \varphi),\left(j \omega \mathbf{A}^{\prime}+\nabla \varphi^{\prime}\right)\right)_{D_{c}}, \forall(\mathbf{A}, \varphi),\left(\mathbf{A}^{\prime}, \varphi^{\prime}\right) \in \widetilde{X}(D) \times \widetilde{H^{1}}\left(D_{c}\right) .
\end{aligned}
$$

Well-posedness

[Creusé et al, MMMAS 2012]

Existence and uniqueness of the weak solution (\mathbf{A}, φ) since it was shown there that

$$
\left\|\left(\mathbf{A}^{\prime}, \varphi^{\prime}\right)\right\|_{B}:=\left|B\left(\left(\mathbf{A}^{\prime}, \varphi^{\prime}\right),\left(\mathbf{A}^{\prime}, \varphi^{\prime}\right)\right)\right|^{\frac{1}{2}}, \forall\left(\mathbf{A}^{\prime}, \varphi^{\prime}\right) \in \widetilde{X}(D) \times \widetilde{H^{1}}\left(D_{c}\right),
$$

is a norm on $\widetilde{X}(D) \times \widetilde{H^{1}}\left(D_{c}\right)$ equivalent to the natural one

$$
\|(\mathbf{A}, \varphi)\|_{V}=\left(\left\|\mathbf{A}^{\prime}\right\|_{D}^{2}+\left\|\mu^{-1 / 2} \operatorname{curl} \mathbf{A}^{\prime}\right\|_{D}^{2}+\left|\varphi^{\prime}\right|_{1, D_{c}}^{2}\right)^{\frac{1}{2}}, \forall\left(\mathbf{A}^{\prime}, \varphi^{\prime}\right) \in \widetilde{X}(D) \times \widetilde{H^{1}}\left(D_{c}\right)
$$

The goal-oriented functional

Definition

We here consider the output functional given by

$$
Q(\mathbf{A})=\int_{D} \mathbf{q} \cdot \operatorname{curl} \overline{\mathbf{A}} d x, \forall \mathbf{A} \in H(\operatorname{curl}, D)
$$

where $\mathbf{q} \in L^{2}(D)^{3}$ is a given function.

The goal-oriented functional

Definition

We here consider the output functional given by

$$
Q(\mathbf{A})=\int_{D} \mathbf{q} \cdot \operatorname{curl} \overline{\mathbf{A}} d x, \forall \mathbf{A} \in H(\operatorname{curl}, D)
$$

where $\mathbf{q} \in L^{2}(D)^{3}$ is a given function.

Physical meaning

In many engineering applications, engineers are interested in the computation of the flux through a coil. Indeed, in the case where a coil is included in D, in which a given current \mathbf{J}_{s} of intensity i is imposed, \mathbf{N} being the unit direction of the coil, it can be shown that the magnetic flux through the surface S of a coil is given by

$$
\Phi=\int_{S} \operatorname{curl} \mathbf{A} \cdot \mathbf{n} d S,
$$

and that it can be evaluated by $\bar{\Phi}=\frac{1}{i} Q(\mathbf{A})=\frac{1}{i} \int_{D} \mathbf{q} \cdot \operatorname{curl} \overline{\mathbf{A}} d x$, using $\mathbf{q}=\mathbf{H}_{s}$ where $\operatorname{curlH}_{s}=\mathbf{J}_{s}$, and where as usual $\mathbf{B}=\operatorname{curl} \mathbf{A}$.

Adjoint problem

Definition of B^{*}

$$
B^{*}\left((\mathbf{A}, \varphi),\left(\mathbf{A}^{\prime}, \varphi^{\prime}\right)\right)=\overline{B\left(\left(\mathbf{A}^{\prime}, \varphi^{\prime}\right),(\mathbf{A}, \varphi)\right)} \quad \forall(\mathbf{A}, \varphi),\left(\mathbf{A}^{\prime}, \varphi^{\prime}\right) \in \widetilde{X}(D) \times \widetilde{H^{1}}\left(D_{c}\right)
$$

