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Let SL(2,R) be the set of 2× 2 matrices of determinant one. Namely,

SL(2,R) =

{(
a b
c d

)
∈M2×2(R) : ad− bc = 1

}
,

where M2×2(R) is the space of 2× 2 matrices over real numbers.

The aim of this worksheet is to provide some exercises on representation theory of SL(2,R). I

hope that the reader will acquire some concrete ideas through the exercises.

1. Iwasawa decomposition of SL(2,R)

In representation theory of SL(2,R), we often see the following subgroups:1

K :=

{(
a −b
b a

)
∈ SL(2,R) : a, b ∈ R

}
=

{(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
: θ ∈ R

}
,

A :=

{(
r 0
0 r−1

)
: r ∈ R>0

}
=

{(
et 0
0 e−t

)
: t ∈ R

}
,

N :=

{(
1 x
0 1

)
: x ∈ R

}
,

P :=

{(
a x
0 a−1

)
: a ∈ R×, x ∈ R

}
,

where R× = R\{0}.
We have K ' S1, A ' R>0 ' R, and N ' R. In particular, K is compact and A and N are

noncompact. The subgroup P is called a parabolic subgroup.

Exercise 1. Define

M := ZK(A) = {k ∈ K : ka = ak for all a ∈ A}.

(1) Show that M = {±I2}, where I2 denotes the identity matrix.

(2) Show that P = MAN (by this I mean that each element of P is a product of m ∈ M ,

a ∈ A, and n ∈ N).

Remark 1.1. The decomposition P = MAN is called the Langlands decomposition.

1Although we do not consider in this worksheet, the subgroup

N̄ := {
{(

1 0
y 1

)
: y ∈ R

}
' R

also plays a key role in representation theory of SL(2,R).

1
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Hereafter, we write G := SL(2,R). The aim of the next exercise is to show that each g ∈ G can

be uniquely expressed as g = kan for k ∈ K, a ∈ A, and n ∈ N . The decomposition G = KAN is

called the Iwasawa decomposition.

Exercise 2. Write H := {x+ iy : y > 0}, the upper-half plane. For

(
a b
c d

)
∈ G and z ∈ H, define(

a b
c d

)
· z :=

az + b

cz + d
.

(1) Show that

(
a b
c d

)
· z ∈ H.

(2) Show that, for g1, g2 ∈ G and z ∈ H, we have g1 · (g2 · z) = (g1g2) · z. Thus, the group G

acts on H.

(3) Show that StabG(i) = K, where StabG(i) = {g ∈ G : g · i = i}.

(4) Show that for any g ∈ G, there exist a ∈ A and n ∈ N such that g · i = (na) · i.

(5) Conclude from (3) and (4) that G = NAK. (By applying inversion, this shows that

G = KAN .)

(6) Show that the decomposition g = kan for k ∈ K, a ∈ A, and n ∈ N is unique.

Exercise 3. Show that the Iwasawa decomposition of

(
a b
c d

)
∈ G is given by

(
a b
c d

)
=

1√
a2 + c2

(
a −c
c a

)(√
a2 + c2 0

0 1√
a2+c2

)(
1 ab+cd

a2+c2

0 1

)
.

Exercise 4. Show that K is a maximal compact subgroup of G.

Remark 1.2. By the Iwasawa decomposition G = KAN , the group G = SL(2,R) is not compact.

Remark 1.3. For m ∈ 1 + Z≥0, define the special orthogonal group SO(m) as

SO(m) := {g ∈Mm×m(R) : ggt = Im and det g = 1},

where gt denotes the transpose of g and Im is the identity matrix. With this notation, the group

K is understood as K = SO(2).

2. The classification of K̂ for K = SO(2)

The aim of this section is to classify irreducible unitary finite-dimensional representations of

K = SO(2). In this worksheet, we mean representations by those defined over complex vector

space as usual. We resume the notation from Section 1, unless otherwise specified.

We start with the definition of unitary representation.

Definition 2.1. A representation (π, V ) of a Lie group G (need not be G = SL(2,R)) defined over

a complex vector space V is said to be unitary if there exists a Hermitian inner product 〈·, ·〉 such

that 〈π(g)v, π(g)v〉 = 〈v, v〉 for all g ∈ G and v ∈ V .
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For K = SO(2), put2

Irr(K)fin := the set of equivalence classes of irreducible finite-dimensional representations of K,

K̂ := the set of equivalence classes of irreducible unitary finite-dimensional representations of K.

