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Introduction

Introduction

@ Many engineering problems require computing some quantities of interest, which are
usually linear functionnals applied to the solution of a PDE.

o Error estimation on such functionals is called goal-oriented error estimation.

@ Such estimations are based on the resolution of a adjoint problem, which solution is
used in the estimator definition, and the use of some energy-norm error estimators.
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@ Many engineering problems require computing some quantities of interest, which are
usually linear functionnals applied to the solution of a PDE.

@ Error estimation on such functionals is called goal-oriented error estimation.

@ Such estimations are based on the resolution of a adjoint problem, which solution is
used in the estimator definition, and the use of some energy-norm error estimators.

o Goal of this talk :

o Give an overview of such techniques in different contexts,
o Provide an upper-bound of the error which can be totally and explicitly computed,
o Test the behaviour of such estimators on some numerical benchmarks.
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Introduction

Introduction

Many engineering problems require computing some quantities of interest, which are
usually linear functionnals applied to the solution of a PDE.

Error estimation on such functionals is called goal-oriented error estimation.
Such estimations are based on the resolution of a adjoint problem, which solution is
used in the estimator definition, and the use of some energy-norm error estimators.
Goal of this talk :

o Give an overview of such techniques in different contexts,

o Provide an upper-bound of the error which can be totally and explicitly computed,

o Test the behaviour of such estimators on some numerical benchmarks.
Two models are considered :

o The reaction-diffusion problem,
e An eddy-current problem.
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The reaction-diffusion problem

The reaction-diffusion problem

Problem definition (Primal problem / Primal solution)

—div(DVu) +ru = f inQ€R?,
u = 0 ondQ,

o D € L>®(Q;R¥*4), symmetric matrix-valued function such that
D(z)¢-€2 €)%, VEERY, and ae. z € Q,

e r € L°°(Q) supposed to be nonnegative,
e f is supposed to be in L2(Q).
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The reaction-diffusion problem

The reaction-diffusion problem

Problem definition (Primal problem / Primal solution)

—div(DVu) +ru = f inQ€R
u = 0 ondQ,

o D € L>®(Q;R¥*4), symmetric matrix-valued function such that
D(z)¢-€2 €)%, VEERY, and ae. z € Q,

e r € L°°(Q) supposed to be nonnegative,
e f is supposed to be in L2(Q).

Variational formulation

B(u,v) = /(DVU‘V’U-}-TUU)dZ‘, Yu,v € H}(Q),
Q

Fv) = /fvd:z:,VvEH(:)l(Q)7
Q

B(u,v) = F(v), Yve HQ),

= unique (weak) solution u in HZ ().
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The reaction-diffusion problem

Goal-oriented functional and adjoint problem

Output functional

q € L3(Q) and Q(v) = / qudz, Y v € L*(Q).
Q

Question : How to compute an approximation of Q(u)?

6/40



The reaction-diffusion problem

Goal-oriented functional and adjoint problem

Output functional

q € L3(Q) and Q(v) = / qudz, Y v € L*(Q).
Q

Question : How to compute an approximation of Q(u)?

Adjoint problem (Dual problem / Dual solution)

o We now define u* € H} () solution of the adjoint problem

B(v,u*) = Q(v), Vv € H}(Q).

@ The associated strong formulation is

—div(DVu*) +ru* = ¢ inQ,
u* = 0 onoN.

o We clearly have
Qu) = B(u,u*) = F(u").
@ Since B is here symmetric, we also have

B(u*,v) = Q(v), Vv € H(Q).
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The reaction-diffusion problem

Discrete setting

Mesh and discrete spaces

o Let us introduce a triangulation 7 of Q made of polygonal elements T that covers
exactly €2,

@ We assume that the mesh is simplicial and matching,

@ We introduce the so-called broken Sobolev space
HY(T) = {v € L) |vr € H(T), VT € T}.

o We are looking for :
o up € V) C HI(T) approximation of wu,
o uj € V¥ C H'(T) approximation of u*.

