ID de Contribution: 38 Type: Non spécifié

Categorified Crystal Bases on Localized Quantum Coordinate Rings and Cellular Crystals

jeudi 16 novembre 2023 14:25 (45 minutes)

For a monoidal category (τ, \circ) , if there exists a "real commuting family $(C_i, R_{Ci}, \phi_i)_{i \in I}$ ", we can define a localization $\tilde{\tau}$ of τ by $(C_i, R_{Ci}, \phi_i)_{i \in I}$. Let $R = R(\mathfrak{g})$ be the quiver Hecke algebra (=KLR algebra) associated with a simple Lie algebra \mathfrak{g} and R-gmod the category of finite-dimensional graded R-modules, which is a monoidal category with a real commuting family $(C_i, R_{Ci}, \phi_i)_{i \in I}$. Thus, we get its localization \tilde{R} -gmod. It has been shown that R-gmod categorifies the unipotent quantum coordinate ring $A_q(\mathfrak{g})$, that is, the Grothendieck ring K(R-gmod) is isomorphic to $A_q(\mathfrak{g})$. For the localized category \tilde{R} -gmod, its Grothendieck ring $K(\tilde{R}-gmod)$ defines the localized (unipotent) quantum coordinate ring $A_q(\mathfrak{g})$.

We shall give a certain crystal structure on the set of self-dual simple objects $\mathbb{B}(\tilde{R}-gmod)$ in \tilde{R} -gmod-gmod. We also give the isomorphism of crystals from $\mathbb{B}(\tilde{R}-gmod)$ to the cellular crystal $\mathbb{B}_{\mathbf{i}}=B_{i_1}\otimes\cdots B_{i_N}$ for an arbitrary reduced word $\mathbf{i}=i_1\cdots i_N$ of the longest Weyl group element. This result can be seen as a localized version for the categorification of the crystal base $B(\infty)$ for the subalgebra $U_q^-(\mathfrak{g})(\cong A_q(\mathfrak{g}))$ of the quantum algebra $U_q(\mathfrak{g})$, given by Lauda-Vazirani.

Orateur: Prof. NAKASHIMA, Toshiki (Sophia University Tokyo)