Adjoint problem

Look for $\left(\mathbf{A}^{*}, \varphi^{*}\right) \in \widetilde{X}(D) \times \widetilde{H^{1}}\left(D_{c}\right)$ such that

$$
B^{*}\left(\left(\mathbf{A}^{*}, \varphi^{*}\right),\left(\mathbf{A}^{\prime}, \varphi^{\prime}\right)\right)=Q\left(\mathbf{A}^{\prime}\right), \quad \forall\left(\mathbf{A}^{\prime}, \varphi^{\prime}\right) \in \widetilde{X}(D) \times \widetilde{H^{1}}\left(D_{c}\right)
$$

Strong formulation of the adjoint problem

$$
\begin{array}{rlcl}
\operatorname{curl}\left(\mu^{-1} \operatorname{curl} \mathbf{A}^{*}\right)-\sigma\left(j \omega \mathbf{A}^{*}+\nabla \varphi^{*}\right) & =\quad \operatorname{curl} \mathbf{q} & \text { in } D \\
\operatorname{div}\left(\sigma\left(j \omega \mathbf{A}^{*}+\nabla \varphi^{*}\right)\right) & = & 0 & \text { in } D_{c}
\end{array}
$$

Discrete setting

Mesh and discrete spaces

- $H^{1}(\mathcal{T})=\left\{v \in L^{2}(D) \mid v_{\mid T} \in H^{1}(T), \forall T \in \mathcal{T}\right\}$.
- $\left(\mathbf{A}_{h}, \varphi_{h}\right) \in V_{h} \subset H^{1}(\mathcal{T})^{3} \times H^{1}\left(\mathcal{T}_{c}\right)$.
- For $\mathbf{A}_{h}^{\prime} \in H^{1}(\mathcal{T})^{3}$ and $\varphi_{h}^{\prime} \in H^{1}\left(\mathcal{T}_{c}\right)$, we denote :

$$
\begin{aligned}
\operatorname{curl}_{h} \mathbf{A}_{h}^{\prime} & =\operatorname{curl}_{\mathbf{A}_{h}^{\prime}} \quad \text { on } T, \quad \forall T \in \mathcal{T} \\
\nabla_{h} \varphi_{h}^{\prime} & =\nabla \varphi_{h}^{\prime}
\end{aligned} \quad \text { on } T, \quad \forall T \in \mathcal{T}_{c} .
$$

- We introduce the discrete couterparts of by :

$$
\begin{aligned}
\mathbf{B}_{h} & =\operatorname{curl}_{h} \mathbf{A}_{h}, \\
\mathbf{E}_{h} & =-j \omega \mathbf{A}_{h}-\nabla_{h} \varphi_{h}
\end{aligned}
$$

Potential and Flux reconstructions

- We assume that
- A potential reconstruction $\left(\mathbf{S}_{h}, \psi_{h}\right) \in H_{0}(\operatorname{curl}, D) \times \widetilde{H^{1}}\left(D_{c}\right)$ of $\left(\mathbf{A}_{h}, \varphi_{h}\right)$ is available,
- Some flux reconstructions \mathbf{H}_{h} and $\mathbf{J}_{e, h}$ are available that belong respectively to H (curl, D) and $H\left(\operatorname{div}, D_{c}\right)$ and satisfy the following conservation properties :

$$
\begin{aligned}
\left(\operatorname{curl}_{h}-\tilde{\mathbf{J}}_{e, h}-\mathbf{J}_{s}, \mathbf{e}\right)_{T} & =0, \forall T \in \mathcal{T}, \mathbf{e} \in \mathbb{C}^{3}, \\
\operatorname{div} \mathbf{J}_{e, h} & =0 \text { in } D_{c}, \\
\mathbf{J}_{e, h} \cdot \mathbf{n} & =0 \text { on } \partial D_{c} .
\end{aligned}
$$

Energy-norm estimator

The energy error

$$
\epsilon_{A, \varphi}=\left(\left\|\mu^{-1 / 2} \operatorname{curl}_{h} \epsilon_{A}\right\|^{2}+\left\|\omega^{-1 / 2} \sigma^{1 / 2}\left(j \omega \epsilon_{A}+\nabla_{h} \epsilon_{\varphi}\right)\right\|_{D_{c}}^{2}\right)^{1 / 2}
$$

The estimators

- Non conforming estimator:

$$
\begin{aligned}
\eta_{N C} & =\left(\left\|\mu^{-1 / 2} \operatorname{curl}_{h}\left(\mathbf{A}_{h}-\mathbf{S}_{h}\right)\right\|^{2}\right. \\
& \left.+\left\|\omega^{-1 / 2} \sigma^{1 / 2}\left(j \omega\left(\mathbf{A}_{h}-\mathbf{S}_{h}\right)+\nabla_{h}\left(\varphi_{h}-\psi_{h}\right)\right)\right\|_{D_{c}}^{2}\right)^{1 / 2}
\end{aligned}
$$