Let us define :

H(div, Q) = {¢ € L?(Q)%; divé € L2(Q)}.
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The reaction-diffusion problem

Error estimation

Theorem 1
Let s, € H} (), 0, € H(div,Q) and 6} € H(div,). Then we have :
€ =0Q() — Qun) = Q(u—up) =ngor +R,
where the estimator ngos is given by
ngor = (¢ sh —un)a +
+ (0n+DVsp, D7'0%)a — (rul,sn —un)a,

while the remainder term R is defined by

R = + Ro+Rs with

D
[\
Il

(0, + DV sy, D705 + Vu*)q,

Rz = (r(u" —up),sn —un)a-
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The reaction-diffusion problem

Error estimation

Theorem 1
Let s, € H} (), 0, € H(div,Q) and 6} € H(div,). Then we have :
€ =Q(u) = Qup) = Qu —up) =ngor + R,

where the estimator ngos is given by
ngor = (¢ sh —un)a +

+ (0n+DVsp, D7'0%)a — (rul,sn —un)a,

We have three contributions :

e (0, + DVsy, Df‘(),’zjgz measures the deviation of —DVs;, from the
reconstructed flux 6y,

o (q,sp, —up)a — (ruf, s, — up)o measures the deviation of uy, from HJ ().
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Error estimation

Theorem 1
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where the estimator ngos is given by
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The reaction-diffusion problem

Potential and Flux reconstructions

o If V}, C Hé(Q) then we can take s;, = uy and the blue terms vanish.

@ This result occurs whatever the values of
sp € HY(Q), 6y, € H(div,Q) and 05 € H(div, Q).

= |ngorl| and |R| can both be very high...
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The reaction-diffusion problem

Potential and Flux reconstructions

o If V}, C Hol(Q) then we can take s;, = uy and the blue terms vanish.

@ This result occurs whatever the values of
sp € HY(Q), 6y, € H(div,Q) and 05 € H(div, Q).

= |ngorl| and |R| can both be very high...

Potential and Flux reconstructions

o We assume that a potential reconstruction s;, of uy, is available :
sy € H&(Q) and s;, ~ up,

@ We assume that some flux reconstructions 6y, and 6 are available, using respectively
(uh7f) and (u}*laq) :

0n € H(div,Q) and (divly, +rup — f,1)r =0, VT € T
= 9},, ~ —DVU}“

9; € H(div,Q) and (divé} +ruf —q,1)7 =0, VT € T
= 0% ~ —DVu}.
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The reaction-diffusion problem

Estimation of the remainder R

@ Once the primal and dual problems have been solved, the value of ngor
can be computed (up to oscillation terms).

@ Nevertheless, the value of R can not be evaluated, because of the value of u* in its
definition.

@ Question :
Can the value of R be bounded by known quantities 7
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The reaction-diffusion problem

Estimation of the remainder R

Some definitions

rs 1
o Vw e Hy(Q)UVh, [lwlf = ID2Vpwl|? + [r2w|f?,

° = Z(mg\’C,T +7712%,T +77%)F,T), with :

TeT
nve,r = lun —suller,
nr,r = mr ||f —divl, +rulT,
1
nprr = |IDT2(0h + DVup)|T,

o _1 1 :
myp =min{r "' hr||D” 2 ||e,7, |7 2 ||co,7}, When T is convex.
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The reaction-diffusion problem

Estimation of the remainder R

Some definitions

rs 1
o Vw e Hy(Q)UVh, [lwlf = ID2Vpwl|? + [r2w|f?,

° = Z(H?VC,T +7712%,T ""U%F,T), with :

TeT
nve,r = llun — sulln,T,
nr,r = mr ||f —divl, +rulT,
1
nprr = |IDT2(0h + DVup)|T,

o _1 1 :
myp =min{r "' hr||D” 2 ||e,7, |7 2 ||co,7}, When T is convex.

Known results

lu — uplln <

llw* = uplln < 0"
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The reaction-diffusion problem

Estimation of the remainder R

With n and n* as defined before, we have
IR| <4nn*

Sketch of the proof

We estimate each term of R separetely.

Ri1 = (f — divly, — rup,u* —uj)o

[R1|

‘ /(f —divly, — rup)(u* — u) de
Q

‘ Z (f — divly, — rup) ((u* —up) — Myp(u* — uZ)) dz

TeTYT
< g If — divp, — rup|lr mr ||u* —uplln,T
TeT
< nn*.
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The reaction-diffusion problem

Estimation of the remainder R

With n and n* as defined before, we have
IR| <4nn*

Sketch of the proof

We estimate each term of R separetely.

