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Our goal in this course

G : real or p-adic reductive group (eg GL(n,R), GL(n,Qp))

C ∗
r (G ) : reduced group C ∗-algebra

Goal: Compute C ∗
r (G ) in some useful way.

Theorem [A. Wassermann]: If G is a real reductive group, then

C ∗
r (G ) ∼

Morita

⊕
[P,σ]

C0(a
∗
P/W

′
σ)⋊ Rσ.

[For p-adic groups it’s a little more complicated. . . ]

Why do we want to do this? [one answer] To understand
connections between representation theory and operator K -theory.
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Some resources

For this computation:

• Penington-Plymen [JFA 1983]

• A. Wassermann [Comptes Rendus, 1987]

• Plymen [JFA, 1990]

• Leung-Plymen [Compositio, 1991]

• Clare-Crisp-Higson [Compositio, 2016]

• Afgoustidis-Aubert [IMRN, 2022]

• Clare-Higson-Song-Tang [Jpn. J. Math, 2024]

• Clare-Crisp [coming soon]

A different approach:

• Bradd-Higson-Yuncken [arXiv:2412.18924]

C ∗-algebras: We will use mostly ‘classical’ theory [Gelfand-Naimark,

Segal, Kadison, Kaplansky, . . . ]. See, eg,

• Dixmier [C∗-algèbres/algebras]

• Blackadar [Operator algebras]
• Rieffel [Kingston proceedings, 1982]
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Some resources

We will use lots of deep results from representation theory
[Harish-Chandra, Langlands, Knapp-Stein, Arthur, . . . ].

Read more about those results here:

Real groups:

• Knapp [Overview, 1986]

• Wallach [RRGs vols 1&2, 1988&1992]

p-adic groups:

• Silberger [Intro, 1979]

• Waldspurger [JIMJ, 2003]

4 / 107



Notes for lectures 1 and 2 (under construction)

tinyurl.com/ynprptnf
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Plan for these four lectures

1: C ∗-algebras, representations, and the Stone-Weierstrass
theorem

2: Hilbert modules and Morita equivalence

3: C ∗-algebras of real reductive groups, up to isomorphism

4: C ∗-algebras of real and p-adic reductive groups, up to Morita
equivalence. Coda: K -theory for p-adic groups.
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Lecture 1: C ∗-algebras, representations, and the
Stone-Weierstrass theorem
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C ∗-algebras : Definitions

A C ∗-algebra is an algebra A over C, with
• a conjugate-linear involution ∗ : A → A satisfying
(ab)∗ = b∗a∗, and

• a norm ∥ ∥ in which A is complete; ∥ab∥ ≤ ∥a∥ ∥b∥; and
∥a∗a∥ = ∥a∥2.

A homomorphism of C ∗-algebras φ : A → B is a linear map
satisfying φ(ab) = φ(a)φ(b) and φ(a∗) = φ(a)∗.

A subalgebra of A is a norm-closed linear subspace closed under
multiplication and ∗.

An ideal of A is a norm-closed, two-sided ideal.
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C ∗-algebras : Facts

• Homomorphisms of C ∗-algebras are automatically contractive,
and have closed range.

• Injective homomorphisms are automatically isometric.

• So we can often ignore the norm—but we can also use it
(thanks to completeness) to solve problems by approximation.

• Ideals in C ∗-algebras are automatically closed under ∗.

• The quotient of a C ∗-algebra by an ideal is a C ∗-algebra in
the quotient norm, and all of the expected isomorphism
theorems hold.

• C ∗-algebras often don’t have 1 . . . but in many ways they
behave as if they did. (Eg, multiplication A× A → A is
surjective.)
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C ∗-algebras : Examples

X : locally compact Hausdorff topological space.

C0(X ) :=
{
f : X

continuous−−−−−−→ C
∣∣∣ f (x) → 0 at ∞

}
(ie, for every ε > 0 the set {x ∈ X | |f (x)| ≥ ε} is compact.)

(f + g)(x) := f (x) + g(x), (cf )(x) := c(f (x)), f ∗(x) := f (x)

∥f ∥ = supx∈X |f (x)|.

These operations make C0(X ) a commutative C ∗-algebra.

Theorem: [Gelfand-Naimark] Every commutative C ∗-algebra is
isomorphic to one of this form.
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C ∗-algebras : Examples

H : Hilbert space (Notation: inner product ⟨η | ξ⟩ is linear in ξ)

B(H) : algebra of bounded linear operators on H (st = s ◦ t)

For t ∈ B(H), t∗ is defined by ⟨η | t∗ξ⟩ = ⟨tη | ξ⟩

∥t∥ = sup∥ξ∥=1 ∥tξ∥

These operations make B(H) into a C ∗-algebra.

Theorem: [Gelfand-Naimark] Every C ∗-algebra is isomorphic to a
subalgebra of some B(H).

11 / 107



C ∗-algebras : Examples

H : Hilbert space

K(H) ⊆ B(H) : the ideal of compact operators

K(H) = span
{
|ξ⟩⟨η| : ζ 7→ ξ⟨η | ζ⟩

∣∣∣ η, ξ ∈ H
}
.

X : locally compact Hausdorff space

C0(X ,K(H)) :=
{
f : X

continuous−−−−−−→ K(H)
∣∣∣ ∥f (x)∥ → 0 at ∞

}
This is a C ∗-algebra under pointwise operations.
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C ∗-algebras : Examples

A : a C ∗-algebra

W : finite group acting on A by automorphisms:

βw (ab) = βw (a)βw (b), βw (a
∗) = β(a)∗, βw1w2 = βw1 ◦ βw1

Two new C ∗-algebras:

Fixed-point algebra: AW := {a ∈ A | βw (a) = a for all w ∈ W }

Crossed product: A⋊W :=
{∑

w∈W aww
∣∣ aw ∈ A

}
wa = βw (a)w and w∗ = w−1.

(Theorem: a C ∗-algebra norm exists.)
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C ∗-algebras : 2nd-most important example (for us, this week)

X : locally compact Hausdorff space

H : Hilbert space

W : finite group acting on X by homeomorphisms

{Iw ,x ∈ U(H) | w ∈ W , x ∈ X} : unitary operators satisfying

• Iw1,w2x Iw2,x = Iw1w2,x (in particular, I1,x = idH)

• For each w ∈ W the map x 7→ Iw ,x is continuous in the
strong operator topology (ie x 7→ Iw ,xξ cts for each ξ ∈ H.)

Let W act on C0(X ,K(H)) by

βw (f )(x) := Iw ,w−1x f (w
−1x)Iw−1,x .

The fixed-point algebra C0(X ,K(H))W will be the second-most
important example of a C ∗-algebra in these lectures.
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Examples of C0(X ,K(H))W

Example 1: W = {1,w} acting on X = R by wx = −x .

H = C2, so K(H) = M2 (2× 2 matrices).

Iw ,x =
[
cos(x) − sin(x)
sin(x) cos(x)

]
Exercise: C0(R,M2)

W ∼= C0([0,∞),M2).

Example 2: Same W , X , and H; but now Iw ,x =
[
e ix 0
0 −e ix

]
.

Exercise: C0(R,M2)
W ∼= {f ∈ C0([0,∞),M2) | f (0) is diagonal}.
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C ∗-algebras : Most important example (for us, this week)

G : locally compact group dg : left Haar measure on G

Cc(G ) : compactly supported continuous functions G → C

λ : Cc(G ) → B(L2G ) (λ(f )ξ)(g) :=

∫
G
f (h)ξ(h−1g) dh

Reduced group C ∗-algebra: C ∗
r (G ) := λ(Cc(G ))

∥ ∥operator

Note: ∥λ(f )∥op ≤ ∥f ∥L1 , so L1-approximation works in C ∗
r (G ).

Examples: G finite : C ∗
r (G ) = C[G ], the group algebra; g∗ = g−1.

G abelian : C ∗
r (G ) ∼= C0(Ĝ ) via Fourier transform

G compact : C ∗
r (G ) ∼=

⊕
ρ∈Ĝ K(Hρ) [Peter-Weyl]

[Ĝ = equivalence classes of irreducible unitary representations; see below]
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Representations : Definitions

A representation of a C ∗-algebra A is a homomorphism of
C ∗-algebras π : A → B(H), for some Hilbert space H

An invariant subspace for π is a closed subspace V ⊆ H with
π(A)V ⊆ V .

π is irreducible if H ̸= 0 and if 0 and H are the only invariant
subspaces

Irreducible representations π1, π2 are equivalent if there is a unitary
u : H1 → H2 with uπ1(a) = π2(a)u.

The spectrum Â of A is the set of equivalence classes of irreducible
representations (‘irreps’) of A.