- Flux estimator :

$$
\begin{gathered}
\eta_{\text {flux }}=\left(\eta_{\text {magn }}^{2}+\eta_{\text {elec }}^{2}\right)^{1 / 2}, \text { with } \\
\eta_{\text {magn }}=\left\|\mu^{1 / 2}\left(\mathbf{H}_{h}-\mu^{-1} \mathbf{B}_{h}\right)\right\|_{D} \text { and } \eta_{\text {elec }}=\left\|(\omega \sigma)^{-1 / 2}\left(\mathbf{J}_{e, h}-\sigma \mathbf{E}_{h}\right)\right\|_{D_{c}}
\end{gathered}
$$

- Oscillation estimator (if D convex) :

$$
\eta_{\mathcal{O}}=\mu_{\max }^{\frac{1}{2}}\left(\sum_{T \in \mathcal{T}} \pi^{-2} h_{T}^{2}\left\|\mathbf{J}_{s}-\operatorname{curl} \mathbf{H}_{h}+\tilde{\mathbf{J}}_{e, h}\right\|_{T}^{2}\right)^{\frac{1}{2}}
$$

Energy-norm estimator

Theorem 3

Let us define :

$$
\eta=2 \eta_{N C}+\eta_{\text {flux }}+\eta_{\mathcal{O}},
$$

Then we have :

$$
\epsilon_{A, \varphi} \leq \eta
$$

Similarly for the adjoint problem...

- The energy error :

$$
\epsilon_{A^{*}, \varphi^{*}}=\left(\left\|\mu^{-1 / 2} \operatorname{curl}_{h} \epsilon_{A^{*}}\right\|^{2}+\left\|\omega^{-1 / 2} \sigma^{1 / 2}\left(j \omega \epsilon_{A^{*}}+\nabla_{h} \epsilon_{\varphi^{*}}\right)\right\|_{D_{c}}^{2}\right)^{1 / 2} .
$$

- The estimators :

$$
\eta_{N C}^{*}, \eta_{\text {flux }}^{*}, \eta_{\mathcal{O}}^{*} \text { and } \eta^{*}=2 \eta_{N C}^{*}+\eta_{\text {flux }}^{*}+\eta_{\mathcal{O}}^{*},
$$

- The estimation :

$$
\epsilon_{A^{*}, \varphi^{*}} \leq \eta^{*}
$$

Goal-oriented estimator

Theorem 4 (1/2)

Let $\left(\mathbf{S}_{h}, \psi_{h}\right) \in H_{0}(\operatorname{curl}, D) \times \widetilde{H^{1}}\left(D_{c}\right)$ be a potential reconstruction of $\left(\mathbf{A}_{h}, \varphi_{h}\right)$, then the error on the quantity of interest defined by

$$
\mathcal{E}=\sum_{T \in \mathcal{T}} \int_{T} \mathbf{q} \cdot \operatorname{curl} \overline{\left(\mathbf{A}-\mathbf{A}_{h}\right)} d x
$$

admits the splitting

$$
\mathcal{E}=\eta_{\mathrm{QOI}}+\mathcal{R},
$$

where the estimator η_{QOI} is given by

$$
\begin{aligned}
\eta_{\mathrm{QOI}} & =\sum_{T \in \mathcal{T}} \int_{T} \mathbf{q} \cdot \operatorname{curl} \overline{\left(\mathbf{S}_{h}-\mathbf{A}_{h}\right)} d x \\
& +\int_{D} \mathbf{S}_{h}^{*} \cdot \overline{\left(\mathbf{J}_{s}-\operatorname{curl} \mathbf{H}_{h}+\tilde{\mathbf{J}}_{e, h}\right)} d x \\
& -j \omega^{-1} \int_{D_{c}} \sigma^{-1} \mathbf{J}_{e, h}^{*} \cdot \overline{\left(\sigma\left(j \omega \mathbf{S}_{h}+\nabla \psi_{h}\right)+\mathbf{J}_{e, h}\right)} d x \\
& -\int_{D} \mathbf{H}_{h}^{*} \cdot\left(\operatorname{curl} \overline{\mathbf{S}_{h}}-\mu \overline{\mathbf{H}_{h}}\right) d x,
\end{aligned}
$$