Ra = —(0n + DVsp, D765 + Vu*)q

1 1
[R2| < [[D72(0r + DVsp)ll[D™2(6; + DVu®)|

IA

_1 —1 1
D72 (0r + DVsp)l(ID™2 (65, + DVrup)ll 4 [D2 Vi (u* —up)l)

IN

2nn*.
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The reaction-diffusion problem

Estimation of the remainder R

With n and n* as defined before, we have
IR| <4nn*

Sketch of the proof

We estimate each term of R separetely.

Rs = (r(u” —u}), sn — un)a

/ r(u* —uf)(sp —up) dz
Q

1 1
72 (u* = up)llllr= (sn — un)|

IA

*

nn--

IN

12/40



The reaction-diffusion problem

Some remarks

me remarks

Q@ Thms1land2 =

€] < Ingorl +4mm*.

Nevertheless, such an estimator can overestimate the error.
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The reaction-diffusion problem

Some remarks

me remarks

Q@ Thms1land2 =
I€] < Inqorl + 4nn™.
Nevertheless, such an estimator can overestimate the error.

@ We can estimate the ratio |

nQOI’

* .
, during a refinement procedure based on the use of ngor and

4
by computing
NQoI1
check if it tends to zero or not.
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Some remarks

me remarks

Q@ Thms1land2 =
I€] < Inqorl + 4nn™.
Nevertheless, such an estimator can overestimate the error.

@ We can estimate the ratio |

nQOI’

* .
, during a refinement procedure based on the use of ngor and

4
by computing
NQoI1
check if it tends to zero or not.

© In the positive case, since £ = ngor + R, this means that the ratio tends to
QoI

one and will validate the asymptotic exactness of the estimator ngo7.
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The reaction-diffusion problem

Some remarks

me remarks

Q@ Thms1land2 =
I€] < Inqorl + 4nn™.
Nevertheless, such an estimator can overestimate the error.

@ We can estimate the ratio |

nQOI’

*

4 .
by computing , during a refinement procedure based on the use of ngor and
NQoI1

check if it tends to zero or not.

© In the positive case, since £ = ngor + R, this means that the ratio tends to

QoI
one and will validate the asymptotic exactness of the estimator ngo7.

@ In any case, we can use the estimate

€] < Ingorl + 4mm*,

and then choose as estimator |[ngor| + 4nn* to implement an adaptive algorithm.
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The reaction-diffusion problem

Numerical results

Primal problem : Regular solution

e d=2 Q=]0,1[2, D = Iz2 and 7 = 0.
o u(x,y) = 10%z(1 — )y(1 — y)e_loo(p(w’y))z, with
p(z,y) = ((z = 0.75) + (y = 0.75)%) /2.

@ The right-hand side f is computed accordingly
such that f = —div(DVu).
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The reaction-diffusion problem

Numerical results

Primal problem : Regular solution

e d=2 Q=]0,1[2, D = Iz2 and 7 = 0.

o u(x,y) = 10%z(1 — )y(1 — y)e_loo(p(w’y))z, with
pa,y) = (& = 0.75)* + (y — 0.75)*) /2.

@ The right-hand side f is computed accordingly
such that f = —div(DVu).

Dual problem : Regular solution

e g =1, with

w={(z,y) €Q:15<z+y <175}
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The reaction-diffusion problem

Numerical results

Numerical parameters

e For uy

e For 0y, :

E
e Foruj :

e For 0}

: standard conforming P; finite elements,

standard RT; finite elements,

standard conforming P finite elements,

: standard RT5 finite elements.
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The reaction-diffusion problem

Numerical results

gular solution

—
S
anyt
“R
slope=2
slope=3

Log(h)

’ Lc;(h)

Ierr = |€/nqorl

ot
—

" Logty

1tet. = |€/(Ingos| + 4mn*)

@
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Remarks

The reaction-diffusion problem

@ If we had chosen :

For up, :
For 0y, :

For uj,
L
For 67,

standard conforming P; finite elements,
standard RT; finite elements,

: standard conforming IP; finite elements,
: standard RT; finite elements,

then the quantity 77* is no more superconvergent, even if I.;; remains going towards

one.
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The reaction-diffusion problem

Numerical results

Primal problem : Singular solution

0ed=2Q=]—1,1% and r =0,

a

L . . 1
@ D is piecewise constant in (Q : ’al

,0<a< 1.