We first show Irr(K)fin = K̂. For simplicity, write

kθ :=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Exercise 5. Show that any finite-dimensional representation (π, V ) of K admits a K-invariant

Hermitian inner product. That is, given a representation (π, V ) of K, there exists a Hermitian

inner product 〈·, ·〉 on V such that 〈π(k)v1, π(k)v2〉 = 〈v1, v2〉. (Hint: Given a Hermitian inner

product (·, ·), define

〈v1, v2〉 =

∫ 2π

0
(π(kθ)v1, π(kθ)v2) dθ.

Then show that 〈·, ·〉 is a desired one.)

As in the lectures by Birgit, irreducible representations in K̂ play a crucial role in the study of

admissible representations of G = SL(2,R). Then we next study K̂.

For n ∈ Z, we define a one-dimensional representation (χn,C) of K by

χn(kθ)z = einθz.

Clearly, {χn : n ∈ Z≥0} ⊂ Irr(K)fin = K̂.

Claim 2.2. We have

K̂ = {χn : n ∈ Z≥0} ' Z. (2.3)

To prove Claim 2.2, we start with the classification of irreducible finite-dimensional representa-

tions of abelian groups.

Exercise 6. Show that every irreducible complex finite-dimensional representation of an abelian

group is one-dimensional. (Hint: Use Schur’s Lemma below. If you haven’t seen it, also consider

the proof.)

Fact 2.4 (Schur’s Lemma). Let (π, V ) be an irreducible representation of a group G, (which need

not to be SL(2,R)) over a complex finite-dimensional vector space V . If T : V → V is a linear map

such that T ◦π(g) = π(g)◦T for all g ∈ G, then there exists a constant λ ∈ C such that T = λ · IdV ,

where IdV denotes the identity map on V .

As K is abelian, Exercise 6 shows that K̂ consists of one-dimensional representations.

Remark 2.5. The analogous statement with Exercise 6 need not be true for representations defined

over R. Consider the two-dimensional real representation (π,R2) of K defined by the standard

2The finite-dimensionality of the definition of Irr(K)fin and K̂ is unnecessary. In fact, for a compact Lie group
K, the density of the space of K-finite vectors forces that any irreducible admissible representation of K is finite-
dimensional.
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matrix multiplication, namely,

π

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
x
y

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
x
y

)
.

Then (π,R2) is an irreducible representation of K.

As χ ∈ K̂ is unitary, it satisfies |χ(k)|2 = 1 for all k ∈ K. It then follows from Exercise 6 that, to

show Claim 2.2, one wishes to classify continuous group homomorphisms χ : K → S1. As K ' S1,

this is equivalent to classifying continuous group homomorphisms χ : S1 → S1.

Toward our goal (2.3), we next consider one-dimensional representations of additive group R.

Exercise 7. Show that any continuous homomorphism ν : R→ C× is of the form

ν : x 7→ esx for some s ∈ C,

where C× denotes C× = C\{0}. In particular, any continuous homomorphism ν̃ : R→ S1 is of the

form

ν̃ : x→ eiyx for some y ∈ R.

(Hint: Let ν : R→ C× be a continuous homomorphism of R. Then ν(0) = 1, and so, by continuity,

there exists δ > 0 such that
∫ δ

0 ν(t) dx 6= 0. Then observe that
∫ x+δ
x ν(t) dt = ν(x)

∫ δ
0 ν(t) dt

and consider ν ′(x). Note: The ν is initially assumed to be merely continuous, but it is in fact

differentiable.)

Remark 2.6. Recall from Section 1 that we have A ' R, which is given by

(
r 0
0 r−1

)
7→ log(r).

Thus, Exercise 7 shows that any irreducible finite dimensional representation (ν,C) of A has the

form

ν

(
r 0
0 r−1

)
= rs for some constant s ∈ C. (2.7)

Exercise 8. Prove Claim 2.2. That is, show that any irreducible unitary finite-dimensional repre-

sentation (ξ,C) of K is of the form

χ(kθ) = einθ for some n ∈ Z.

Remark 2.8. By Exercise 8, the (sl(2,C),K)-module VK consisting of K-finite vectors of irreducible

admissible representation (π, V ) of G is of the form

VK =
⊕
n∈Z

V (n), (algebraic direct sum)

where V (n) is the χn-isotypic component of V . Namely,

V (n) = {v ∈ V : π(k)v = χn(k)v for all k ∈ K}.

3. Irreducible finite-dimensional representations of P = MAN

In this section we consider irreducible finite-dimensional representations of parabolic subgroup

P = MAN . We start with the following elementary observation.
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Write

H :=

(
1 0
0 −1

)
and E :=

(
0 1
0 0

)
.