The Jacobson topology on Â has one open set

OJ = {π ∈ A | π(J) ̸= 0}

for each ideal J ⊆ A.
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Gelfand-Naimark-Segal (GNS) construction

A state on A is a bounded linear map φ : A → C with φ(a∗a) ≥ 0
for all a ∈ A, and ∥φ∥ = 1.

GNS : given a state φ, build a representation π : A → B(Hφ):

• Jφ := {a ∈ A | φ(a∗a) = 0}

• Hφ := A/Jφ, completion in the norm ∥a+ Jφ∥ = φ(a∗a)1/2

• Hφ is a Hilbert space: ⟨a+ Jφ | b + Jφ⟩ := φ(a∗b)

• πφ(a) ∈ B(Hφ): b + Jφ 7→ (ab) + Jφ.

πφ is irreducible if and only if φ is a pure state (ie, not a convex
combination of other states)
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Consequences of the GNS construction

Theorem: Let A be a C ∗-algebra.

• Every irreducible representation of A is equivalent to a GNS
representation.

• If a ̸= b in A then π(a) ̸= π(b) for some π ∈ Â.

• If B ⊆ A is a subalgebra, and π : B → B(H) is an irreducible
representation, then there is an irreducible representation
π′ : A → B(H ′), where H ⊆ H ′, such that π(b)ξ = π′(b)ξ for all
b ∈ B and ξ ∈ H.

Proof: Use the Hahn-Banach (states exist) and Krein-Milman
(states exist =⇒ pure states exist) theorems.
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Characterisations of irreducibility

Theorem: Let π : A → B(H) be a representation. Each of the
following conditions is equivalent to π being irreducible:

• [GNS] π ∼= πφ for a pure state φ

• [Schur’s lemma] π(A)′ = C idH , where

π(A)′ := {t ∈ B(H) | π(a)t = tπ(a) for all a ∈ A}

• [von Neumann] π(A) is dense in B(H) in the SOT

• [Kadison] H has no A-invariant subspaces, closed or not
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Irreducible representations of C ∗
r (G )

G : locally compact group

• unitary representation: homomorphism π : G → U(H)
(unitary operators), continuous in the SOT

• π is irreducible if H has no proper, nonzero, closed,
G -invariant subspaces.

• π extends to a map Cc(G ) → B(H):

⟨η |π(f )ξ⟩ =
∫
G
⟨η | f (g)π(g)ξ⟩ dg

• π extends to C ∗
r (G ) iff ∥π(f )∥ ≤ ∥λ(f )∥operator

(recall: λ(f ) ∈ B(L2(G )) is convolution with f .)

• Ĝ : equivalence classes of unitary irreducibles

Ĝr ⊆ Ĝ : those that extend to C ∗
r (G )

• Theorem: Ĝr
∼= Ĉ ∗

r (G ).
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Examples of Ĝr

G abelian: Ĝr = Ĝ (use the Fourier transform on L2(G ))

G compact: Ĝr = Ĝ (every irrep is a subrep of L2(G ))

Most real/p-adic reductive groups: Ĝr ̸= Ĝ

Theorem: [Harish-Chandra, Cowling-Haagerup-Howe] Let G be a real
or p-adic reductive group. An irreducible unitary representation π
lies in Ĝr if and only if π is tempered—i.e., iff its K -finite matrix
coefficients are of class L2+ε modulo the centre.
[K is a ‘good’ maximal compact subgroup]

Strategy for computing C ∗
r (G ): match up tempered

representations with representations of simpler C ∗-algebras.
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Irreducible representations of C0(X )

Schur’s lemma =⇒ every irrep of C0(X ) is one-dimensional:
π : C0(X ) → C

Riesz rep theorem =⇒ π(f ) =
∫
X f dµ for some measure µ.

π(f1f2) = π(f1)π(f2) =⇒ µ is concentrated at a single x ∈ X .

So:

Theorem: Ĉ0(X ) ∼= X , via the map sending x ∈ X to the
irreducible representation evx : C0(X ) → C, f 7→ f (x).

23 / 107



Irreducible representations of K(H)

Theorem: Every bounded linear map K(H) → C has the form
k 7→ trace(tk) for some trace-class operator t.

Corollary: the pure states on K(H) are precisely the maps
φξ : k 7→ ⟨ξ | kξ⟩ for unit vectors ξ ∈ H.

The map k + Jφξ
7→ kξ gives an isomorphism Hφξ

∼= H.

So:

Theorem: Every irreducible representation of K(H) is equivalent to
the identity representation K(H) ↪→ B(H).
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Irreducible representations of C0(X ,K(H))

C0(X ,K(H)) is a C0(X )-module

Every irrep π : C0(X ,K(H)) → B(H) extends to a rep of C0(X ):

π(f )π(k)ξ := π(fk)ξ (f ∈ C0(X ), k ∈ C0(X ,K(H)), ξ ∈ H).

Schur =⇒ C0(X ) acts as scalars =⇒ π
∣∣
C0(X )

= evx for some x ∈ X

π is a C0(X )-module map =⇒ π factors through
evx : C0(X ,K(H)) → K(H)

K(H) has only one irreducible representation. So:

Theorem: ̂C0(X ,K(H)) ∼= X , via x 7→ evx .
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Irreducible representations of C0(X ,K(H))W

Consider X , H, W , {Iw ,x ∈ U(H) | w ∈ W , x ∈ X} as before.

Every irrep of C0(X ,K(H))W is the restriction of an irrep of
C0(X ,K(H)) to a C0(X ,K(H))W -invariant subspace.

So every irrep factors through evx : C0(X ,K(H))W → K(H) for
some x ∈ X .

Note that w 7→ Iw ,x is a unitary rep of Wx := {w ∈ W | wx = x}.

evx(C0(X ,K(H))W ) = K(H)Wx

:= {k ∈ K(H) | kIw ,x = Iw ,xk for all w ∈ Wx}

So we need to know K̂(H)Wx .
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Harmonic analysis for the finite group Wx

For each ρ ∈ Ŵx set

HS(ρ, Ix)
Wx := {t : Hρ → H | linear, tρ(w) = Iw ,x t for all w ∈ Wx}.

This is a Hilbert space: ⟨t | s⟩ = trace(t∗s).

Theorem: the maps ξ ⊗ t 7→ (dimHρ)
1
2 t(ξ) give an isomorphism⊕

ρ∈Ŵx

Hρ ⊗ HS(ρ, Ix)
Wx

∼=−−→ H.

This isomorphism identifies Iw ,x with
⊕

ρ ρ(w)⊗ id for each

w ∈ Wx ; and K(H)Wx with
⊕

ρC id⊗K
(
HS(ρ, Ix)

Wx
)
.

Corollary: The irreps of K(H)Wx are the maps

K(H)Wx → K
(
HS(ρ, Ix)

Wx

)
, k 7→ (t 7→ k ◦ t)

where ρ ∈ Ŵx , HS(ρ, Ix)
Wx ̸= 0. [Notation: ρ ⊆ Ix .]
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Irreducible representations of C0(X ,K(H))W

Recall: every irrep of C0(X ,K(H))W factors through

evx : C0(X ,K(H))W → K(H)Wx .

Combining this with what we now know about K̂(H)Wx :

Theorem: • The irreducible representations of C0(X ,K(H))W are

πx ,ρ : C0(X ,K(H))W
evx−−→ K(H)Wx

k 7→k◦−−−−−→ K
(
HS(ρ, Ix)

Wx

)
where x ∈ X and ρ ∈ Ŵx with ρ ⊆ Ix .

• πx ,ρ ∼= πx ′,ρ′ iff x ′ = wx and ρ′ = ρ(w−1 w) for some
w ∈ W .
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Examples of ̂C0(X ,K(H))W

Example 1: W = {1,w} acting on X = R by wx = −x .

H = C2, Iw ,x =
[
cos(x) − sin(x)
sin(x) cos(x)

]
Exercise: ̂C0(R,M2)W ∼= [0,∞)

Example 2: Same W , X , and H; but now Iw ,x =
[
e ix 0
0 −e ix

]
.

Exercise: ̂C0(R,M2)W
∼=−→ {0+, 0−} ⊔ (0,∞) (non-Hausdorff)
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CCR/Liminal C ∗-algebras

A C ∗-algebra A is CCR, aka liminal, if π(A) ⊆ K(Hπ) for every
π ∈ Â.

[We will soon see that π(A) ⊆ K(Hπ) implies π(A) = K(Hπ).]

Examples: C0(X ), K(H), C0(X ,K(H)), C0(X ,K(H))W .

Ideals, quotients, and subalgebras of CCR algebras are CCR.

Theorem: [Harish-Chandra, Bernstein] If G is a real or p-adic
reductive group, then C ∗

r (G ) is CCR.

[We will see why later on.]
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Kaplansky on CCR/liminal C ∗-algebras

[CBMS lecture notes, 1970]
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Pedersen on CCR/liminary C ∗-algebras

[C∗ATAG, 1979]
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Kaplansky’s Stone-Weierstrass theorem

A subalgebra B ⊆ A is called separating [Dixmier: riche] if:

• irreducible representations of A remain irreducible; and

• inequivalent representations of A remain inequivalent

when restricted to B.