4
e a = —arctan(+v/a) and u(z,y) = p(z, y) S(z,y), where
™

o p(z,y) = (1 — z*)(1 — y*) is a truncation function
o S(@,y) = p™u(6)

@ The right-hand side f is computed accordingly.

e For any € > 0 we have u € H!to—¢(Q)
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The reaction-diffusion problem

Numerical results

Primal problem : Singular solution

0ed=2Q=]—1,1% and r =0,

L . . 1| a
@ D is piecewise constant in (Q : ’al

,0<a< 1.

4
a = —arctan(v/a) and u(z,y) = p(z,y) S(z,y), where
™

o p(z,y) = (1 — z*)(1 — y*) is a truncation function
o 5(@y) = p*0(0)

The right-hand side f is computed accordingly.
For any € > 0 we have u € H'T*~¢(Q)

Dual problem : Singular solution

o g =1, with

w = (0,0.5) x (—0.25,0.25).
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The reaction-diffusion problem

Numerical results

Log(h
*718*" T ~ 1%
g “~ L.
¥ S
/ E N
5 / ™ AN
II B o \\\
/ X
/ L
s N
¥
s T
Iegy = |€/nqorl

Dy "
1 = |€l/(Inqor| + 4mm*)
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The reaction-diffusion problem

Remarks

The error, the estimator ngos and 4nn™ all converge towards zero with order O(h?%).

@ I.py remains in the order of unity but is no more close to one.
@ The remainder R seems to be no more superconvergent.
°

For such problems with singular solutions, an adaptive algorithm should be based on
the sum of the estimator [ngor| and of the product 47 n*,

20/40



An eddy-current problem

Table of contents

e An eddy-current problem
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An eddy-current problem

The eddy-current problem

Problem definition

Find the electric field E and the magnetic field H solution of

curlE = —jwB in D, _ ]
cwrlH = J.+Je inD, with { JB B “g f: %
divB = 0 in D, e = @ W Lhes

Properties and boundary conditions
e divJe =0 in D,
eJ.-n=0o0n 0D,

e B-n=0onI=0D.
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An eddy-current problem

The eddy-current problem

Magnetic vector and electric scalar potentials

B = curlA in D,
E = —jwA-Vop in Dec.
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An eddy-current problem

The eddy-current problem

Magnetic vector and electric scalar potentials

B = curlA in D,
E = —jwA-Vop in De.
Harmonic A-¢ formulation
curl (,u_lcurlA) + O'(ij + ch) = Js inD,
div(o(jwA +Ve)) = 0 in De,

with the boundary conditions

Axn = 0 onT,
oc(jwA+Ve)-n = 0 ondD..

A\
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An eddy-current problem

The eddy-current problem

Magnetic vector and electric scalar potentials

B = curlA in D,
E = —jwA-Vop in De.
Harmonic A-¢ formulation
curl (,u_lcurlA) + a(ij + Vo = Js inD,
div(o(jwA +Ve)) = 0 in De,

with the boundary conditions

Axn = 0 onT,
o(jwA+Ve)-n = 0 ondD..
Ho(curl,D) = JF € L?*(D)3:cwlF € L?>(D)3,F xn =0 on 8D},
X(D) = {F e H(curl,D): (F,VE&)p =0, V& € H&(D)}
H(D) = {rem @ o=0}.
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An eddy-current problem

The eddy-current problem

Variational formulation

Find (A, ¢) € X(D) x H!(D,) such that

B((A, ), (A, @) = (Js,A"), V(A',¢') € X(D) x H(D.),
where

B((A,¢),(A"¢")) = (plcurlA,curlA’)
+jw™ ! (o(jwA + Vo), (jwA' + V') V(A 0), (A',¢') € X(D) x H (D).
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An eddy-current problem

The eddy-current problem

Variational formulation

Find (A, ¢) € X(D) x H!(D,) such that
B((A,9), (A, ") = (3o, A7), Y(A',¢) € X(D)x HL(D),
where

B((A,¢),(A"¢")) = (plcurlA,curlA’)
+jw™ ! (o(jwA + Vo), (jwA' + V') V(A 0), (A',¢') € X(D) x H (D).