Then, for t ∈ R, we have

etH =

(
et 0
0 e−t

)
∈ A and etX =

(
1 t
0 1

)
∈ N.

If (π, V ) is a finite-dimensional representation of AN , then H and X act on V via the differential

dπ of π, that is,

dπ(H) :=
d

dt

∣∣∣∣
t=0

π(etH) and dπ(X) :=
d

dt

∣∣∣∣
t=0

π(etX).

A quick computation shows that

[H,E] := HE − EH = 2E.

Equivalently,

HE = [H,E] + EH = 2E + EH.

Thus,

dπ(H)dπ(E) = dπ(HE) = 2dπ(E) + dπ(E)dπ(H).

In particular, if there exists λ ∈ C such that dπ(H)v = λv, then

dπ(H)dπ(E)v = (λ+ 2)dπ(E)v. (3.1)

Now we consider the following.

Exercise 9. Let (π, V ) be an irreducible finite-dimensional representation of P . Show that N acts

on V trivially. Namely,

π(n)v = v for all n ∈ N and v ∈ V .

As N is a normal subgroup of P , it follows from Exercise 9 that any irreducible finite-dimensional

representation (π, V ) of P = MAN is regarded as a representation of MAN/N ' MA. Then, for

H ∈ {P,M,A}, put

Irr(H)fin := the set of equivalence classes of irreducible finite-dimensional representations of H.

As M ' {±I2}, we have

Irr(M)fin = {triv, sgn} ' Z/2Z,

where triv(−I2) = 1 (trivial representation) and sgn(−I2) = −1 (sign representation).

Let χn ∈ K̂. Since M = ZK(A) ⊂ K, the restriction of χn to M is well-defined. Letχn|M denote

the restriction of χn to M .

Exercise 10. Check that

χn|M =

{
triv if n is even,

sgn if n is odd.
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As we observed in Remark 2.6, the set Irr(A)fin is given by

Irr(A)fin = {νs : s ∈ C} ' C,

where νs is defined as in (2.7). Thus, we have

Irr(P )fin ' Irr(M)fin × Irr(A)fin ' Z/2Z× C.

4. Principal series representation (l, IndGP (σ ⊗ νs))

For (σ, νs) ∈ Irr(P )fin ' Irr(M)fin × Irr(A)fin, define

IndGP (σ⊗νs) := {f ∈ C∞(G) : f(gman) = νs(a
−1)σ(m−1)f(g) for all m ∈M , a ∈ A, and n ∈ N}.

The group G acts on IndGP (σ ⊗ νs) by left-translation l, that is,

l(g)f(x) = f(g−1x) for g, x ∈ G.

The representation (l, IndGP (σ ⊗ νs)) is called a parabolically induced representation or principal

series representation of G.

It is known that it follows from the so-called Peter–Weyl theorem that the space IndGP (σ⊗ νs)K
of K-finite vectors decomposes into

IndGP (σ ⊗ νs)K '
⊕
n∈Z

Ceinθ ⊗HomM (χn|M , σ). (algebraic direct sum)

It then follows from Exercise 10 that

IndGP (σ ⊗ νs)K '

{⊕
n∈2Z Ceinθ if σ = triv,⊕
n∈1+2Z Ceinθ if σ = sgn.

(4.1)

Remark 4.2. The decomposition of (4.1) is independent of the complex parameter s ∈ C for the

character νs for A. The parameter s ∈ C is strongly related to the sl(2,C)-module structure of

IndGP (σ ⊗ νs)K such as irreducibility and composition factors.

Since

C∞(S1)K = L2(S1)K =
⊕
n∈Z

Ceinθ (algebraic direct sum),

it follows from (4.1) that, as K-representations, we have

C∞(S1)K ' IndGP (triv ⊗ νs)K ⊕ IndGP (sgn⊗ νs)K . (4.3)

Define

C∞(S1)+ := {f ∈ C∞(S1) : f(−x) = f(x)},

C∞(S1)− := {f ∈ C∞(S1) : f(−x) = −f(x)}.

Then the space C∞(S1)αK of K-finite vectors decomposes into

C∞(S1)αK =

{⊕
n∈2Z Ceinθ if α = +,⊕
n∈1+2Z Ceinθ if α = −.
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Thus, we have

C∞(S1)+
K ' IndGP (triv ⊗ νs)K and C∞(S1)−K ' IndGP (sgn⊗ νs)K .

In the rest of this note, we are going to show explicitly that

C∞(S1)+ ' IndGP (triv ⊗ νs) and C∞(S1)− ' IndGP (sgn⊗ νs)

as G-representations. (Thus the equivalences (4.3) are indeed as (sl(2,C),K)-modules.)