We say that A has the Stone-Weierstrass property (SWP) if

B separating =⇒ B = A.

Theorem: [Kaplansky] Every CCR algebra has the SWP.

Importance for us: a tool for computing the range of a Fourier
transform.
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Stone-Weierstrass for C0(X )

Recall: Ĉ0(X ) = {evx | x ∈ X}

The one-dimensional rep evx is irreducible on B iff it is nonzero;
and evx ∼= evy on B iff evx = evy on B.

So B ⊆ C0(X ) is separating iff

• for each x ∈ X there is some b ∈ B with b(x) ̸= 0; and

• for all x ̸= y ∈ X there is some b ∈ B with b(x) ̸= b(y).

The usual Stone-Weierstrass theorem thus says that C0(X ) has the
SWP.
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Stone-Weierstrass for K(H)

Let B be a subalgebra of K(H).

K̂(H) = {id}; so B is separating iff B ↪→ B(H) is irreducible.

Recall:

• B ↪→ B(H) is irreducible iff B
SOT

= B(H).

• Every continuous linear map K(H) → C has the form
k 7→ trace(tk). Exercise: every such map is SOT-continuous.

So: if B ⊆ K(H) is separating, then every continuous linear map
K(H) → C that vanishes on B vanishes on K(H).

Hahn-Banach =⇒ B = K(H).

So K(H) has the SWP.
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Stone-Weierstrass for C0(X ,K(H))

Let B ⊆ C0(X ,K(H)) be separating

The map x 7→ evx
∣∣
B
is a homeomorphism X ∼= B̂.

Key ingredient [Dauns-Hoffman]: B is a Cb(X )-submodule of
C0(X ,K(H)). (Cb: bounded continuous functions)

Then a partition-of-unity argument gives B = C0(X ,K(H)).

36 / 107



Stone-Weierstrass for C0(X ,K(H))W : an exercise

• Suppose J is an ideal in A, such that J and A/J have the SWP.
Prove that A has the SWP.

• Suppose A = J0 ⊇ J1 ⊇ · · · ⊇ Jn = 0, where each Ji is an ideal
in Ji−1 and each Ji−1/Ji has the SWP. Prove that A has the SWP.

• Let X = R2, acted on by the finite group

W = ⟨s, t⟩ where s =

[
1 0
0 −1

]
, t =

[
0 1
1 0

]
(symmetries of the square with vertices (±1, 0), (0,±1))

Let H = C2, Iw ,x := w ∈ U(C2), and A = C0(R2,K(C2))W .

Prove that A has the SWP by finding a nice composition series.

[Hint: take J1 = {f ∈ A | f (0) = 0}. . . ]
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Stone-Weierstrass for CCR algebras

• If A has a composition series whose quotients all have the SWP,
then A has the SWP.

• Every CCR algebra has a composition series whose quotients are
CCR algebras with Hausdorff spectrum.

• If A is CCR with Â Hausdorff then A is isomorphic to an algebra
of compact-operator-valued functions on Â.

• The proof of SWP for A = C0(X ,K(H)) applies to all CCR A
with Hausdorff Â.
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Looking ahead

• For G a real reductive group: there is a ‘Fourier transform’

C ∗
r (G ) ∼=

⊕
C0(X ,K(H))W

for certain X s, Hs, and W s.

• Stone-Weierstrass + knowledge of ̂C0(X ,K(H))W are used to
prove surjectivity.

• For purposes of understanding K -theory and representation
theory, the C0(X ,K(H))W s can be replaced by simpler,
Morita equivalent C ∗-algebras.

• A similar (but slightly more complicated) picture applies to
p-adic reductive groups.
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Lecture 2: Morita equivalence
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Goal: compute C ∗
r (G ), the reduced C ∗-algebra of a real or

reductive p-adic group G .

Why? [one answer] Understand connections between representation
theory and operator K -theory.

Plan: replace C ∗
r (G ) by a simpler C ∗-algebra that is Morita

equivalent to C ∗
r (G ).

This is reasonable, because Morita equivalent C ∗-algebras have the
same K -theory and representations.

This lecture: Morita equivalence for C ∗-algebras in general, and for
C0(X ,K(H))W in particular.
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Hilbert modules : Definition

A, B : C ∗-algebras

A left Hilbert A-module is:

• a left A-module E , with

• an A-valued inner product
[ξ | η], linear in ξ

• [a1ξ | a2η] = a1[ξ | η]a∗2

• [ξ | η]∗ = [η | ξ]

• [ξ | ξ] ≥ 0 in A

(ie [ξ | ξ] = a∗a for some a)

• ∥ξ∥ := ∥[ξ | ξ]∥1/2A

is a complete norm on E

A right Hilbert B-module is:

• a right B-module E , with

• a B-valued inner product
⟨ξ | η⟩, linear in η

• ⟨ξb1 | ηb2⟩ = b∗1⟨ξ | η⟩b2

• ⟨ξ | η⟩∗ = ⟨η | ξ⟩

• ⟨ξ | ξ⟩ ≥ 0 in B

(ie ⟨ξ | ξ⟩ = b∗b for some b)

• ∥ξ∥ := ∥⟨ξ | ξ⟩∥1/2B

is a complete norm on E
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Hilbert modules : Examples

H : Hilbert space

H is:

• a right Hilbert C-module:

⟨ξ | η⟩ := ⟨ξ | η⟩

• a left Hilbert B(H)-module

[ξ | η] := |ξ⟩⟨η| : ζ 7→ ξ⟨η | ζ⟩

Fullness: If E is left Hilbert A-module, the set

span{[ξ | η] ∈ A | ξ, η ∈ E}

is a closed ideal in A. We say that E is full if this ideal is all of A.
Similarly for right modules.

Example: H is full over C, but not over B(H). H is a full left
Hilbert K(H)-module.
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Hilbert modules : Examples

X : locally compact Hausdorff space, H : Hilbert space

C0(X ,H) is:

• A full right Hilbert C0(X )-module:

⟨ξ | η⟩(x) := ⟨ξ(x) | η(x)⟩

• A full left Hilbert C0(X ,K(H))-module:

[ξ | η](x) := |ξ(x)⟩⟨η(x)|

Proof of fullness: if J is an ideal in A with π
∣∣
J
̸= 0 for all π ∈ Â,

then J = A [because if J ̸= A then A/J has an irrep]
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Hilbert modules : Examples

A : C ∗-algebra, E : left Hilbert A-module

W : finite group acting on A, AW : fixed points

E is a left Hilbert AW -module:

W [ξ | η] := 1

|W |
∑
w∈W

βw ([ξ | η])

If E is full over A, then it is also full over AW .

Proof that W [ξ | ξ] ≥ 0 and gives a complete norm on E : if
a, b ≥ 0 then a+ b ≥ 0 and ∥a+ b∥ ≥ ∥a∥.

(These facts about positivity are not meant to be obvious!)
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Hilbert modules : Examples

W : finite group, π : W → U(H) : unitary rep

C ∗
r (W ) = C⋊W = {

∑
w cww | cw ∈ C} : group (C ∗)-algebra

H is a left Hilbert K(H)W -module:

W [ξ | η] = 1

|W |
∑
w

π(w)[ξ | η]π(w−1) =
1

|W |
∑
w

|π(w)ξ⟩⟨π(w)η|

H is a right Hilbert C ∗
r (W )-module:

ξ · w := π(w−1)ξ, ⟨ξ | η⟩W :=
1

|W |
∑
w∈W

⟨ξ |π(w)η⟩w

Proof that ⟨ξ | ξ⟩W ≥ 0 and gives a complete norm: this follows
from the relation

W [ξ | η]ζ = ξ⟨η | ζ⟩W .

See below.
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Aside: induced representations

AE
⟨ | ⟩
B : A-B bimod; right Hilbert B-mod; ⟨aξ | η⟩ = ⟨ξ | a∗η⟩

π : B → B(V ) a Hilbert-space representation

⇝ E ⊗B V is a Hilbert-space representation of A:

⟨ξE ⊗ ξV | ηE ⊗ ηV ⟩ :=
〈
ξV

∣∣π (⟨ξE | ηE ⟩) ηV
〉

Example: [Rieffel] H ⊆ G closed subgroup [unimodular, for simplicity]

Cc(G ) is a Cc(G )-Cc(H) bimodule; Cc(H)-valued inner product

⟨ξ | η⟩(h) :=
∫
G
ξ(g)η(gh) dg

Complete to get C∗(G)E
⟨ | ⟩
C∗(H)

E⊗C∗(H) : URep(H) → URep(G ): unitary induction
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Morita equivalence : Definition

A, B : C ∗-algebras

An A-B-bimodule E is a Morita equivalence if:

• E is a left Hilbert A-module (inner product [ | ]) and a right
Hilbert B-module (inner product ⟨ | ⟩)

• span{[ξ | η]} = A and span{⟨ξ | η⟩} = B

• [ξb | η] = [ξ | ηb∗] and ⟨aξ | η⟩ = ⟨ξ | a∗η⟩

• [ξ | η]ζ = ξ⟨η | ζ⟩

for all ξ, η, ζ ∈ E , a ∈ A, b ∈ B.