Goal-oriented estimator

Theorem 4 (2/2)

while the remainder term \mathcal{R} is defined by

$$
\begin{aligned}
\mathcal{R} & =\int_{D}\left(\mathbf{A}^{*}-\mathbf{S}_{h}^{*}\right) \cdot \overline{\left(\mathbf{J}_{s}-\operatorname{curl} \mathbf{H}_{h}+\tilde{\mathbf{J}}_{e, h}\right)} d x \\
& +j \omega^{-1} \int_{D_{c}}\left(\sigma^{-1} \mathbf{J}_{e, h}^{*}-\mathbf{E}^{*}\right) \cdot \overline{\left(\sigma\left(j \omega \mathbf{S}_{h}+\nabla \psi_{h}\right)+\mathbf{J}_{e, h}\right)} d x \\
& -\int_{D}\left(\mu^{-1} \operatorname{curl} \mathbf{A}^{*}-\mathbf{H}_{h}^{*}\right) \cdot\left(\operatorname{curl} \overline{\mathbf{S}_{h}}-\mu \overline{\mathbf{H}_{h}}\right) d x
\end{aligned}
$$

Theorem 5

With η (resp. η^{*}) defined before, we have

$$
|\mathcal{R}| \leq 6 \eta \eta^{*} .
$$

Numerical results

Primal problem

- $d=3$,
- $D=[-2,5] \times[-2,2] \times[-2,2]$,
- $D_{s}=[-1,1]^{3}$
- $D_{c}=[2,4] \times[-1,1] \times[-1,1]$.
- $\mu \equiv 1$ in $D, \sigma \equiv 1$ in D_{c} and $\omega=2 \pi$.

- The exact solution is given by $\varphi \equiv 0$ and

$$
\mathbf{A}=\operatorname{curl}\left(\begin{array}{l}
f \\
0 \\
0
\end{array}\right) \text { with } f(x, y, z)=\left\{\begin{array}{cll}
\left(x^{2}-1\right)^{4}\left(y^{2}-1\right)^{4}\left(z^{2}-1\right)^{4} & \text { in } & D_{s} \\
0 & \text { in } & D \backslash D_{s}
\end{array}\right.
$$

- The value of \mathbf{J}_{s} is computed accordingly.

Numerical results

Discrete spaces for the primal problem

$$
\begin{aligned}
& \left(\mathbf{A}_{h}, \varphi_{h}\right) \in \mathbf{V}_{h}=\tilde{X}_{h} \times \tilde{\Theta}_{h}, \text { where } \\
\tilde{\Theta}_{h}= & \left\{\varphi_{h}^{\prime} \in \widetilde{H}^{1}\left(D_{c}\right): \varphi_{h \mid T}^{\prime} \in \mathbb{P}_{1}(T), \forall T \in \mathcal{T} \cap \bar{D}_{c}\right\}, \\
\Theta_{h}^{0}= & \left\{\psi_{h} \in H_{0}^{1}(D): \psi_{h \mid T} \in \mathbb{P}_{1}(T), \forall T \in \mathcal{T}\right\}, \\
X_{h}= & \left\{\mathbf{A}_{h}^{\prime} \in H_{0}(\operatorname{curl}, D): \mathbf{A}_{h \mid T}^{\prime} \in \mathcal{N} \mathcal{D}_{1}(T), \forall T \in \mathcal{T}\right\}, \\
\tilde{X}_{h}= & \left\{\mathbf{A}_{h}^{\prime} \in X_{h}: \int_{D} \mathbf{A}_{h}^{\prime} \cdot \nabla \psi_{h}=0, \forall \psi_{h} \in \Theta_{h}^{0}\right\} .
\end{aligned}
$$