Exercise 11. For g ∈ G and x ∈ S1 ⊂ R2, we have gx 6= 0, where gx is the standard matrix

multiplication of g and x ∈ R2. Thus gx/|gx| ∈ S1. Write

ε(g, x) :=
gx

|gx|
.

(1) Show that, for g1, g2 ∈ G and x ∈ S1, we have ε(g1g2, x) = ε(g1, ε(g2, x)).

(2) For s ∈ C, g ∈ G, and f ∈ C∞(S1)+, define $s(g)f ∈ C∞(S1)+ by

$s(g)f(x) := |g−1x|−sf(ε(g−1, x)).

Show that $s(g1g2)f(x) = $s(g1)$s(g2)f(x). Thus, ($s, C
∞(S1)+) is a representation of

G.

Write

Ξ := R2\{0}. (4.4)

For s ∈ C, we put

C∞s (Ξ)+ := {F ∈ C∞(Ξ) : F (tξ) = tsF (ξ) and F (−ξ) = F (ξ) for t ∈ R>0}. (4.5)

The group G acts on C∞s (Ξ)+ by

δ(g)F (ξ) := F (g−1ξ).

Then (δ, C∞s (Ξ)+) is a representation of G.

Exercise 12. Define a continuous linear map

T : C∞s (Ξ)+ −→ C∞(S1)+

by

F 7−→ fF := F |S1 .

Show that T is an intertwining operator, that is to show that

T (δ(g)F )(x) = $s(g)T (F )(x) for all g ∈ G and F ∈ C∞s (Ξ)+.

The intertwining operator T : C∞s (Ξ)+ → C∞(S1)+ has inverse

T−1 : C∞(S1)+ → C∞s (Ξ)+, f 7→ Ff ,

where

Ff (x) := |x|−sf(x/|x|).
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It then follows from Exercise 12 that the two representations (δ, C∞s (Ξ)+) and ($s, C
∞(S1)+) are

equivalent.

Now we aim to show that

(l, IndGP (triv ⊗ νs)) ' ($s, C
∞(S1)+). (4.6)

To do so, it suffices to show (l, IndGP (triv ⊗ νs)) ' (δ, C∞s (Ξ)+).

Exercise 13. Recall that we have Ξ = R2\{0}.
(1) Show that G acts on Ξ transitively, that is to show that, for any ξ ∈ Ξ, there exists g ∈ G

and ξ′ ∈ Ξ such that ξ = gξ′.

(2) As usual, write e1 = (1, 0)t (the transpose of the row vector (1, 0)). By (1), any ξ ∈ Ξ has

the form ξ = ge1. Check that StabG(e1) = N .

(3) We define a continuous linear map

Γ: IndGP (triv ⊗ νs) −→ C∞s (Ξ)+

by

f 7−→ Γ(f)(ξ) := f(gξ),

where gξ is some element in G such that ξ = gξe1. Show that Γ is well-defined, that is to

show the following.

(a) For ξ = g1e1 = g2e1, we have f(g1) = f(g2) for f ∈ IndGP (triv ⊗ νs).

(b) Im(Γ) ⊂ C∞s (Ξ)+.

(4) Define a continuous linear map

Λ: C∞s (Ξ)+ −→ IndGP (triv ⊗ νs)

by

F 7−→ Λ(F )(g) := F (ge1).

Show that Im(Λ) ⊂ IndGP (triv ⊗ νs).

(5) Show that Λ and Γ are inverse to each other.

(6) Show that Λ and Γ are G-intertwining operators to conclude that (l, IndGP (triv ⊗ νs)) is

equivalent to (δ, C∞s (Ξ)+).

Remark 4.7. For s ∈ C, put

C∞s (Ξ)− := {F ∈ C∞(Ξ) : F (tξ) = tsF (ξ) and F (−ξ) = −F (ξ) for all t ∈ R>0}.

One can similarly show that

(l, IndGP (sgn⊗ νs)) ' (δ, C∞s (Ξ)−) ' ($s, C
∞(S1)−).

Remark 4.8. Observe that we have

C∞(S1) = C∞(S1)+ ⊕ C∞(S1)−.
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Indeed, for f(x) ∈ C∞(S1), define

f(x)+ :=
f(x) + f(−x)

2
and f(x)− :=

f(x)− f(−x)

2
.

Then,

f(x) = f(x)+ + f(x)−

and

f(x)α ∈ C∞(S1)α for α ∈ {±}.
It then follows from the above argument that we have

($s, C
∞(S1)) ' (l, IndGP (triv ⊗ νs))⊕ (l, IndGP (sgn⊗ νs)).
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