(There is some redundancy in this definition; see later.)

If such an E exists then A and B are Morita equivalent (A∼
M

B).

This relation is sometimes called ‘strong’ Morita equivalence.
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Morita equivalence : Properties

• ∼
M

is an equivalence relation [Rieffel]

• A∼
M

B =⇒ Â ∼= B̂ and K∗(A) ∼= K∗(B)

• A∼
M

B ⇐⇒ A⊗ K(H) ∼= B ⊗ K(H) assuming that A and B

have countable approximate identities, as do all C∗-algebras of

interest in this course [Brown-Green-Rieffel]

• A∼
M

B ⇐⇒ A and B have equivalent categories of operator

modules [Blecher]

• If A and B have 1, then A∼
M

B ⇐⇒ A and B have

equivalent categories of (algebraic) modules [Beer]

• Equivalence of categories of Hilbert-space representations
does not imply (strong) Morita equivalence.
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Aside: Mackey’s imprimitivity theorem, selon Rieffel

H ⊆ G : closed subgroup C∗(G)E
⟨ | ⟩
C∗(H) : induction bimodule

Theorem: [Rieffel] E can be made into a Morita equivalence
between C ∗(H) and C0(G/H)⋊ G .

Corollary: [Mackey] Unitary induction gives an equivalence between
the category of unitary representations of H, and the category of
unitary representations G admitting a compatible rep of C0(G/H).

Example: A⋊ K : abelian ⋊ compact. π : A⋊ K → U(H) irrep

Fourier: C0(Â) acts on H; C0(Â/K ) acts by intertwiners

Schur: C0(Â/K ) acts by by evKφ for some orbit Kφ.

So π is an irrep of C (Kφ)⋊ K ∼= C (K/Kφ)⋊ K .

Imprimitivity: π is induced from an irrep of Kφ; and conversely,
irreps of Kφ induce to irreps of A⋊ K .
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Morita equivalence : Examples

K(H)∼
M

C: on H consider the inner products

[ξ | η] := |ξ⟩⟨η| and ⟨ξ | η⟩ := ⟨ξ | η⟩.

We have
[ξ | η]ζ = |ξ⟩⟨η|ζ = ξ⟨η | ζ⟩.

(In a Morita equivalence we always have [ξ | η] = |ξ⟩⟨η|.)

C0(X ,K(H))∼
M

C0(X ): on C0(X ,H) consider

[ξ | η](x) := |ξ(x)⟩⟨η(x)| and ⟨ξ | η⟩(x) := ⟨ξ(x) | η(x)⟩.
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Morita equivalence : K(H)W ∼
M

?

W : finite group, π : W → U(H) a unitary representation

K(H)W = {k ∈ K(H) | kπ(w) = π(w)k for all w ∈ W }

We know:

• H is a full left Hilbert K(H)W -module under W [ | ]
• H is a right C ∗

r (W )-module, with C ∗
r (W )-valued inner

product ⟨ | ⟩W
Easily checked:

• ⟨ξ | ηb⟩W = ⟨ξ | η⟩W b and ⟨ξ | η⟩∗W = ⟨η | ξ⟩W

• ⟨aξ | η⟩W = ⟨ξ | a∗η⟩W and W [ξb | η] = W [ξ | ηb∗] for
a ∈ K(H)W and b ∈ C ∗

r (W )

• W [ξ | η]ζ = ξ⟨η | ζ⟩W .

Theorem: this is enough to imply that H is a Morita equivalence
between K(H)W and the ideal J := span{⟨ξ | η⟩W } ⊆ C ∗

r (W ).
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Morita equivalence : K(H)W ∼
M

?

Theorem: H is a Morita equivalence between K(H)W and the ideal
J := span{⟨ξ | η⟩W } ⊆ C ∗

r (W ).

Proof: Drop the W s on [ | ] and ⟨ | ⟩. We need to prove:

(1) ⟨ξ | ξ⟩ ≥ 0 (2) ξ 7→ ∥⟨ξ | ξ⟩∥1/2 is a complete norm.

For j ∈ J let mj : H → H, mj(η) = ηj .

If mj = 0 then j ′j = 0 for all j ′ ∈ J, so ∥j∥2 = ∥j∗j∥ = 0.

=⇒ m is an injective homomorphism Jopp → LK(H)W (H).

(LK(H)W (H): C ∗-algebra of adjointable operators on H wrt [ | ])

So:

(1) ⟨ξ | ξ⟩ ≥ 0 in J iff m⟨ξ | ξ⟩ ≥ 0 in LK(H)W (H)

(2) ∥⟨ξ | ξ⟩∥J = ∥m⟨ξ | ξ⟩∥LK(H)W
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Morita equivalence : K(H)W ∼
M

?

Theorem: H is a Morita equivalence between K(H)W and the ideal
J := span{⟨ξ | η⟩W } ⊆ C ∗

r (W ).

Proof: We need to prove:

(1) m⟨ξ | ξ⟩ ≥ 0 (2) ξ 7→ ∥m⟨ξ | ξ⟩∥1/2 is a complete norm.

The relation [ξ | η]ζ = ξ⟨η | ζ⟩ implies m⟨ξ | ξ⟩ = |ξ]∗|ξ], where

|ξ] : H η 7→[η | ξ]−−−−−→ K(H)W and |ξ]∗ : K(H)W
k 7→kξ−−−→ H

So:

(1) m⟨ξ | ξ⟩ = |ξ]∗|ξ] ≥ 0

(2) ∥m⟨ξ | ξ⟩∥1/2 = ∥|ξ]∗|ξ]∥1/2 = ∥[ξ | ξ]∥1/2, a complete norm.
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Morita equivalence : K(H)W ∼
M

?

Theorem: H is a Morita equivalence between K(H)W and the ideal
J := span{⟨ξ | η⟩W } ⊆ C ∗

r (W ) . . .
and J =

⊕
ρ∈Ŵ , ρ⊆π

K(Hρ).

(ρ : W → U(Hρ), ρ(w)ξ := ρ(w)ξ, cξ := cξ, ⟨ξ | η⟩ := ⟨η | ξ⟩)

Proof: C ∗
r (W ) ∼=

⊕
ρ∈Ŵ K(Hρ).

J and
⊕

ρ⊆π K(Hρ) are ideals in C ∗
r (W )

They are equal iff for all ρ ∈ Ŵ we have ρ(J) ̸= 0 ⇐⇒ ρ ⊆ π.

Take ρ, ρ′ ∈ Ŵ , t ∈ HS(ρ, π)W and ξ, η ∈ Hρ. We have:

ρ′
(
⟨tξ | tη)⟩W

)
=

t∗t

|W |
∑
w∈W

⟨ξ | ρ(w)η⟩ρ′(w).

Schur orthogonality: this is 0 for all ξ, η iff ρ′ ̸∼= ρ.
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The second-most-important Morita equivalence

X : locally compact Hausdorff space H : Hilbert space

W : finite group acting on X

Iw ,x ∈ U(H) : SOT-cts family of unitaries, Iw2,w1x Iw1,x = Iw1w2,x

C0(X ,K(H))W = {f ∈ C0(X ,K(H)) | f (x) = Iw−1,wx f (wx)Iw ,x}

Example: X = • : C0(X ,K(H))W = K(H)W .

Recall: H is a Morita equivalence between K(H)W and an ideal in
C ∗
r (W ) = C0(•)⋊W . . . and we can say which ideal.

A similar argument shows:

Theorem: C0(X ,H) is a Morita equivalence between
C0(X ,K(H))W and an ideal in C0(X )⋊W . . .

. . . and (under some additional assumptions) we can say which ideal.
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Additional assumptions on Iw ,x

Iw ,x ∈ U(H) : SOT-cts family of unitaries, Iw1,w2x Iw2,x = Iw1w2,x

Wx := {w ∈ W | wx = x} and W ′
x = {w ∈ Wx | Iw ,x ∈ C idH}

Normalisation: for all x and all w ∈ W ′
x , Iw ,x = idH

Completeness: for all x , the unitary representation Ix : Wx → U(H)

contains every ρ ∈ Ŵx/W ′
x

Example: X = R, W = {1,w}, wx = −x , Iw ,x =
[
e ix 0
0 −e ix

]
W ′

0 = {1}, Iw ,0 =
[
1 0
0 −1

]
normalisation ✓ completeness ✓

Example: X = R2, W = D4 (dihedral), Iw ,x = w ∈ U(C2)

W ′
0 = {±1}, I−1,0 = − id, |W0/W

′
0| = 4 > 2

normalisation x completeness x
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The second-most-important Morita equivalence

X , W , H, Iw ,x as above; assume normalisation and completeness.