Well-posedness

Existence and uniqueness of the weak solution (A, ¢) since it was shown there that

1

1A, ")l|5 = | B((A", &), (A, 0")|F,Y(A', o) € X(D) x HL(De),

is a norm on X(D) x H1(D.) equivalent to the natural one

Nl

1A, @)y = (1A% + = 2eurl A% + |03 . ) T V(A o) € X(D) x H(De).
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An eddy-current problem

The goal-oriented functional

Definition

We here consider the output functional given by
Q(A) = / q - curlA dz, VA € H(curl, D),
D

where q € L2(D)3 is a given function.
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An eddy-current problem

The goal-oriented functional

We here consider the output functional given by
Q(A) = / q - curlA dz, VA € H(curl, D),
D

where q € L?(D)3 is a given function.

Physical meaning

In many engineering applications, engineers are interested in the computation of the flux
through a coil. Indeed, in the case where a coil is included in D, in which a given current Jg
of intensity ¢ is imposed, N being the unit direction of the coil, it can be shown that the
magnetic flux through the surface S of a coil is given by

<I>:/cur1AvndS,
S

_ 1 1 _
and that it can be evaluated by ® = —Q(A) = — q - curlA dzx,
i i

using q = Hs where curlH; = Jg, and where as usual B = curlA.

25 /40



An eddy-current problem

Adjoint problem

Definition of B*

B*((A, ), (A", ") = B(A, &), (A,9)) V(A,9),(A",¢) € X(D) x H(D,).

Adjoint problem
Look for (A*, p*) € )?(D) X EI(DC) such that

B*((A%,¢%),(A",¢))) = Q(A"), V(A",¢') € X(D) x HY(D,),

Strong formulation of the adjoint problem

curl (uflcurlA*) - J(ij* + ch*) = curlg in D,
div(o(jwA* + Ve*)) = 0 in De.

A\
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An eddy-current problem

Discrete setting

Mesh and discrete spaces

o HY(T)={v e L*D)|vr € H(T),VT € T}.
° (Ap,n) € Vi CHY(T)? x H'(Te).
e For A} € HY(T)3 and ¢, € H'(7¢), we denote :

curl, A}, = curlA] onT, VTET,
Ve, = Vg onT, VTE¢€ET..

o We introduce the discrete couterparts of by :

B curl, Ay,
E, = —JjwAp—Vipn

Potential and Flux reconstructions

o We assume that

o A potential reconstruction (Sy, ) € Ho(curl, D) X H'(D.) of (Ap, ¢p) is available,
o Some flux reconstructions Hy, and J. ; are available that belong respectively to H(curl, D)
and H(div, D.) and satisfy the following conservation properties :

0,VT € T,e € C?,
0in D.,
0on d&D,.

(curlH;, — je,h —Js,e)r
diVJe)h
Jen-n
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An eddy-current problem

Energy-norm estimator

The energy error

) 5 \1/2
hp = (Hu—l/2cur1hEAH + ||lw™/2 02 (Gwea + Viey)| ) ;

D

The estimators

@ Non conforming estimator :

nNe = (”M71/2curlh(Ah_sh)"2

5 \1/2
- ||w*1/201/2(jw(Ah—Sh)+Vh(‘Ph_wh))HD) ’

o Flux estimator :

1/2 .
NMux = (nrQnagn + nglec) 3 with

TImagn = H/"1/2(Hh - /LilBh)HD and Telec = ||(wo-)71/2(']e,h - UEh)HDC ;

@ Oscillation estimator (if D convex) :

W=

1 =
N0 = pdax | D 2hE (35 — curlHy + I ulF
TeT
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An eddy-current problem

Energy-norm estimator

Let us define :
N =2nNc + Nhux + N0,
Then we have :
€A p < n

Similarly for the adjoint problem...