Numerical results

Discrete spaces for the primal problem

$$
\begin{aligned}
& \left(\mathbf{A}_{h}, \varphi_{h}\right) \in \mathbf{V}_{h}=\tilde{X}_{h} \times \tilde{\Theta}_{h}, \text { where } \\
\tilde{\Theta}_{h}= & \left\{\varphi_{h}^{\prime} \in \widetilde{H^{1}}\left(D_{c}\right): \varphi_{h \mid T}^{\prime} \in \mathbb{P}_{1}(T), \forall T \in \mathcal{T} \cap \bar{D}_{c}\right\}, \\
\Theta_{h}^{0}= & \left\{\psi_{h} \in H_{0}^{1}(D): \psi_{h \mid T} \in \mathbb{P}_{1}(T), \forall T \in \mathcal{T}\right\}, \\
X_{h}= & \left\{\mathbf{A}_{h}^{\prime} \in H_{0}(\operatorname{curl}, D): \mathbf{A}_{h \mid T}^{\prime} \in \mathcal{N} \mathcal{D}_{1}(T), \forall T \in \mathcal{T}\right\}, \\
\tilde{X}_{h}= & \left\{\mathbf{A}_{h}^{\prime} \in X_{h}: \int_{D} \mathbf{A}_{h}^{\prime} \cdot \nabla \psi_{h}=0, \forall \psi_{h} \in \Theta_{h}^{0}\right\} .
\end{aligned}
$$

Dual problem : regular solution

$\mathbf{q}=\mathbf{H}_{s}=\operatorname{curl} \mathbf{A}$, and we recall that we are interested in

$$
\mathcal{E}=\int_{D} \mathbf{H}_{s} \cdot \operatorname{curl} \overline{\left(\mathbf{A}-\mathbf{A}_{h}\right)} d x
$$

Numerical results

Discrete spaces for the dual problem

$$
\begin{aligned}
& \quad\left(\mathbf{A}_{h}^{*}, \varphi_{h}^{*}\right) \in \mathbf{V}_{h}^{*}=\tilde{X}_{h}^{*} \times \tilde{\Theta}_{h}^{*}, \text { where } \\
& \tilde{\Theta}_{h}^{*}=\left\{\varphi_{h}^{\prime} \in \widetilde{H^{1}}\left(D_{c}\right): \varphi_{h \mid T}^{\prime} \in \mathbb{P}_{2}(T), \forall T \in \mathcal{T} \cap \bar{D}_{c}\right\}, \\
& \Theta_{h}^{*, 0}=\left\{\psi_{h} \in H_{0}^{1}(D): \psi_{h \mid T} \in \mathbb{P}_{2}(T), \forall T \in \mathcal{T}\right\}, \\
& X_{h}^{*}=\left\{\mathbf{A}_{h}^{\prime} \in H_{0}(\operatorname{curl}, D): \mathbf{A}_{h \mid T}^{\prime} \in \mathcal{N D}_{2}(T), \forall T \in \mathcal{T}\right\}, \\
& \tilde{X}_{h}^{*}=\left\{\mathbf{A}_{h}^{\prime} \in X_{h}^{*}: \int_{D} \mathbf{A}_{h}^{\prime} \cdot \nabla \psi_{h}=0, \forall \psi_{h} \in \Theta_{h}^{*, 0}\right\} .
\end{aligned}
$$

Meshes

Numerical results

Regular solution, $\left(\mathbf{A}_{h}^{*}, \varphi_{h}^{*}\right) \in \mathbf{V}_{h}^{*}$

Numerical results

Regular solution, $\left(\mathbf{A}_{h}^{*}, \varphi_{h}^{*}\right) \in \mathbf{V}_{h}$

Numerical results

Dual problem : singular solution

$$
\mathbf{q}=\left(\begin{array}{c}
\rho_{s} \\
0 \\
0
\end{array}\right)
$$

with

$$
\rho_{s}(x, y, z)=e^{-\frac{(x-3)^{2}+y^{2}+z^{2}}{\log (10) / 4}}, \forall(x, y, z) \in D
$$

and we recall that we are interested in

$$
\mathcal{E}=\int_{D} \mathbf{q} \cdot \operatorname{curl} \overline{\left(\mathbf{A}-\mathbf{A}_{h}\right)} d x
$$

Numerical results

Regular solution, $\left(\mathbf{A}_{h}^{*}, \varphi_{h}^{*}\right) \in \mathbf{V}_{h}^{*}$

Conclusion

- In this talk we explained how to provide some goal-oriented error estimators, by the use of :
- Some adjoint problems
- Some energy-norm error estimators using some flux and potential reconstructions
- Such a work has also be done for the heat equation.
- Two questions we have particularly in mind :
- What about the computation time needed to evaluate the estimator?
- What about non linear functionals?