Theorem: C0(X ,H) can be made into a Morita equivalence
between C0(X ,K(H))W and the ideal

C (X ,W , I ) :={ ∑
w∈W

fww ∈ C0(X )⋊W

∣∣∣∣∣ ∀x ∈ X , ∀w ′ ∈ W ′
x , ∀w ∈ W :

fw ′w (x) = fw (x)

}

in C0(X )⋊W .

Note that C (X ,W , I ) depends on H and I only through the
system of subgroups W ′

x : ie, it depends only the answer to the
question “which Iw ,xs are scalars?”
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C (X ,W , I ) in terms of representations

C (X ,W , I ) :={ ∑
w∈W

fww ∈ C0(X )⋊W

∣∣∣∣∣ ∀x ∈ X , ∀w ′ ∈ W ′
x , ∀w ∈ W :

fw ′w (x) = fw (x)

}

For each x ∈ X :

C0(X )⋊W ↠ C (Wx)⋊W ∼
M

C ∗
r (Wx) ∼=

⊕
ρ∈Ŵx

K(Hρ)

⊆ ⊆

C (X ,W , I )
⊕

ρ∈Ŵx/W ′
x
K(Hρ)

C (X ,W , I ) =
⋂
x∈X

preimage of
⊕

ρ∈Ŵx/W ′
x

K(Hρ)

 .

57 / 107



A special case

Corollary: Suppose that W = W ′ ⋊ R, where for each x ∈ X we
have W ′

x = Wx ∩W ′. Then

C0(X ,K(H))W ∼
M

C0(X/W ′)⋊ R.

Proof: C0(X ,K(H))W ∼
M

C (X ,W , I ) ∼= C (X ,W ′, I )⋊ R

⊆ ⊆

C0(X )⋊W ∼=
(
C0(X )⋊W ′)⋊ R

For the action of W ′ on X , which Iw ,xs are scalars? All of them!
This is the same as for the operators idw ,x := idC; so

C (X ,W ′, I ) = C (X ,W ′, id)∼
M

C0(X ,K(C))W
′ ∼= C0(X/W ′).

The equivalence bimodule C0(X ,C) is R-equivariant, so we get

C0(X ,K(H))W ∼
M

C (X ,W ′, I )⋊ R ∼
M

C0(X/W ′)⋊ R.
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A special case

Corollary: Suppose that W = W ′ ⋊ R, where for each x ∈ X we
have W ′

x = Wx ∩W ′. Then

C0(X ,K(H))W ∼
M

C0(X/W ′)⋊ R.

Proof: C0(X ,K(H))W ∼
M

C (X ,W , I ) ∼= C (X ,W ′, I )⋊ R

⊆ ⊆

C0(X )⋊W ∼=
(
C0(X )⋊W ′)⋊ R

For the action of W ′ on X , which Iw ,xs are scalars? All of them!
This is the same as for the operators idw ,x := idC; so

C (X ,W ′, I ) = C (X ,W ′, id)∼
M

C0(X ,K(C))W
′ ∼= C0(X/W ′).

The equivalence bimodule C0(X ,C) is R-equivariant, so we get

C0(X ,K(H))W ∼
M

C (X ,W ′, I )⋊ R ∼
M

C0(X/W ′)⋊ R.
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Examples

Example 1: W = {1,w} acting on X = R by wx = −x .

H = C2, Iw ,x =
[
cos(x) − sin(x)
sin(x) cos(x)

]
W0 = W ′

0 = W

C (X ,W , I ) = {f11 + fww ∈ C0(R)⋊W | f1(0) = fw (0)}

W = W ⋊ 1 =⇒ C0(R,K(H))W ∼
M

C0(R/W )⋊ 1 ∼= C0([0,∞))

Example 2: Same W , X , and H; but now Iw ,x =
[
e ix 0
0 −e ix

]
.

W0 = W , W ′
0 = 1 C (X ,W , I ) = C0(R)×W

W = 1⋊W =⇒ C0(R,K(H))W ∼
M

C0(R)⋊W
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Looking ahead

For G a real reductive group:

C ∗
r (G ) ∼=

⊕
C0(X ,K(H))W

where the normalisation, completeness, and W = W ′ ⋊ R
(W ′

x = Wx ∩W ′) conditions all hold; so

C ∗
r (G )∼

M

⊕
C0(X/W ′)⋊ R.

For G a p-adic reductive group:

C ∗
r (G ) ∼=

⊕
C0(X ,K(H))W

where:

• normalisation does not (?) always hold

• completeness (appropriately modified) does hold

• W = W ′ ⋊ R, W ′
x = Wx ∩W ′ does not always hold

• Iw1,w2x Iw2,x = γ(w1,w2)Iw1w2,x for a 2-cocycle γ
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Lecture 3: C ∗-algebras of real reductive groups, up
to isomorphism
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Goal: compute C ∗
r (G ), the reduced C ∗-algebra of a real or

reductive p-adic group G .

Why? [one answer] Understand connections between representation
theory and operator K -theory.

The story so far:

• C ∗
r (G ) is a C ∗-algebra whose irreducible reprsentations are

precisely the tempered irreducible representations of G .

• The Stone-Weierstrass theorem that tells us when a
homomorphism A → C0(X ,K(H))W is surjective.

• Under certain conditions, C0(X ,K(H))W ∼
M

C0(X/W ′)⋊ R.

This lecture: C ∗
r (G ) ∼=

⊕
C0(X ,K(H))W , via a kind of Fourier

transform.
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Resources

Background: Knapp (Overview); Wallach (RRGs)

This C ∗-algebra computation:

Clare, Crisp, Higson : Parabolic induction and restriction via
C ∗-algebras and Hilbert C ∗-modules (Compositio, 2016)
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Real reductive groups

A real reductive group is (for us)//a////////closed////////////subgroup//////////////////G ⊆ GL(n,R),
///////closed////////under/////////////transpose,//////that//is/////the////////group///of/////real/////////points///of//a
////////////connected////////////reductive///////////algebraic////////group/////////defined//////over////R.

GL(n,R), GL(n,C), SL(n,R), or SL(n,C)

Langlands decomposition: G = MG × AG where MG has compact
centre, and exp : aG → AG is a group isomorphism

Note: AG is not the ‘A’ in G = KAN!

Eg: GL(n,R). MG = {g | det(g) = ±1}, AG = {a · 1 | a > 0}

Eg: SL(n,R). MG = G , AG = {1}.
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Square-integrable representations

A unitary irrep σ of M is square-integrable if for all ξ, η ∈ Hσ, the
function

cξ,η : m 7→ ⟨σ(m)ξ | η⟩
is in L2(M).

M̂L2 : set of iso classes of square-integrable irreps of M

Theorem: M̂L2 ⊆ M̂r .

Proof: Schur orthogonality relations show that for every σ ∈ M̂L2

there is some dσ > 0 making

(⋆) Hσ ⊗ Hσ → L2(M), ξ ⊗ η 7→ d1/2
σ cξ,η

an isometry. So σ is a subrep of the regular representation.

Theorem: If σ ∈ M̂L2 then σ(C ∗
r (M)) = K(Hσ).

Proof: Use (⋆) to show that for each f ∈ Cc(M) the operator σ(f )
is Hilbert-Schmidt.
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A partial Fourier transform

Take G = MA (M = MG , A = AG ) and σ ∈ M̂L2

a∗ ∼= Â : given χ : a → R let χ : A → U(C) be ex 7→ e iχ(x).

For each χ ∈ a∗ we get an irreducible unitary representation

σ ⊗ χ : G → U(Hσ), ma 7→ σ(m)χ(a).

Theorem: For f ∈ Cc(G ) and χ ∈ a∗ let

πG ,σ(f )(χ) := (σ ⊗ χ)(f ) =

∫
M

∫
A
f (ma)σ(m)χ(a) da dm.

The map πG ,σ extends to a homomorphism of C ∗-algebras

πG ,σ : C ∗
r (G ) → C0(a

∗,K(Hσ)).
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A partial Fourier transform

Theorem: For f ∈ Cc(G ) and χ ∈ a∗ let

πG ,σ(f )(χ) := (σ ⊗ χ)(f ) =

∫
M

∫
A
f (ma)σ(m)χ(a) da dm.

The map πG ,σ extends to a homomorphism of C ∗-algebras

πG ,σ : C ∗
r (G ) → C0(a

∗,K(Hσ)).