@ The energy error :
|2 1/2
D, ’

2
aF ||o.)71/2 o2 (jwear + Vhepr)

—1/2
EA* p* = (HH 2curlye px
@ The estimators :

777\701 nﬁux» 7)?9 and 77* = 27];\]0 + n;lux + n?’)’

@ The estimation :

eax pox <.
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An eddy-current problem

Goal-oriented estimator

Theorem 4 (1/2)

Let (Sp,¥n) € Ho(curl, D) x ;{vl(Dc) be a potential reconstruction of (Aj, ¢p),
then the error on the quantity of interest defined by

522/q~curl(A—Ah)da¢
TeT 7T

admits the splitting
& =mnqor +R,

where the estimator nqo1 is given by

Z/q~curl(Sh—Ah)da:

Ter !

+ / Sy - (Js — curlHy + je,h) dx
D

Q01

_ jwq/ o132, (o(wSh + Vaon) + e do
D,

- / H; - (curlS,, — pHy) dz,
D
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An eddy-current problem

Goal-oriented estimator

Theorem 4 (2/2)

while the remainder term R is defined by

R = /(A* —S3) - (Js — curlHy, + I, ) dz
D

+ jw ! (JflJ:!h —E*)- (U(ijh—i-leh)-l—Je,h) dx
D,

— / (pteurlA* — H}) - (curlS;, — puHy,) da
D

With 7 (resp. n*) defined before, we have

IR| < 6nn*.
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An eddy-current problem

Numerical results

Primal problem

e d=3,

o D=[-2,5] x[-2,2] x [-2,2],
e Dy =[-1,1]3

o D.=[2,4] x [-1,1] x [-1,1].
e u=1inD,o=1in D, and

w = 2m.

@ The exact solution is given by ¢ = 0 and

f .
A=curl| O with f(z,y,2) = { (=* = )*(y? a NG n Ds,
0

@ The value of Js is computed accordingly.

in  D\Ds.
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An eddy-current problem

Numerical results

Discrete spaces for the primal problem

(Ah,(ph) EVy, = Xh X éh, where

On = {¢}, € HI(De) : @l € P1(T),YT € TN D},
09 = {¢n € Hy(D) : ¢pr € P1(T),VT € T},
Xy, = {A}, € Ho(curl, D) : A’th € ND1(T),VT € T},

Xy ={A) € Xy, ;/Ag~v¢h:0,v¢he®2}.
D
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An eddy-current problem

Numerical results

Discrete spaces for the primal problem

(Ah,iph) EVy, = Xh X éh, where

On = {¢}, € HI(De) : @l € P1(T),YT € TN D},
09 = {¢n € Hy(D) : ¢pr € P1(T),VT € T},
Xy, = {A}, € Ho(curl, D) : A’th € ND1(T),VT € T},

Xy ={A) € Xy, ;/A;L~v¢h:0,\whe®2}.
D

Dual problem : regular solution

q = Hs = curlA, and we recall that we are interested in

5:/ H; - curl(A — Ay) dz.
D
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Numerical results

Discrete spaces for the dual problem
(A%, @) € Vi = X x 6%, where
6;, = {¢}, € HY(Dc) : ¢}, € P2(T),VT € TN Dc},

0, = {¢n € H}(D) : ¢y € Pa(T),VT € T},
X ={A} € Ho(curl,D) : A’th € NDo(T),VT € T},

X;‘;:{ nEXp :/A;I-th:O,thEGZ’O},
D

5\

Meshes
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Numerical results
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An eddy-current problem

Errors and Estimators
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Numerical results

Dual problem : singular solution

q=( 0

with
_ (z=3)2+y2+22
ps(@,y,2) =e  Tes(O/E VY(z,y,2) €D,

and we recall that we are interested in

€= / q-curl(A — Ay) dz.
D
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An eddy-current problem

Errors and Estimators
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An eddy-current problem

Conclusion

o In this talk we explained how to provide some goal-oriented error estimators, by
the use of :
e Some adjoint problems
e Some energy-norm error estimators using some flux and potential reconstructions
@ Such a work has also be done for the heat equation.

@ Two questions we have particularly in mind :
o What about the computation time needed to evaluate the estimator ?
o What about non linear functionals?
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