Proof:

• Each πG ,σ(·)(χ) extends to C ∗
r (G ), because σ ⊗ χ is L2

modulo centre

• Functions of the form ma 7→ fM(m)fA(a) span a dense
subspace of C ∗

r (G ), and πG ,σ(fM fA)(χ) = σ(fM)f̂A(χ). So:

• πG ,σ(f )(χ) is compact (because σ(fM) is); and

• πG ,σ(f ) is a C0 function of χ (because f̂A is.)
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The πG ,σs are not enough

Not every tempered irreducible representation of G is a σ ⊗ χ.

Indeed, sometimes (eg SL(2,C); SL(3,R)) G has no σ ⊗ χs.

But: every π ∈ Ĝr can be obtained from a σ ⊗ χ of a parabolic
subgroup of G , via parabolic induction.
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Parabolic subgroups

G : /////real///////////reductive////////group GL(n,R), GL(n,C), SL(n,R), SL(n,C)

P = LPNP = MPAPNP : a parabolic subgroup of G

Example: In G = GL(3,R):

P =

 ∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

 LP =

 ∗ ∗ 0
∗ ∗ 0

0 0 ∗

 NP =

 1 0 ∗
0 1 ∗
0 0 1



AP =

 a 0 0
0 a 0

0 0 b


(a, b > 0)

MP =

 0
m

0

0 0 ±1


(detm = ±1)
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Parabolic subgroups

Parabolic subgroup P = LPNP = MPAPNP ⊆ G

Properties:

• LP is a real reductive group

• P ∼= LP ⋊ NP

• LP ∼= MP × AP

• eg: P = G (then NG = {1}; LG = G ; MG , AG are as above)

• exp : aP
∼=−→ AP (=⇒ a∗P

∼= ÂP)

• G = KP for a maximal compact K

• There are only finitely many P, up to conjugacy
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Parabolic induction

P = MPAPNP parabolic subgroup of G

σ ∈ (̂MP)L2 , χ ∈ a∗P ⇝ σ ⊗ χ ∈ P̂: σ ⊗ χ(man) = σ(m)χ(a)

Parabolic induction: IndGP (σ⊗ χ) is the unitary representation of G
induced from σ ⊗ χ.

Hilbert space: P-equivariant (with a ρ-shift) functions G → Hσ⊗χ

Inner product: ⟨ξ | η⟩ =
∫
K ⟨ξ(k) | η(k)⟩ dk

G -action: translation

Compact picture: G = KP =⇒ IndGP (σ ⊗ χ) ∼= IndKK∩P(σ) over K

=⇒ all IndGP (σ ⊗ χ) can be realised on the same space IndGP Hσ,
and are all isomorphic as representations of K .
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Another partial Fourier transform

Theorem: For f ∈ Cc(G ), σ ∈ (̂MP)L2 , and χ ∈ a∗P , define

πP,σ(f )(χ) := IndGP (σ ⊗ χ)(f ).

The map πP,σ extends to a homomorphism of C ∗-algebras

πP,σ : C ∗
r (G ) → C0(a

∗
P ,K(Ind

G
P Hσ)).

Proof: Similar to the case P = G . Use the fact that G/P is
compact.
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The complete Fourier transform

Theorem: We have an injective homomorphism of C ∗-algebras⊕
πP,σ : C ∗

r (G ) →
⊕
[P,σ]

C0(a
∗
P ,K(Ind

G
P Hσ)).

[P, σ] ranges over the set of equivalence classes of pairs (P, σ)
(equivalence: conjugacy of MPAP and σ).

Proof: Two main parts. Each one relies on a big theorem from
representation theory.
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The complete Fourier transform

Theorem: We have an injective homomorphism of C ∗-algebras⊕
πP,σ : C ∗

r (G ) →
⊕
[P,σ]

C0(a
∗
P ,K(Ind

G
P Hσ)).

Part 1: The map goes into the direct sum. We use:

Theorem [Harish-Chandra]: Each irrep of K occurs in only finitely
many IndGP σ.

For each ρ ∈ K̂ consider eρ ∈ C (K ), eρ(k) =
dimHρ

vol(K) trace(ρ(k
−1)).

Schur orthogonality: for π ∈ Ĝ , π(eρ) = 0 if ρ ̸⊆ π
∣∣
K
.

So πP,σ(eρCc(G )) ̸= 0 for only finitely many [P, σ].

Harmonic analysis:
∑

ρ∈K̂ eρCc(G ) is dense in C ∗
r (G ).
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The complete Fourier transform

Theorem: We have an injective homomorphism of C ∗-algebras⊕
πP,σ : C ∗

r (G ) →
⊕
[P,σ]

C0(a
∗
P ,K(Ind

G
P Hσ)).

Part 2: The map is injective. We use:

Theorem [Langlands, Trombi]: Each π ∈ Ĝr occurs in some
IndGP (σ ⊗ χ).

Recall: Ĝr = Ĉ ∗
r (G ), and the irreducible representations of a

C ∗-algebra separate points.

Conclusion: if πP,σ(f )(χ) = 0 for all P, σ, χ, then f = 0.
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The complete Fourier transform

Theorem: We have an injective homomorphism of C ∗-algebras⊕
πP,σ : C ∗

r (G ) →
⊕
[P,σ]

C0(a
∗
P ,K(Ind

G
P Hσ)).

Next question: What is the image of this Fourier transform?

Observation: if πP,σ : C ∗
r (G ) → C0(a

∗
P ,K(Ind

G
P Hσ)) is surjective,

then each IndGP (σ ⊗ χ) is an irreducible representation of G .

In general IndGP (σ ⊗ χ) is not irreducible. We need to understand
its decomposition into irreducibles.

We also need to understand when an irreducible representation
appears in two different IndGP (σ ⊗ χ)s.

So we need to understand the intertwining operators between
IndGP (σ ⊗ χ)s.
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Intertwining operators

Intertwining operator π1 → π2 : bounded linear map of Hilbert
spaces with tπ1(g) = π2(g)t for all g ∈ G .

Theorem: [Bruhat] The intertwining operators between
IndGP (σ ⊗ χ)s are controlled by a certain finite group.

‘Weyl’ groups: fix a parabolic P = MAN

• WP := NormG (AP)/CentG (AP); a finite group, acting by

conjugation on a∗P and on M̂P .

Example: G = GL(n,R), P = upper-triangular matrices,
MP = {±1}n, AP = Rn

>0 , WP
∼= Sn (permutation matrices),

acting on M̂P = {triv, sign}n and a∗P
∼= Rn by permuting

coordinates.

• For each σ ∈ M̂L2 : Wσ := {w ∈ WP | wσ ∼= σ}

• For each χ ∈ a∗P : Wσ,χ := {w ∈ Wσ | wχ = χ}
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Intertwining operators

Fix P = MAN and σ ∈ M̂L2

Wσ = {w ∈ WP | wσ ∼= σ}, Wσ,χ = {w ∈ Wσ | wχ = χ}

Theorem: [Knapp-Stein] There are unitary operators

Iw ,χ ∈ U(IndGP Hσ) (w ∈ Wσ, χ ∈ a∗P)

satisfying:

• χ 7→ Iw ,χ is continuous in the strong operator topology

• Iw1,w2χIw2,χ = Iw1w2,χ

• Iw ,χ is an intertwiner IndGP (σ ⊗ χ) → IndGP (σ ⊗ wχ).
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Intertwiners and the image of the Fourier transform

Iw ,χ ∈ U(IndGP Hσ) for w ∈ Wσ ⇝ Wσ acts on C0(a
∗
P ,K(Ind

G
P Hσ)):

βw (f )(χ) := Iw ,w−1χf (w
−1χ)Iw−1,χ.

Since Iw ,χ is an intertwiner IndGP (σ⊗ χ) → IndGP (σ⊗wχ), we have

πP,σ

(
C ∗
r (G )

)
⊆ C0(a

∗,K(IndGP Hσ))
Wσ .

Theorem: the Fourier transform⊕
πP,σ : C ∗

r (G ) →
⊕
[P,σ]

C0(a
∗,K(IndGP Hσ))

Wσ

is an isomorphism of C ∗-algebras.

Proof: We only need to show surjectivity. Use Stone-Weierstrass +
two more big theorems from representation theory.
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Some reminders

Theorem: • The irreducible representations of C0(X ,K(H))W are

πx ,ρ : C0(X ,K(H))W
evx−−→ K(H)Wx

k 7→k◦−−−−−→ K
(
HS(ρ, Ix)

Wx

)
where x ∈ X and ρ ∈ Ŵx with ρ ⊆ Ix .

• πx ,ρ ∼= πx ′,ρ′ iff x ′ = wx and ρ′ = ρ(w−1 w) for some
w ∈ W .

Theorem: Let B be a subalgebra of a CCR algebra A. Suppose:

• π
∣∣
B
is irreducible for all π ∈ Â; and

• π
∣∣
B
∼= ρ

∣∣
B
iff π ∼= ρ (π, ρ irreps of A).

Then B = A.
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C ∗
r (G ), up to isomorphism

Step 1: Each irrep of C0(a
∗,K(IndGP Hσ))

Wσ remains irreducible
over C ∗

r (G ).

Proof: The representations in question are

C ∗
r (G ) → K

(
HS(ρ, IndGP (σ ⊗ χ))Wσ,χ

)
, f 7→ πP,σ(f )(χ) ◦

for ρ ∈ Ŵσ,χ, ρ ⊆ Iχ.

If t is an intertwiner of this representation then idHρ ⊗t is an
intertwiner of

(†) Hρ ⊗ HS(ρ, IndGP (σ ⊗ χ))Wσ,χ .

This tensor product is a G -subrep of IndGP (σ ⊗ χ).

Theorem: [Harish-Chandra] The space of intertwiners of
IndGP (σ ⊗ χ) is span{Iw ,χ | w ∈ Wσ,χ}.

The Iw ,χs act only on the Hρ factor in (†), so t is a scalar.
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C ∗
r (G ), up to isomorphism

Theorem: the Fourier transform⊕
πP,σ : C ∗

r (G ) →
⊕
[P,σ]

C0(a
∗,K(IndGP Hσ))

Wσ

is an isomorphism of C ∗-algebras.

Step 1: Irreps of the RHS remain irreducible over C ∗
r (G ) ✓

Step 2: Inequivalent irreps of the RHS remain inequivalent over
C ∗
r (G ).

This follows immediately from:

Theorem [Langlands]: The only coincidences between irreducible
subreps of IndGP (σ ⊗ χ)s are the ones coming from conjugacy.
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Looking ahead

Known: for G a real reductive group:

C ∗
r (G ) ∼=

⊕
[P,σ]

C0(a
∗
P ,K(Ind

G
P Hσ))

Wσ .

Next: the normalisation, completeness, and W = W ′ ⋊ R
conditions all hold; so

C ∗
r (G )∼

M

⊕
[P,σ]

C0(a
∗
P/W

′
σ)⋊ Rσ.

For G a p-adic reductive group:

C ∗
r (G ) ∼=

⊕
C0(X ,K(H))W

where:

• normalisation does not (?) always hold

• W = W ′ ⋊ R does not always hold

• Iw1,w2x Iw2,x = γ(w1,w2)Iw1w2,x for a 2-cocycle γ . . .

• but we can still compute K∗(C
∗
r (G )).
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Lecture 4: C ∗-algebras of real and p-adic reductive
groups, up to Morita equivalence
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Goal: compute C ∗
r (G ), the reduced C ∗-algebra of a real or

reductive p-adic group G .

Why? [one answer] Understand connections between representation
theory and operator K -theory.

The story so far:

• For real reductive G : C ∗
r (G ) ∼=

⊕
[P,σ] C0(a

∗
P ,K(Ind

G
P Hσ))

Wσ

• C0(X ,K(H))W ∼
M

a certain ideal in C0(X )⋊W .

• Under certain conditions (W = W ′ ⋊ R, etc) we have
C0(X ,K(H))W ∼

M
C0(X/W ′)⋊ R.

This lecture:

• For real reductive G : the conditions (W = W ′ ⋊ R, etc) are
satisfied by C0(a

∗
P ,K(Ind

G
P Hσ))

Wσ .

• See how this plays out for p-adic reductive groups.
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Reminders about the component C ∗-algebras

G : real reductive group P = MAN : parabolic subgroup

σ ∈ M̂L2 : square-integrable irreducible representation

IndGP Hσ : Hilbert space for the parabolically induced

representations IndGP (σ ⊗ χ), where χ ∈ a∗ ∼= Â.

Wσ : finite group acting on A and M, fixing σ

Iw ,χ : IndGP (σ ⊗ χ) → IndGP (σ ⊗ wχ) unitary intertwiners

Wσ acts on C0(a
∗,K(IndGP Hσ)):

βw (f )(χ) := Iw ,w−1χf (w
−1χ)Iw−1,χ.

C0(a
∗,K(IndGP Hσ))

Wσ is the fixed-point C ∗-algebra.
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The R-group

Fix P and σ. Recall : W ′
σ,χ = {w ∈ Wσ | Iw ,χ ∈ C idIndGP Hσ

}.

Theorem: [Knapp-Stein] Let W ′
σ := W ′

σ,0.

(1) There is a subgroup Rσ ⊆ Wσ such that Wσ = W ′
σ ⋊ Rσ.

(2) For each χ ∈ a∗ we have W ′
σ,χ = Wσ,χ ∩W ′

σ.

(3) The Iw ,χs can be chosen so that Iw ,χ = idIndGP Hσ
for all χ and

all w ∈ W ′
σ,χ.

(4) For each χ the representation w 7→ Iw ,χ of Wσ,χ contains

every ρ ∈ ̂Wσ,χ/W ′
σ,χ.

We will sketch a proof of (2) and (3).
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Knapp-Stein’s homotopy argument

Theorem: For w ∈ Wσ,χ we have Iw ,χ = c id ⇐⇒ Iw ,0 = c id.

Proof: Wσ acts linearly on a∗. So w ∈ Wσ,χ ⇒ w ∈ Wσ,tχ ∀t ∈ R.

wm = 1 ⇒ Imw ,tχ = id ∀t ∈ R ⇒ spec(Iw ,tχ) ⊆ {mth roots of 1}

IndGP σ is admissible: each K -isotypical subspace (K a maximal

compact subgroup of G ) is finite-dimensional. [Harish-Chandra]

⇒ IndGP Hσ =
⋃∞

i=1Hi , Hi ⊆ Hi+1, dimHi < ∞, Iw ,tχHi = Hi .

t 7→ Iw ,tχ SOT-cts ⇒ spec(Iw ,tχ

∣∣
Hi
) varies continuously with t

⇒ if spec(Iw ,tχ) = {c} for one t, then the

same holds for all t.

Corollary: W ′
σ,χ = Wσ,χ ∩W ′

σ, and we can normalise the Iw ,χ so
that Iw ,χ = id for all χ and all w ∈ W ′

σ,χ.
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C ∗
r (GR) up to Morita equivalence

G : real reductive group

Recall: • C ∗
r (G ) ∼=

⊕
[P,σ] C0(a

∗
P ,K(Ind

G
P Hσ))

Wσ

• If W = W ′ ⋊ R, and W ′
x = Wx ∩W ′ for each x ∈ X , then

C0(X ,K(H))W ∼
M

C0(X/W ′)⋊ R.

Exercise: if Ai ∼
M

Bi for i ∈ I then
⊕

i Ai ∼
M

⊕
i Bi .

Corollary: [Wasserman] For each real reductive group G we have

C ∗
r (G ) ∼

Morita

⊕
[P,σ]

C0(a
∗
P/W

′
σ)⋊ Rσ.

Corollary: K∗(C
∗
r (G )) ∼=

⊕
[P,σ],W ′

σ={1}

Z [see Hang Wang’s lectures]
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Example : SL(2,R)

G = SL(2,R) has two conjugacy classes of parabolic subgroups:

P = G : M = G , A = {1}

M̂L2 = {σn | n ∈ Z \ {0}} (discrete series), WP = {1}, a∗ = 0

=⇒ C ∗
r (G )[P,σn]

∼= K(Hσn)∼
M

C

P =

[
∗ ∗
0 ∗

]
: M = ±

[
1 0
0 1

]
, A =

[
a 0
0 a−1

]
(a > 0)

M̂L2 = {triv, sign}, WP =
{
1,w =

[
0 −1
1 0

]}
, a∗ ∼= R, wχ = −χ

Wtriv = W ′
triv = W =⇒ C ∗

r (G )[P,triv] ∼
M

C0([0,∞))

Wsign = Rsign = W =⇒ C ∗
r (G )[P,sign] ∼

M
C0(R)⋊W

Conclusion: C ∗
r (G )∼

M
C0(Z \ {0})⊕ C0([0,∞))⊕ C0(R)⋊W .
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How does all of this work for p-adic groups?
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What changes over Qp : Qp vs R

Let p be a prime in N.

We will just talk about Qp, but everything here is also valid for
finite extensions of Qp.

Qp := Q| |p
where |pk(a/b)|p := p−k (p ∤ a, b)

Some important differences between Qp and R:

• |a+ b|p ≤ max{|a|p, |b|p} (while in R often |a+ b| = |a|+ |b|)

• Zp = Z| |p
is compact in Qp (while Z is discrete in R)

• Q×
p = pZ × Z×

p : discrete × profinite (while R× = eR × {±1})

• p-adic groups have lots of compact subgroups

(while Lie groups have no small subgroups)

92 / 107



What changes over Qp : discrete series

G : p-adic reductive group (eg GL(n,Qp), SL(n,Qp))

• We don’t have G = M
compactly
generated

× A
central

(think about
[
p 0
0 1

]
∈ GL(2,Qp))

• ĜL2 := irreps whose matrix coefficients are L2 modulo the
centre of G .

• Theorem: ĜL2 ̸= ∅. In fact, G has irreps whose matrix
coefficients are compactly supported modulo the centre.
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What changes over Qp : twisting by characters

• XG := {χ : G → U(C) | χ(g) = 1 if g ∈ a compact subgroup}

• Example: XGL(n,Qp)
∼= U(C), via e it 7→ (g 7→ | det(g)|itp )

• Theorem: XG is a compact torus (ie XG
∼= U(C)n).

• XG acts on ĜL2 (χ : σ 7→ σ ⊗ χ), possibly non-freely

• We get a Fourier transform

πG ,σ : G → C (XG ,K(Hσ)).
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What changes over Qp : parabolic induction

Here, not much changes:

• Given a parabolic subgroup P = LN, and σ ∈ L̂L2 , we get a
family of representations of G : IndGP (σ ⊗ χ) for χ ∈ XP .

• These representations can all be realised on the same Hilbert
space IndGP Hσ.

• For each (P, σ) there is a partial Fourier transform

πP,σ : C ∗
r (G ) → C (XP ,K(Ind

G
P Hσ)).

• The complete Fourier transform⊕
[P,σ]

πP,σ : C ∗
r (G ) →

⊕
[P,σ]

C (XP ,K(Ind
G
P Hσ))

is injective [Harish-Chandra, Bernstein]
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What changes over Qp : intertwining operators

Here there are more significant changes.

• two sources of intertwiners IndGP (σ ⊗ χ) → IndGP (σ ⊗ χ′):

◦ a Weyl-type group WP ◦ the stabiliser of σ in XP

Consequence: we define Wσ as a subgroup of XP ⋊WP .

• Iw1,w2χIw2,χ = γP,σ(w1,w2)Iw1w2,χ for some 2-cocycle γ on
Wσ, which [as far as I know] cannot always be trivialised.

Consequence: we need to deal with projective representations
of Wσ, and twisted crossed products.

• XP is a torus, so the fixed-point sets Xw
P need not be

connected. So we can’t [as far as I know] always arrange that
Iw ,χ ∈ C id =⇒ Iw ,χ = id.

Consequence: we need to keep track of a projective character
w 7→ iw ,χ of W ′

σ,χ for each χ.
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Fourier transform and Morita equivalence for p-adic groups

G : p-adic reductive group

Theorem: [Plymen; Harish-Chandra] The Fourier transform⊕
[P,σ]

πP,σ : C ∗
r (G ) →

⊕
[P,σ]

C (XP ,K(Ind
G
P Hσ))

Wσ

is an isomorphism.

Theorem: [with Clare] For each (P, σ) the bimodule C (XP , Ind
G
P Hσ)

gives a Morita equivalence between C ∗
r (G )(P,σ) and the ideal

C (XP ,Wσ, I ) := ∑
w∈Wσ

fww ∈ C (XP) ⋊
γP,σ

Wσ

∣∣∣∣∣∣ ∀χ ∈ XP , ∀w ′ ∈ W ′
σ,χ, ∀w ∈ Wσ :

fw ′w (χ) = iw ′,χγP,σ(w
′,w)fw (χ)


of the twisted crossed product C (XP) ⋊

γP,σ

Wσ.
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When is C ∗
r (G )(P,σ) ∼

M
C (XP/W

′
σ)⋊γ Rσ?

Fix P and σ, and drop them from the notation.

Theorem: [Afgoustidis-Aubert; special cases by Plymen et al]

• If W = W ′ ⋊ R, where W ′
χ = Wχ ∩W ′ for all χ ∈ X , then

C ∗
r (G )(P,σ) ∼

M
C (X/W ′)⋊γ R.

• For G a split classical group, one can characterise precisely
when the above condition is satisfied.
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Example: ∄W ′ with W ′
χ = Wχ ∩W ′ for all χ

G = Sp(4,Qp) =
{
g ∈ GL(4,Qp)

∣∣ g t
[

I
−I

]
g =

[
I

−I

]}

L =


a

b
a−1

b−1


∼= Q×

p ×Q×
p

, N =


1 a b c
0 1 c d

1 0
−a 1

, σ = triv ∈ L̂

XP
∼= R2/2πZ2 (x , y) : (pn, pm) 7→ e i(xn+ym)

Wσ = ⟨s, t⟩, s(x , y) = (x ,−y), t(x , y) = (y , x)
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Example: ∄W ′ with W ′
χ = Wχ ∩W ′ for all χ

X

−π π

−π

π

t

s
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Example: ∄W ′ with W ′
χ = Wχ ∩W ′ for all χ

Wχ,W
′
χ

W ,{±1,±t}

W ,W
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Computing K∗(C
∗
r (G )) [joint work with Pierre Clare]

K∗ is Morita-invariant and commutes with
⊕

=⇒ enough to compute K∗(C (XP ,Wσ, I )) for each (P, σ).

Fix P and σ, and drop them from the notation.

X (a compact torus) has a W -invariant CW-structure; choose one.

The Knapp-Stein homotopy argument implies:

• Wχ, W
′
χ, and iχ depend only on the open cell z ∋ χ

• if z ′ ∈ ∂z then

◦ Wz ⊆ Wz ′

◦ W ′
z = Wz ∩W ′

z ′

◦ iz = iz ′
∣∣
W ′

z
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Computing K∗(C
∗
r (G )) [joint work with Pierre Clare]

Reminder: z ′ ∈ ∂z ⇒ Wz ⊆ Wz ′ , W
′
z = Wz ∩W ′

z ′ , and iz = iz ′
∣∣
W ′

z

For each open cell z define

Rz := Repγ,iz (Wz) := Z
{
ρ ∈ Ŵz

γ
∣∣∣ iz ⊆ ρ

∣∣
W ′

z

}
.

For each w ∈ W we have a map Adw : Rz → Rwz .

For each z ′ ∈ ∂z we have a map restrict : Rz ′ → Rz .

R is an equivariant cohomological coefficient system [Bredon]

⇝ equivariant cohomology groups H∗
W (X ;R) [example soon]

Theorem: K∗(C (X ,W , I )) ∼= H∗
W (X ;R), up to a filtration.

Proof: filtration of X by skeleta =⇒ filtration of C (X ,W , I ) =⇒
spectral sequence converging to K∗(C (X ,W , I )) with
E∞ = E 2 = H∗

W (X ;R) [Atiyah-Hirzebruch; Bredon; Schochet]
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The Sp(4) example again

W = {±1,±s,±t,±st}

X

t

s
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The Sp(4) example again

Choose a W -CW-structure

X

t

s
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X

t

s
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The Sp(4) example again

Cm
W (X ;R) = (

⊕
z∈Xm Rz)

W

X

t

s
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The Sp(4) example again

Cm
W (X ;R) = (

⊕
z∈Xm Rz)

W

fundamental
domain

X

t

s
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Intertwiners and scalar intertwiners [Keys]

Wz ,W
′
z :

W ,{±1,±t}

{1,−s},{1}

{±1,±s},{1, s}W ,W {1, s},{1, s}

{1, t},{1, t}

{1},{1}

Z2

Z2

Z2Z

Z

Z

Z

105 / 107



Intertwiners and scalar intertwiners [Keys]

Here γ, i ≡ 1, so Rz = Rep(Wz/W
′
z)
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Z2

Z2

Z2Z

Z

Z

Z
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Intertwiners and scalar intertwiners [Keys]

z ′ ∈ ∂z : d : Rz ′ → Rz , ± restriction

W ,{±1,±t}

{1,−s},{1}

{±1,±s},{1, s}W ,W {1, s},{1, s}

{1, t},{1, t}

{1},{1}

Z2

Z2

Z2Z

Z

Z

Z
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Restriction maps

Z2

Z2

Z2Z Z

Z

Z−

+ −

+

−

+

+ +

+

Z2 → Z : (a, b) 7→ ±(a+ b)

other maps : ± identity

orientation : ⟲
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Computing H∗
W (X ;R)

Z2 (a,b)7→±(a+b)−−−−−−−−−→ Z; other maps are ± identity;
+−−→,

−−−→

degree 0 degree 1 degree 2

Z2 //

""

Z2

((
⊕ ⊕
Z2

66

// Z // Z
⊕ ⊕
Z

55

// Z

55

H0 ∼= Z2 H1 = 0 H2 = 0

Conclusion: The direct-summand of K∗C
∗
r (Sp(4,Qp)) associated

to the trivial representation of a minimal parabolic subgroup has
K0

∼= Z2 and K1 = 0.

Thanks for having me!
107 / 107


	1. C*-algebras
	2. Morita equivalence
	3. C*-algebras of real reductive groups
	4. C*-algebras of real and p-adic reductive groups, up to Morita equivalence

